

CNIS UNIVERSITE

CNrs

NUCLÉAIRE

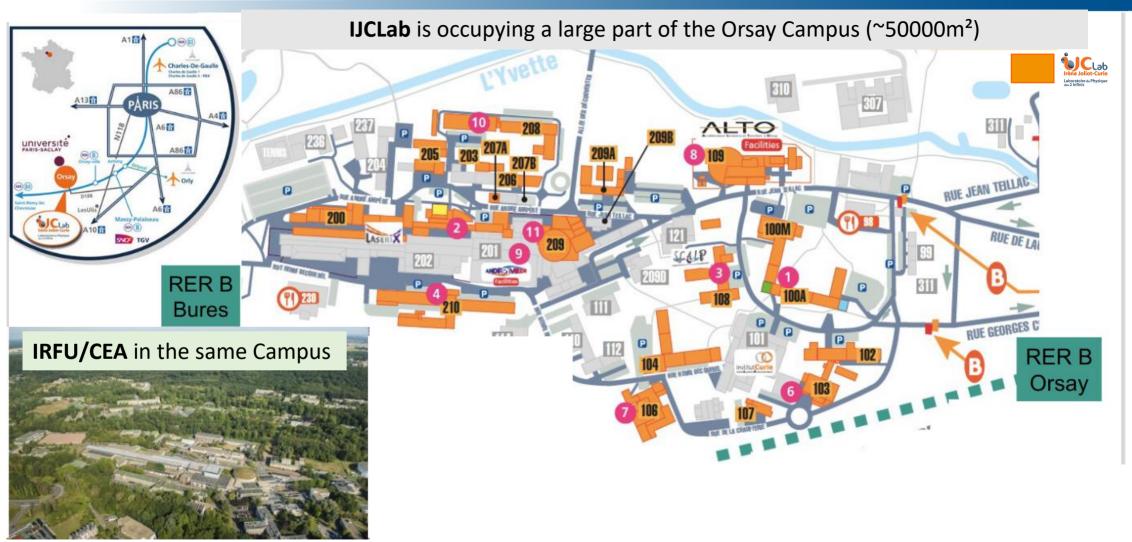
& PARTICULES

You know as IN2P3 !

Université de Paris

UNIVERSITE PARIS-SACLAY

FACULTÉ DES SCIENCES D'ORSAY


Laboratoire de Physique des 2 Infinis

A new European Laboratory.

Formed on 2020 by the merging of 5 Laboratories in Orsay-FranceCSNSMCentre de Sciences Nucléaires et de Sciences de la MatièreIPNInstitut de Physique NucléaireIMNCImagerie et Modélisation en Neurobiologie et CancérologieLALLaboratoire de l'Accélérateur LinéaireLPTLaboratoire de Physique Théorique

IJCLab : Located in Orsay Campus, 30 Km South-Paris, Campus Paris-Saclay

14/11/2024

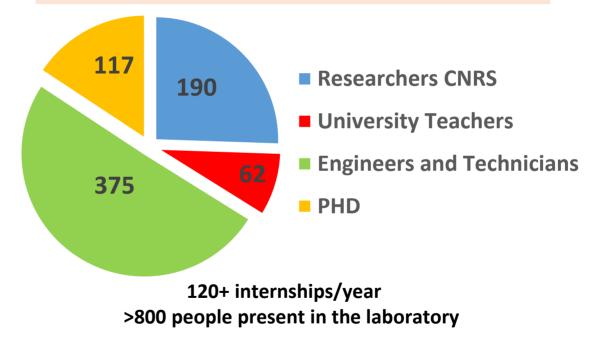
Report from IJCLab --- 115th Plenary ECFA Meeting

...et voilà IJClab !

