HEP landscape in Italy

"a look at the future"

Plenary ECFA Meeting LNF 4-5 July 2024

Sandra Malvezzi INFN

European Committee for Future Accelerators

Where we are today (LNF)

Where we are in Italy

Where we are in Europe

Italian Population: 58.94 million (2022) World Bank Geographical size: 302073 km² INFN is the Italian research agency dedicated to the study of the fundamental constituents of matter and the laws that govern them, under the supervision of the Ministry of Universities and Research (MUR).

A community of ~7000 people

INFN is involved in all the main international scientific projects

The INFN Scientific Committes

CSN1: topics and a bit of statistics

Research Lines CSN1 2024	FTE(%)	Budget(%)	
Physics at hadron colliders (LAC)	50,71	50,19	
esearchtrino Physics @acc505744ffff (%)	9,10	12,6	
Flavour Physics (LHCb & Belle _{20,71}	27,11	22,45	
authaoged Lepton Physics	5,73	8,95	
avoiton Structure 27,11	2,61	2,46	
hR&D for Future Accelerators	3,76	3,01	
Dark Sector	0,99	0,34 ¹⁰	000
Reviewers Budget		(200

Physics at hadron colliders

6/30/24, 12:03 PM

Latest News | ECFA

ATLAS and CMS upgraded detectors (Phase 2)

Main INFN INVOLVEMENTS:

- Tracker (ITK)
- Liquid Argon Calorimeter
- Tile Calorimeter
- MUON
- TDAQ

ATLAS Phase 2 @INFN

Service integration test

CMS Phase 2 @INFN

Concerns for the schedule, reduced contingency

CMS construction schedule

ATLAS Time Contingency, typically less than 1 year

LHC phase 2 core construction time profile

INFN has spent approximately 70 % of the *allocated* budget

Extra costs not (yet) included: ~20% total additional costs

Flavour Physics

/24, 12:03 PM

Latest News | ECFA

LHCb – now and future

LHCb has recovered from a difficult 2023 year

V. Vagnoni Spokesperson

□ VELO open, UT not integrated, Limited luminosity (fraction of fb⁻¹) collected

Goal for 2024

Integrate a high-quality sample corresponding to 7/fb of pp collisions

LHCb Upgrade Phase 2

LHCC-2021-012

Approved March 2022

- Detector design and technology options
- R&D program and schedule
- Cost for baseline, options for descoping
- National interests

Constraints on timeline

Mitigation strategy

- Start detector element construction during LS3
- Anticipate some detector & infrastructure work to LS3 as a part of consolidation work (ECAL, RICH, Magnet stations, RTA under discussion)

Detector	Baseline
	(kCHF)
VELO	14800
UT	8900
Magnet Stations	2300
MT-SciFi	22400
MT-CMOS	19500
RICH	15600
TORCH	9900
ECAL	34800
Muon	7100
RTA	17400
Online	8900
Infrastructure	13500
Total	175100

 The project consists of a major change of the detector during LS4, in order to sustain an instantaneous luminosity of up to 1.5×10³⁴ cm⁻²s⁻¹ and integrate 50/fb per year during Run 5 and Run 6 of LHC (target ~300/fb)

Scoping document in preparation \rightarrow

- In the FTDR we indicated two main directions to explore: reduce peak luminosity (from 1.5×10³⁴ cm⁻²s⁻¹ down to 1.0×10³⁴ cm⁻²s⁻¹) and optimise and/or reduce detector features
- The FTDR has an ambitious baseline cost of 175 MCHF → we are now exploring descoping scenarios at the level of ~85% and ~70% of max envelope

Internal INFN review of the LHCb U2 project to define the participation of the Italian community
In the meanwhile CSN1 is supporting some dedicated R&Ds (RD_Flavour)

Detector enhancement at LS3

an intermediate step between Upgrade 1 and Upgrade 2

ECAL and RICH

Technical Design Report

Technical Design Report

INFN review within CSN1 underway (~2 M€ proposal)

Items (kCHF)	Total	2025	2026	2027
FPGA cards	1411		705	706
Servers	240	240		
NIC	96	96		
Fibres&PPan	100	100		
Total	1847	100/436	1041/705	706
INFN (60%)	1108	60/262	625/423	423

