Energy Recovery Linacs & HEP applications

Plenary ECFA Meeting at CERN November 14-15, 2024

The ERL technique is not new

Energy Recovery demonstrated

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

ERL to enable high-power beams that would otherwise require one or more nuclear power plants

Future ERL-based Colliders H, HH, ep/eA, muons, ... **bERLinPro** & **PERLE** essential accelerator R&D labs with ambitions overlapping with those of the particle physics community towards high energy & high power

Energy Recovery demonstrated

great achievements on all aspects and large research infrastructures based on Energy Recovery systems have been operated successfully

Upcoming facilities for Energy Recovery Linac R&D

PERLE @ IJCLab (Orsay)

installation of the gun HV system at IJCLab

Various (in-kind) contributions

e.g. cryoplant from HZB

+ Contributions through iSAS of

Various (in-kind) contributions

e.g. cryoplant from HZB

Image: With the second secon

opportunity to test an additional cryomodule e.g. for FCC-ee PERLE will proceed in phases Phase 1: injection line installation (2027) Phase 2: single turn (mid-2028) Phase 3: PERLE 250 MeV version (2030) \succ

Timeline towards PERLE 1-turn by mid-2028

Timeline towards PERLE 1-turn by mid-2028

bERLinPro @ HZB (Berlin)

bERLinPro @ HZB (Berlin, Germany)

 generic accelerator R&D with several aspects as stepping stones towards HEP applications
 potential for developing and testing novel energy-saving technologies

10-mA SRF gun + merger + recirculation + dump + proof-of-principle UED exp (booster module is funded and being assembled)

The current installation will allow high-power beam studies of the injector (up to 100 mA in long-pulse mode).

first beam from injector end of 2024

Potential impact of ERL technology for particle physics colliders demonstrate (multi-turn) high-power ERL 2020'ies iSAS PERLE bERLinPro high-power ERL

demonstrated

Potential impact of ERL technology

for particle physics colliders

demonstrate

(multi-turn) high-power ERL

enables the ultimate upgrades of the LHC/FCC programmes (ep collisions)

2070'ies ERL FCC-ehutzebland

euse ERI

high-power ERL demonstrated

2030'ies EIC

ERL application

electron cooling

2030-2040'ies

m R

high-power ERL e⁻ beam in collision (ep/eA @ LHC programme)

high-energy & high-luminosity electron-proton collisions

https://indico.cern.ch/event/1423870/

high-energy & high-luminosity electron-proton collisions

https://indico.cern.ch/event/1423870/

Some physics highlights of the LHeC

on several fronts comparable improvements between LHC \rightarrow HL-LHC as for HL-LHC \rightarrow LHeC

EW physics – pp & ep

- \circ Δm_W to 2 MeV (today at ~10 MeV) pp with ep input
- $\circ \Delta sin^2 \theta_W^{eff}$ to 0.00015 (same as LEP + scale dep) ep only

Top quark physics – ep only

- \circ |V_{tb}| precision better than 1% (today ~5%)
- \circ top quark FCNC and γ , W, Z couplings

DIS scattering cross sections - ep 1y

 complete unfolding of PDFs extended in (Q²,x) by orders of magnitude

Strong interaction physics - ep 1y

- $\circ \alpha_s$ precision of 0.2%
- o low-x: a new discovery frontier

The Large Hadron-Electron Collider at the HL-LHC, J. Phys. G 48 (2021) 110501, 364p (updated CDR)

Some physics highlights of the LHeC

on several fronts comparable improvements between LHC ightarrow HL-LHC as for HL-LHC ightarrow LHeC

EW physics – pp & ep

- $\circ \Delta m_W$ to 2 MeV (today at ~10 MeV) pp with ep input
- $\circ \Delta sin^2 \theta_W^{eff}$ to 0.00015 (same as LEP + scale dep) ep only

Top quark physics – ep only

- \circ |V_{tb}| precision better than 1% (today ~5%)
- \circ top quark FCNC and γ , W, Z couplings