7 Research Poles

31 research teams and 2 Departments

<u>1 Engineering pole</u> 4 Departments with 10 Services


> **<u>1 Administration Pole</u>** 3 Divisions + 1 Service

<u>6 support Services</u>

<u>5 Platforms</u> (with external users) + several technical platforms

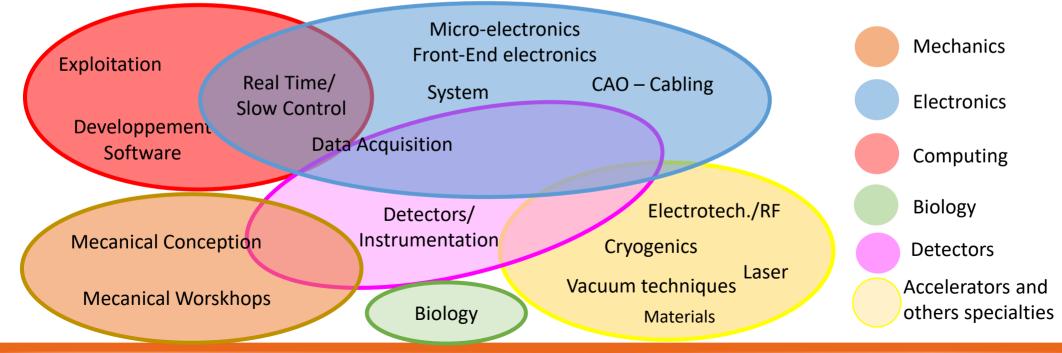
~750 people (~530 permanents)

The largest laboratories of the CNRS and Paris Saclay In the network of the major European laboratories (LDG)

New and different organization compared to the former laboratories + new "instances"

~180 staff members

4 Departments : Electronics / Computing Instrumentation / Mechanics with 10 Services


Services in accelerator Pole

- RF
- Cryogenics ~30 staff members

Technical staff with technical skills/expertise

essential pillars for the laboratory to design, draw and build instruments.

- Technical services are fuelled by the challenges of research (R&D and projects)
- The proximity of technical and research teams (integrated teams)
- The ability to combine and make coexist versatility and specialization

14/11/2024

IJClab Scientific Departements

Pôle Scientifiques

All the themes of the "physics of the two infinities" with the presence of strong historical/existing poles, emerging poles and activities at the interfaces.

Theory

Accelerator Physics

Including RF and cryogenic services

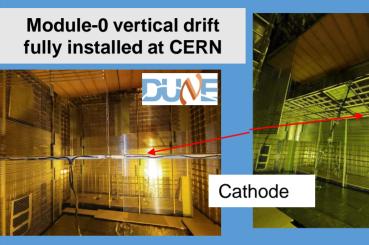
Energy and Environnement

~ 120 PhD

Within France, most of these projects are done with other IN2P3 laboratories and with strong contributions from IRFU/CEA-Saclay

- Structure of nucleon (and of hadrons)
- New state of matter : Quark Gluon Plasma
- > New particles, symmetries beyond Standard Model
- > Origin of the mass of elementary particles
- Particle-antiparticle asymmetry (CP violations)
- > Masses and mass hierarchy of neutrinos
- > Nature of neutrinos (Majorana or Dirac)

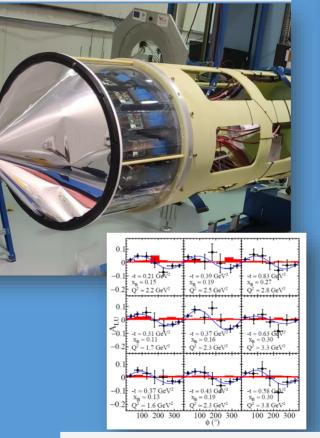
* FTE = Full Time Equivalent


** Main hardware contributions, besides the activities in Physics analysis

- ~35* ATLAS (elec. calorimeter, ITK and HGTD)** ~20 LHCb (calorimeter, upgrade electronics, Plume luminometer)
 - ~10 **ALICE** (dimuon tracking, electronics) *gradually joining LHCb*
 - \rightarrow Start of activities (physics and detector R&D) for FCCee
 - ~10 **Belle II** (Cerenkov, DAQ upgrade, *synergy with LHCb*)
 - ~15 JLaB experiments (detectors construction), moving also on EIC

~10 **DUNE** (mechanics+ mounting at CERN) /rapidly increasing

i

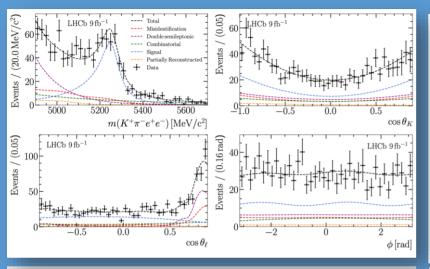

Recent IJCLab Highlight for High Energy Physics

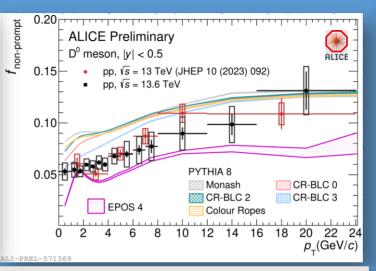
Cheminey in cryogenic conditions)

