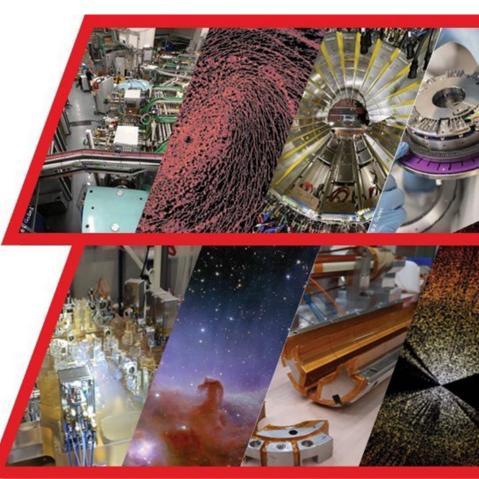

Report from IRFU


Institute for Research into the Fundamental laws of the Universe

114th Plenary ECFA Meeting – Frascati


Nathalie Besson

On behalf of IRFU director Franck Sabatié

CEA – The French Alternative Energies and Atomic Energy Commission

21000 employees

5.8 billion euros

> 5000 publications

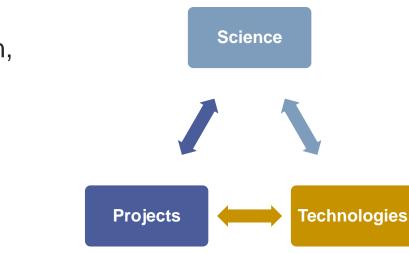
> 450 European projets

2

1050

900/y

÷...?

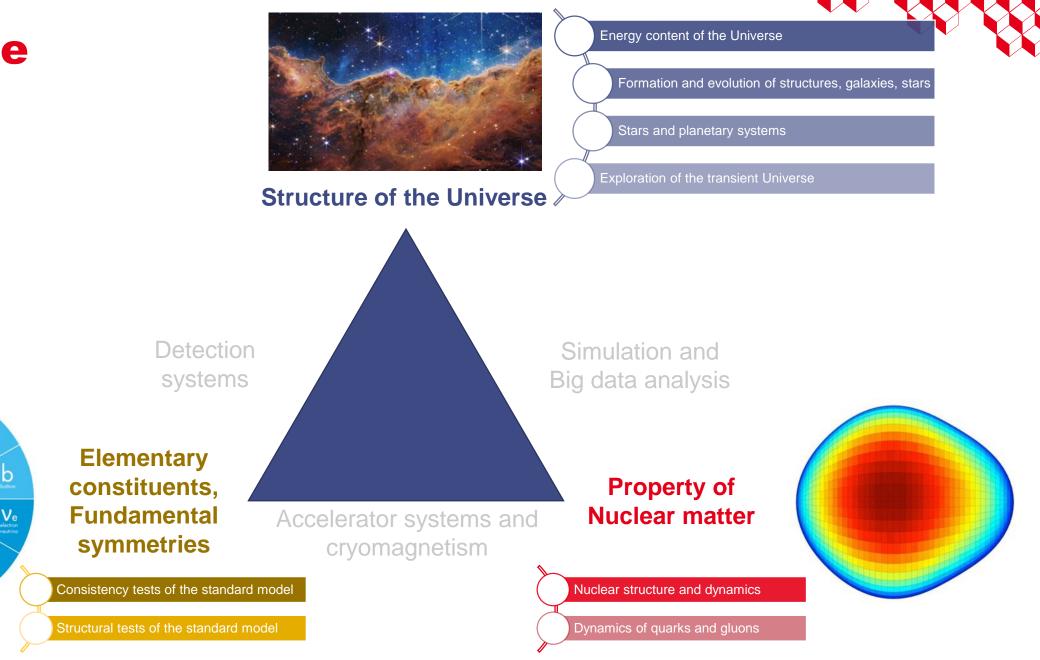

Missions of IRFU

- Carry out technological and fundamental research within the framework of CEA's missions, in order to explore the fundamental laws of the Universe, from the smallest scales (elementary constituents, nuclear matter) to the largest (energy content and structure of the Universe)
- Apply our technological innovations to major national or international projects: MRI or fusion magnets, accelerators and neutron sources, medical imaging, etc.

With two specificities due to IRFU's size and the strong integration of its departments:

Ability to cover the entire research chain

- Theory, experiment proposal, simulation, design, construction, operation, data analysis, phenomenology and communication
- □ Ability to manage large, innovative and complex projects
 - Accelerators, magnets, detectors


C

ντ

٧u

C

μ

Technologies

Elementary constituents, Fundamental symmetries

Detection

systems

Infrastructures &

Platforms

Structure of the Universe

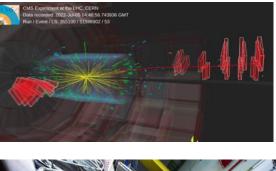
Property of

Platforms

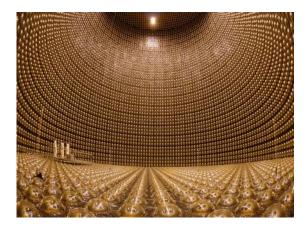
COMPUTING	SPACE	
3 HPC clusters 13000 cores, 2500 Mh HS06/y	Clean rooms iso5-8	
LHC Grid (tier 2) 9000 cores, 500 Mh HS06/y	Instrumentation Integration and test halls	
MAGNETS ACCELERATORS	DETECTORS	
Synergium 25000 m ²	Clean rooms incl. Ciclad iso7 130m ²	
Clean rooms iso4-5	and iso5 50m ²	
Integration halls and test cryostats	Integration and test halls	

Cyclotrons: ion beams from ¹²C to ²³⁸U at different energies SPIRAL2: high intensity beams including light ones (p and d)