DIS scattering cross sections - ep 1y

 complete unfolding of PDFs extended in (Q²,x) by orders of magnitude

Strong interaction physics - ep 1y

- $\circ \alpha_s$ precision of 0.2%
- o low-x: a new discovery frontier

The Large Hadron-Electron Collider at the HL-LHC, J. Phys. G 48 (2021) 110501, 364p (updated CDR)

How does the LHeC fits into the collider landscape?

ep-option with HL-LHC: LHeC e.g. 6 years ep-only@LHC > 1 ab⁻¹

LHC

e.g. FCC (ee or hh)

Refs for CERC: V. Litvinenko, T. Roser, M.C. Llatas, PLB 804 (2020) 135394 and arXiv:2203.07358

This plot <u>suggests</u> that with an ERL version of a Higgs Factory one might reach

x10 more H's

or

x10 less electricity costs

NOTE: several additional challenges identified to realise these ERL-based Higgs Factories (hence the large uncertainty band in the plot)

41

CERC: ERL-based <u>circular</u> 100km e⁺e⁻ Higgs Factory

Collider Implementation Task Force

Snowmass Report

arXiv:2208.06030v1

This plot <u>suggests</u> that with an ERL version of a Higgs Factory one might reach

WW

10⁰

ZH

This plot suggests that with an ERL version of a Higgs Factory one might reach

x10 more H's

or

x10 less electricity costs

NOTE: several additional challenges identified to realise these ERL-based Higgs Factories (hence the large uncertainty band in the plot)

Integrate Luminosity per Energy [ab⁻¹ TWh⁻¹]

Ref for ReLiC: arXiv:2203.06476

44

ERC@CERN in the LEP/LHC tunnel for CoM energy of 250 GeV

- Two-pass ERL version for <u>three detectors</u>
- Including two MAX IV like 3 GeV damping rings
- Power calculations based on (requires aggressive R&D)
 - 4.5 K cavities with 31.33 MV/m gradient (70% filling factor)
 - same cavities for e^{-} and e^{+} ($Q_0 = 10^{10}$ and 10 mA)
 - *duty factor 1/10 (5 Hz operation & 20 ms pulse length)*
 - ε_x (norm) = 0.42 mm-mrad & ε_y (norm) = 4.2 μ m-mrad
 - 8 MHz bunch frequency during RF pulse (2 x 10¹⁰ part/bunch)
- RF \oplus Cryo power = 13.6 MW + 43.7 MW = 57 MW
 - total synchrotron energy lost in 2 turns is 6.83 GeV, compared to 7 GeV per turn for a non-ERL version

Future particle physics colliders with Energy Recovery Linacs

- The engine of our curiosity-driven exploration with particle physics is society's appreciation for the portfolio of technological innovations and knowledge transfer that we continue to realize: <u>power requirements are on the minds now</u>
- To achieve the best physics for the least power, energy savings and energy recovery is an ambition expressed in the European Strategy for Particle Physics
- ERL is an <u>enabling technology for our most prominent future ep/eA and e⁺e⁻</u> <u>colliders</u>, delivering breakthrough performances on an interesting timeline

Future particle physics colliders with Energy Recovery Linacs

- The engine of our curiosity-driven exploration with particle physics is society's appreciation for the portfolio of technological innovations and knowledge transfer that we continue to realize: <u>power requirements are on the minds now</u>
- To achieve the best physics for the least power, energy savings and energy recovery is an ambition expressed in the European Strategy for Particle Physics
- ERL is an <u>enabling technology for our most prominent future ep/eA and e⁺e⁻</u> <u>colliders</u>, delivering breakthrough performances on an interesting timeline

The potential impact of ERL on the performance of particle colliders is so appealing that we must foster this R&D path

ERL Panel website: <u>https://indico.ijclab.in2p3.fr/event/9548/</u> (incl. registration to mailing list)