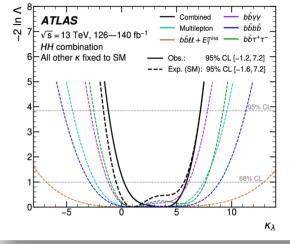
Completion of ALERT wire chamber delivered to Jlab. Data taking in Jan 2025

JLab: first measurement of deeply virtual Compton scattering on the neutron

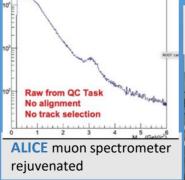
Inner vertex detector air cooling test bench for Belle 2 upgrade


Cooling system of the new beam pipe at KEK




Recent IJCLab Highlight for High Energy Physics : @LHC ~65FTE

LHCb: first angular analysis of $B \rightarrow K^*e^+e^-$:no sign of LFV effects are observed


ALICE: First non-prompt charm-hadron measurement in Run 3: Measurement down to pT = 0

ATLAS: combination of run2 searches for Higgs boson pair production \rightarrow constraints on the Higgs boson self-coupling modifier

LHCb is reading out its ~ full detector at 40 MHz with a fully software trigger Luminosity (PLUME detector) information sent to the LHC machine

ATLAS ITk pixel: lab qualified for module assembly. The production should start by the end of the year

PSI : Technical platform devoted to characterisation of semi-conductor materials/devices

Within France, most of these projects are done with other IN2P3 laboratories and with strong contributions from IRFU/CEA-Saclay

- ~20 FTE **PERLE** ERL @Orsay with international collaborators \rightarrow 40 FTE in 2025
- ~10 FTE PALLAS Laser Plasma in situ experiment with LaseriX laser
- ~10 FTE **ThomX** in site project on going End of the project dec 2025
- ~ 5 FTE for R&D activities in this domain.
- ~ 7 FTE Activities in **Future Colliders** (LHC, SuperKeKB, FCC, ILC ...)
- ~ 5 FTE Myrrha in the projects since the beginning now in Minerva
- ~ 5 FTE **PIP II** on going contribution
- ~ 5 FTE ESS Strong contributions (cavities and cryomodules). *Finishing in 2024*

Strong expertise and activities/services (with dedicated platforms)

- RF Technology. ~ 15FTE
- Cryogenics. ~10FTE
- Vacuum technology + characterization of material for accelerators ~10FTE

Human and Financial Resources Plan

Rearranged accordingly to the Accelerator Roadmap

0.8

0.6

0.4

0.2

10

ThomX : A high-intensity Compton source at Orsay

> End 2023 : First e-/laser SYNCHRO

- ABSOLUTE FLUX measurement in X-Hutch with a calibrated diode
- **Given Spectrum with the ~ 10¹⁰ ph/s beam**

~ 50.0 MeV

~ 1.6 mrad

30

34

38

46

42

Calibrated

Si pdiode

Spectro

CdTe

~ 0.8 %

Data

Fit

 σ_{Ee}/E_{e}

18

22

First « radiography »

26

div e

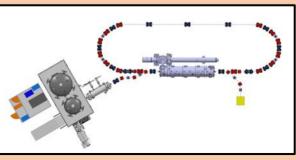
14

1024 **END 2023** $(ph/s/mrad^2/mm^2/0.1\% bw)$ FEL 2024 *************** 1021 1018 **Synchrotrons** Mechanically increase the ring circumference by ~14 mm 1015 ESRF biomed line 1012 ThomX (nominal) 109 Lync. Tech./Munich* Brightness ThomX Result ! 106 X-ray tubes 10^{3} 0.1 100 10 X-ray energy (keV) New accelerating section \rightarrow 70 MeV

Restart on going !
Data taking and experiments until end 2025

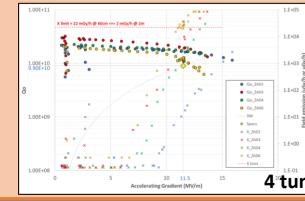
International Collaboration PERLE@Orsay : 5MW multi-tours ERL for Future Colliders (LHeC, FCC), Nuclear Physics and Compton Scattering

• **DC-gun + photocathode+ preparation chamber** acquired and installation is ongoing in the IGLOO.