Belle 2 and the detector upgrade (LS2)

troubles when restarting : unexpected beam losses

«Beam loss that occurs within 1 turn (10 ms) without precursory phenomena»

• Belle 2 completed Long Shutdown 1 (LS1)

- Data taking restarted in February
- Accelerator consolidation at LS1 should allow the machine to reach 2.5 X 10³⁵ cm⁻² s⁻¹ luminosity
- More work and ideas needed to reach the design luminosity of 6 X 10³⁵ cm⁻² s⁻¹

INFN groups interested in R&D for detector upgrade in LS2 could enter the DRD efforts

ALICE

The ALICE experiment INFN CSN3

1069 authors, 176 institutes, 40 countries

6%

6%

Study of deconfined QCD matter

INFN FTE in ALICE (2021-2024)

Phase 2a (LS3): ITS3

Phase 2b (LS4): ALICE 3

curved, wafer-scale MAPS vertex detector

TDR endorsed by LHCC in March 2024

INFN involvement

largest contingent in project development of **MAPS technology** chip design, bending/stitching studies ITS project leadership

System	Technology	Cost (MCHF
Tracker	MAPS	30.5
TOF	Monolithic LGADs	14.8
	Hybrid LGADs ⁶	26.4
RICH	Aerogel and monolithic SiPMs	20.9
	Aerogel, analogue SiPMs + readout ⁶	34.0
ECal	Pb-scintillator + PbWO ₄	17.0
MID	Steel absorber, scintillator bars, SiPMs	7.0
FCT	MAPS (solenoid + separate magnet)	5.3
	MAPS (solenoid + dipoles)	2.3
Magnet system	Superconducting solenoid + FCT magnet	25.0
	Superconducting solenoid and dipoles	40.0
Computing	Data acquisition and processing	6.0
Common items	Beampipe, infrastructure, engineering	15.0
Total		141.5

LOI recommended by LHCC in 2022: <u>https://arxiv.org/2211.02491</u> scoping options under study \rightarrow Scoping Document in preparation

INFN R&D in CSN3

Inner Tracker (Vertex + Middle Layers) Time Of Flight RICH SC magnet

Neutrino Physics

/24, 12:03 PM

Latest News | ECFA

Neutrinos @accelerators in CSN1 ...the new entry

SND@LHC	(since 2021
DUNE	(since 2024
lcarus	(since 2024
HyperK +T2K	(since 2025
ENUBET*	(since 2025

DUNE and Hyper-K: different detectors, different strategy

• DUNE:

- Very long baseline \rightarrow large matter effect
- Broadband neutrino beam → high statistics over full oscillation period
- LArTPC \rightarrow imaging + calorimetry for v-Ar interactions at ~2.5 GeV
- Highly-capable near detector to constrain systematic uncertainties
- Hyper-K:
 - Shorter baseline \rightarrow small matter effect
 - Off-axis location creates narrow beam → very, very high statistics at oscillation maximum, less feed-down
 - Water Cherenkov \rightarrow kinematic measurement of E_{ν} from v-O interactions at ~0.6 GeV
 - Highly-capable near detector to constrain systematic uncertainties

*measurement of the positrons produced in the decay tunnel of conventionalneutrino beams: these particlessignal uniquely the generation of an lectron neutrino at source

The Deep Underground Neutrino Experiment (DUNE)

A new generation Long Baseline - 1300 km - neutrino oscillation experiment based on

- a wide band high intensity (1.2 MW upgradable to 2.4 MW) $\nu/\overline{\nu}$ neutrino beam produced at Fermilab
- a large total mass (~70 kton) Far Detector at the Sanford Underground Neutrino Facility (SURF) 1.5 km underground exploiting the Liquid Argon Time Projection Chamber (LArTPC)* technology
- a Near Detector complex (ND) at Fermilab providing control of systematic uncertainties, enabling a rich physics program

Some physics goals (phase 1)

- Definitive resolution of the mass ordering
- Sensitivity to maximal CP violation ($\delta CP \sim \pm \pi/2$)
- World-leading measurement of mass splitting (△m2atm)

*Liquid Argon TPC, a new concept for neutrino detectors by C. Rubbia 1977 developed in Icarus

Fermi National Accelerator Laboratory, Illinois

INFN @ DUNE

collaboration agreement DOE/INFN signed in April

DUNE Far - Photon Detection System (PDS)