Thank you for your attention! Jorgen.DHondt@nikhef.nl

Max Klein (1951–2024)

EXTRA

RI: Research Infrastructure

Accelerator R&D Roadmap prioritizes progress on <u>these technologies</u> to enable future particle accelerators in a timely, affordable and sustainable way

CERN Yellow Rep. Monogr. 1 (2022) 1-270, https://cds.cern.ch/record/2800190?ln=en

Accelerator R&D Roadmap prioritizes progress on <u>these technologies</u> to enable future particle accelerators in a timely, affordable and sustainable way

CERN Yellow Rep. Monogr. 1 (2022) 1-270, https://cds.cern.ch/record/2800190?ln=en

Key building block for beam acceleration: the SRF cryomodule

SRF: Superconducting Radio Frequency

Sustainable Accelerating Systems – from Grid to Beam

Three key innovation directions

Three key innovation directions

energy savings from the RE

iSAS is a coherent R&D programme on "Sustainable Accelerating Systems" to reduce the power requirements of SRF accelerators

<u>https://isas.ijclab.in2p3.fr</u> (website = work in progress)

Cryogenics dissipated heat $efficiency \sim 1/Q_0$ $\sim T/(300K - T)$ energy savings from the cryogenics vings

eam

er

bERLinPro @ HZB (Berlin)

View from the injector line beam-dump towards the SRF photo-injector: Ready for beam commissioning

- Successful twice cooldown and follow-up RF test of the SRF photo-injector with field levels for beam energies ≥ 2 MeV and I_{avg}≤ 10 mA given by the RF coupler power limit (Jan-May 2024)
- Finalization of all required components for the injector characterization and first beam operation, e.g. diagnostics, cathode laser, photo-cathode transfer system
- Awaiting permit for beam operation starting from about mid of October
- Work on assembly of Booster has started and will come to full force, once the operation at bERLinPro starts

The bERLinPro injector line in the current setup for beam commissioning

- Two 11 to 90 GeV SRF linacs in 4 pass configuration
- 1/3rd of power consumption as compared to circular collider
- CM Energy reach of 600 GeV in 100 km circumference tunnel
- Damping rings for emittance reduction and recycling of beams

 Maximum Power of 300 MW per beam @ 120 GeV and 2.47 mA

- Flat beams are cooled in damping rings
- Beams are accelerated <u>on-axis</u> in SRF linacs and collide in one of the detectors
- After collision, beams are decelerated in the opposite linacs and periodically separated <u>off-axis</u>
- Natural polarization of both beams builds up in the damping rings
- Depolarization during the trip between damping rings is minuscular, hence providing a high degree of polarization at collision
- With top-off to replace burned particles (1 nA level), the beam lifetime is about 10 hours

- ERLC consists of two parallel superconducting linacs connected to each other with RF-couplers, so that the fields are equal at any time
 - One line is for acceleration, the other for deceleration.
- Damping is provided by wigglers (no damping rings) at the "return" energy about E~5 GeV
- The energy loss per turn δ E/E~1/100
- Damping is needed to reduce the energy spread arising from collision of beams

CERC version in the LEP/LHC tunnel for CoM energy of 240 GeV

- Extrapolated from the CERC (100 km) version
- Splitting the SRF linac in seven parts filling 545 m of straight sections with seven 8.63 GeV SRF linacs
- Section eight is available for <u>one detector</u>, where the beam passes only at top energy
 - beams with intermediate energy by-pass the IR
- Two-pass ERL
- Luminosity is proportional to SR power 30 MW
 SR power loss corresponds to 4.5 x 10³⁴ cm⁻² sec⁻¹

V. Litvinenko, "Future High Energy High Luminosity Polarized e⁺e⁻ Colliders using Recycling Energy Recovery Linacs" at EPS-HEPP 2023, https://indico.desy.de/event/34916/contributions/147045/attachments/84336/111710/EPS-HEP_Litvinenko.pdf