• LINAC cryomodule is funded by the UE Program iSAS (+ IN2P3 matching funds + CM vessel from ESS...). Components design is ongoing:

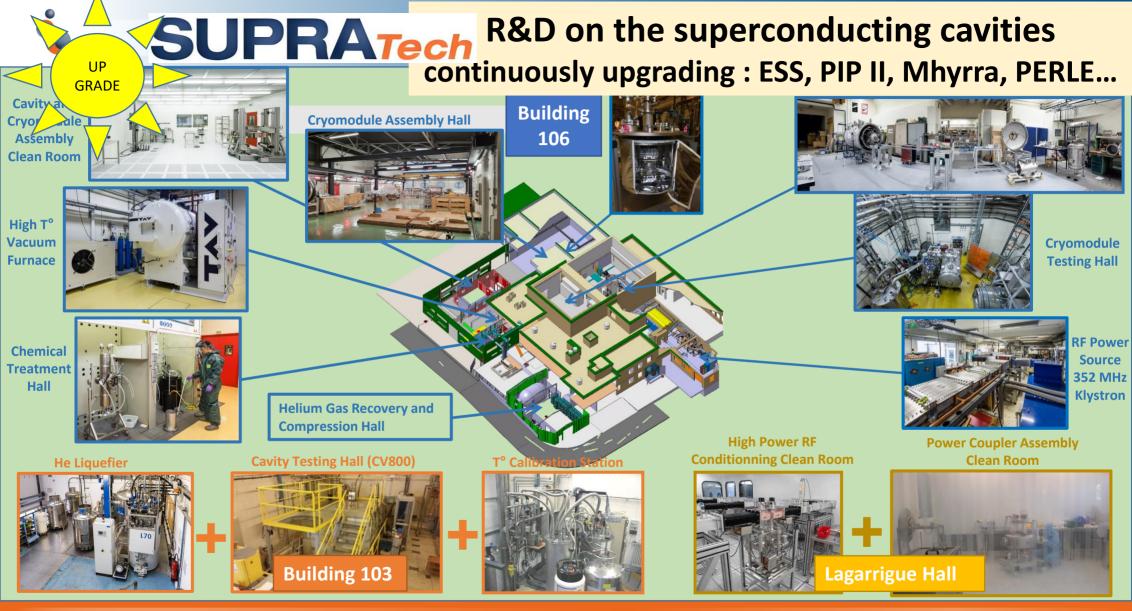
• Funds obtained within National program (CNRS). it secure the full injection line.


ESS Spoke cryomodules & Cryogenic Distribution System

In-kind contribution is finished! All cryomodules installed in the tunnel and connected to the cryogenic distribution

PIP2

All cavities have been tested and shipped to FNAL. 4 cavities validated


4^{tun}ing systems validated at cold

PALLAS: laser-plasma @ IJClab Finalisation of the assembly/ mounting

Injection at > 50pC, div: 1-1.5mrad between 160-350MeV

New Plateform : Vide & Surface

A platform dedicated to surface analysis + Ultrahigh Vacuum studies of materials used in accelerators

Surface analysis of materials

Vacuum Expertise

MOSAIC a multidisciplinary platform with complementary equipment

400 kV Némée JANNuS-Orsav 2 Up grade lon beams for 200 kV TFN synthesis, 9 Tancrède SEM-EDX AFM Sidonie 🕑 modification, analysis of materials, 70 elements 25 kV Tancrède proton → nanoparticles ANDE COMED Andromède 50eV → 32 MeV ARAMIS EIDONIE UNAVAILABLE Andromède with n/a from 1 to 160 MV Andromède 2 MV ARAI 190 kV IRMA 40 kV SIDON 10 keV 50 eV 1 keV 100 keV 1 MeV 32 MeV

10 MeV

Other Very Large and Large projects at IJCLab

Within France, most of these projects are done with other IN2P3 laboratories and with strong contributions from IRFU/CEA-Saclay