European site for WLS evaporation

INFN plays a very important role in the PDS Consortium, which handles the construction of the DUNE PDS

DUNE Near from KLOE \rightarrow SAND

KLOE Magnet and calorimeter will be integrated in SAND

- provide an independent measurement of the flux
- measure the flavor content of the neutrino beam
- contribute to remove degeneracies when the other components are off-axis
- add robustness to the ND complex to keep systematics under control
- provide a reasonable control of the systematics (SAND installed since Day-1 of data taking)
- exploit the high statistics to perform other high precision neutrino physics measurements and BSM searches without any ad-hoc modification

Joint effort of several INFN Units and Labs

DUNE FD PDS (Photon Detector System) @INFN

SiPM tender is underway

Physics in 2028 or early 2029 Beam physics with Near Detector 2031

In lab

Hyper-K

Ita Italian contribution in Hyper

R&D for Future Accelerators & the new ESPPU

/24, 12:03 PM

Latest News | ECFA

Roma 6-7 maggio 2024 Centro Congresso Frentani

L'INFN e la Strategia Europea per la Fisica delle Particelle

e attività INFN per lo Studio li Fattibilità per il collider FCC, er le roadmap sugli acceleratori High Field Magnets, Muon Collider, Cavità RF) e sui rivelatori.

Informazioni e registrazione

INFN and the European Strategy for Particle Physics

INFN activities for the Feasibility Study of the FCC collider, for the accelerator roadmaps (High Field Magnets, Muon Collider, RF Cavity and detectors

https://www.roma1.infn.it/conference /infn-espp-2024/ 6-7 maggio 2024

INFN will continue with initiatives within the CSNs, Laboratories and Units, encouraging the involvement of young people

«FCC is the project that will allow CERN to extend our knowledge beyond the limits that will be reached by HL-LHC and maintain the world leadership in the fundamental physics research.

It is important to maintain the greatest flexibility in the study and development of the technologies necessary to test new concepts for future colliders and exploit the expertise/skills present in the INFN community"

Preparing the longer-term future @ INFN (I)

CSN1: RD_FCC

Example: developed a detailed design of the vertex detector region, with MAPs based silicon sensors. Integration takes into account crossing angle and other accelerator constraints

Prototype of µRWELL detector for muon ch tested with new TIGE noise electronics

INFN MEG II Drift Chamber as a prototype for FCC Tracking

Preparing the longer-term future @ INFN (II)

INFN : RD_MuCol EU: HORIZON MuCol

Other CERN- INFN agreements

30

The DRD collaborations

New CERN-hosted Detector R&D (DRD) collaborations are currently being set up following ECFA Detector roadmap

Fully Approved for an initial period of 3 years by CERN Research Board in December 2023

- Gaseous Detectors (DRD1) [ex RD51]
- Liquid Detectors (DRD2)
- Photodetectors & Particle ID (DRD4)
- Calorimetry (DRD6)

Reports at open session of DRDC meeting: https://indico.cern.ch/event/1356910 **Full Proposals in CERN CDS**

Semiconductor Detectors (DRD3) [ex RD50, RD42,..]

Final proposals submitted

Conditionally

approved

- Quantum Sensors (DRD5)Electronics (DRD7)

Both aimed for approval in June Talks at open session June 3 rd

Letter of Intent submitted

Integration (DRD8)

Full Proposal to be written by the end of this year

INFN colleagues in responsibility roles (Spokesperson, CB-chair) Waiting for MoU and Annexes INFN review inter-CSN for financial commitments

Summary

Strong INFN involvement in HEP experiments

- PHASE 2 ATLAS and CMS for HL-LHC major commitment of CSN1 at present immediate future
- □ New projects for flavour physics (LHCb U2, Belle 2 upgr) to be discussed
- □ ALICE experiment future to be discussed in CSN3
- Accelerator neutrino physics in CSN1 (Dune, Icarus, SND@LHC, Hyper-K, ENUBET)

Significant CSN1 commitment to Future Accelerator projects for HEP and detector R&D

- Various INFN initiatives to contribute to the update of the European Strategy for Particle Physics (ESPPU)
- Other on-going activities not discussed due to limited time: NA62, MEG 2, MU2E, G-2, AMBER, UA9, PADME, MUonE, BES 3, KLOE, IGNITE ...