- > Detections of new Gravitational waves and new astronomy
- > Multi-messenger : transient sky, acceleration mechanisms, dynamics of the violent Universe
- > Origin of the elements / nuclear processes at work in astrophysical sites
- > Fundamental tests of fundamental physics: (modified)Gravity, Lorentz Invariance.
- > Model of Primordial Universe. Improving knowledge of cosmological parameters; CMB
- > Search for (primordial) GW of inflation through CMB B modes
- Elucidating the Dark Energy
- > Search for Dark Matter directly and indirectly : WIMPS, Dark Photons, Axions...
- > Neutrino Physics : masses, sterile neutrinos, interactions
- Nature of neutrinos (Majorana or Dirac)

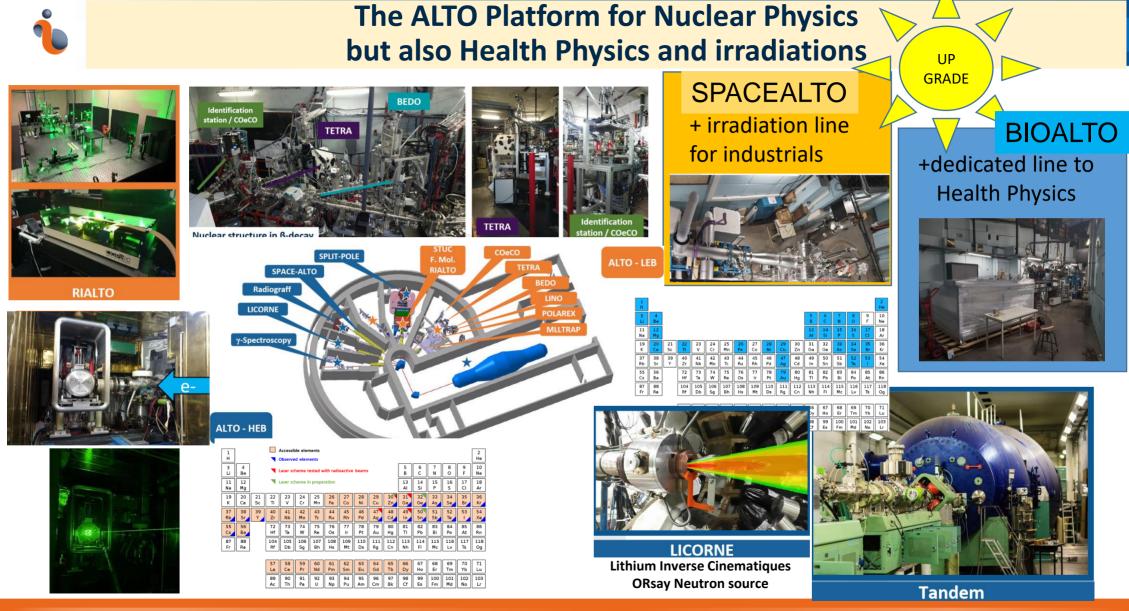
70 FTE in Astroparticle and Cosmology

~20 VIRGO+SVOM (vacuum, optics, locking, squeezing,on-line), also ET
~10 CTA + Auger' (Telescope calibration)/(electronics)
~7 Astro@MeV(full detectors,) - space experiment

~10 LSST/FINK (electronics, broker, ancillary telescope)
 ~6 CMB/LiteBird (mechanics, calibration on board equipment's)
 - space experiment

~12 CUPID/Double Beta (bolometers, mechanics)

- Complexity of nuclear structure from the interaction among nucleons
- Limits on nuclear stability
- Heavy and Super Heavy Nuclei.
- > Nucleosynthesis and origin of the elements in the universe.
- > Properties of nuclei and strongly-interacting matter at high energies

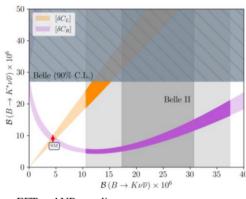

60 FTE in Nuclear Physics +15 to operate the ALTO Platform

(contributions to the detectors, tragets, beam lines equipment's)

- ~20 ALTO experiments (COeCO, MLLTrap, LINO, POLAREX, NuBALL ..)
- ~20 **GANIL experiments** (S3-LEB, MUGAST AGATA-now in Legnaro)
- ~15 Experiments at ANL, Dubna, Jyväskylä, LNL, CERN-ISOLDE

+ Increasing activities in Health Physics : radiotherapy and imagining (ex : radionuclei, BIO-ALTO...)

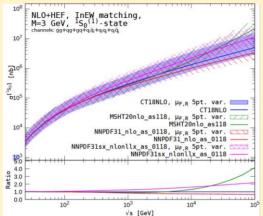
14/11/2024



Large Departement on Theoretical Physics

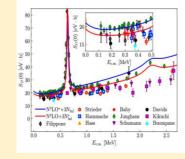
~80 People

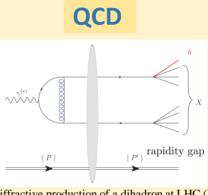
Higgs/BSM Physics


Flavour Physics

EFT and NP coupling

Nuclear Physics

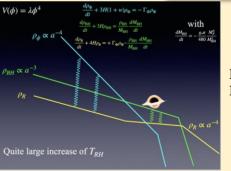




Matching next-to-leading-order and highenergy-resummed calculations of heavyguarkonium-hadroproductioncross sections

Ab-initio reaction wih light systems

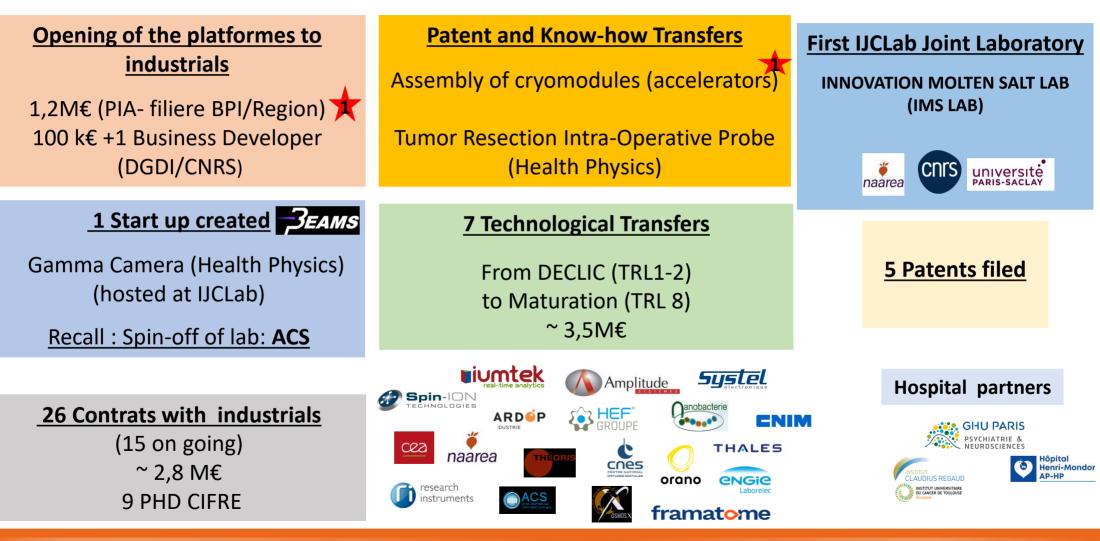
Ab initio prediction of the ${}^{4}\text{He}(d,\gamma) \,{}^{6}\text{Li}$ big bang radiative capture Ab initio calculation of the β -decay from ${}^{11}\text{Be}$ to a p ${}^{+10}\text{Be}$ resonance Ab initio informed evaluation of the radiative capture of protons on ${}^{7}\text{Be}$



Diffractive production of a dihadron at LHC (UPC) or EIC : the γ probe goes through a **QCD shockwave**

Cosmology 10⁻¹³ 10⁻¹⁴ 10⁻¹⁵ 10⁻¹⁶ 10⁻¹⁷ 10⁻¹⁸ 2 3 4 5 6

Explanation of the observation of nHz stochastic gravitational wave background by the recent NANOGrav data.



Primordial Black Holes Reheating

+ Mathematical Physics / Statistical Physics

14/11/2024

Report from IJCLab --- 115th Plenary ECFA Meeting

Thanks for your attention!

Laboratoire de Physique des 2 Infinis

22

14/11/2024

Diar future / Hillsh (1985 70)