Elementary constituents, Fundamental symmetries

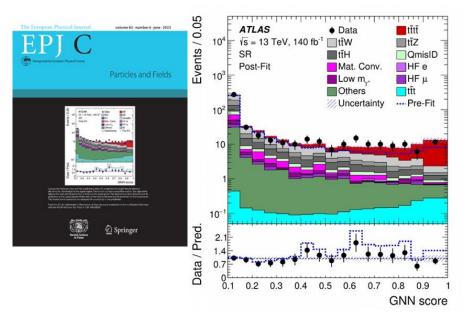

Consistency tests of the Standard Model

Structural tests of the Standard Model

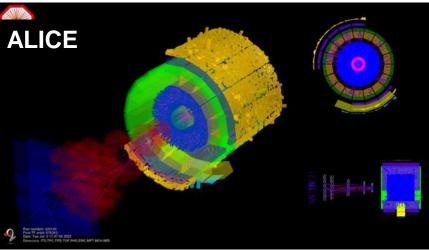

Search for deviations from the Standard Model by studying bosons and quarks

Mass hierarchy, nature and properties of neutrinos

Current LHC Experiments ATLAS & CMS Upgrades T2K HyperK DUNE NUCLEUS KATRIN CUPID GBAR



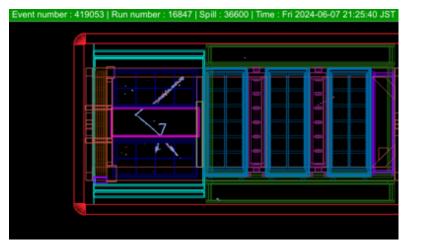
Highlight - LHC Run 3 and Phase 2 upgrades



Run 3 at the record energy of 13.6 TeV

- □ Inc. phase 1 upgrade (ATLAS/NSW, ALICE/MFT+MUONS)
- □ Main focus on Higgs, EW and top physics

Phase 2 upgrades in production phase


ATLAS (Itk, LAr, HGTD, MUONS) & CMS (BCAL, HGCAL, MTD)

Highlight – T2K and KATRIN

Commissionning of JPARC & T2K ND280 upgrades

□ JPARC: beam power @ 800 kW

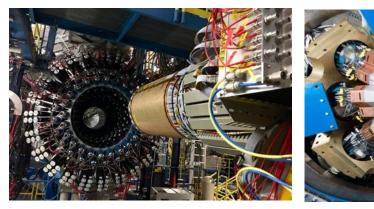
New ND280 is taking data with new target and new high angle TPCs

KATRIN unveils its last results @ NEUTRINO2024

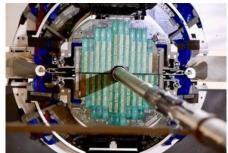
□ Analysis of 259 jours of data (x6 wrt previous results)

□ New upper limit: $m_v < 0.45 \text{ eV}$ at 90% CL

Property of Nuclear matter


Nuclear structure and dynamics

Dynamics of quarks and gluons


Binding limits of nuclei, nature of the nuclear interaction, influence of the nuclei structure on nuclear reactions

Quark and gluon plasma, 3D structure of the nucleon

GANIL
Spiral2 (NFS, S3, DESIR)
AGATA
FAIR
n_TOF
Nuclear Theory
ALICE
LHCb upgrade
sPHENIX
Jefferson Lab
EIC
Hadronic Theory

Highlight - GANIL

cea

SPIRAL1 and 2 new beams

- After protons in 2019 and deutons in 2021, GANIL's linear accelerator is taking its first steps in accelerating heavy ions produced in the source
- 2022: Oxygen-18, a pilot beam for tuning many ions in the Linac, accelerated at 7 MeV/u
- □ 2024: first Lithium-8 beam cooled down to ~1 MeV/u produced

Structure of the Universe

Energy content of the Universe

Formation and evolution of structures, galaxies, stars

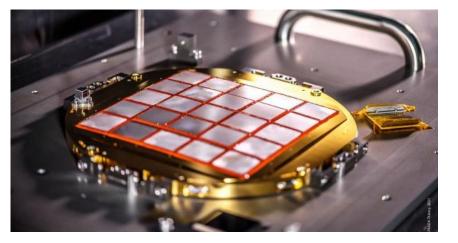
Stars and planetary systems

Exploration of the transient Universe


Constraints on dark energy and dark matter

- Structure of the universe from the cosmic microwave background to the stars and the galaxies
- Characterization of exoplanets and their host stars, study of the star-planet interaction
- Multi-messenger observations (photons, GW) of transient phenomena in the Universe

LISA	ARIEL
HESS	PLATO
DESI	SVOM
EUCLID	
LITEBIRD	СТА
James Webb	THESEUS
ATHENA	SKA



Highlight – EUCLID and SVOM

EUCLID

- □ Successful launch on 2023, July, 1
- EUCLID released last November 5 images from ERO
- □ First set of publications last January

SVOM

- □ Successful launch on June, 22
- □ Instruments are alive and data flows to the VHF

network

Accelerator systems and cryomagnetism

High-intensity/energy accelerators

Superconducting RF systems

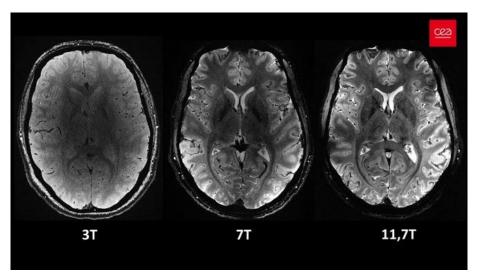
High-field superconducting magnets

Developments of RF sources and injectors, studies on future colliders

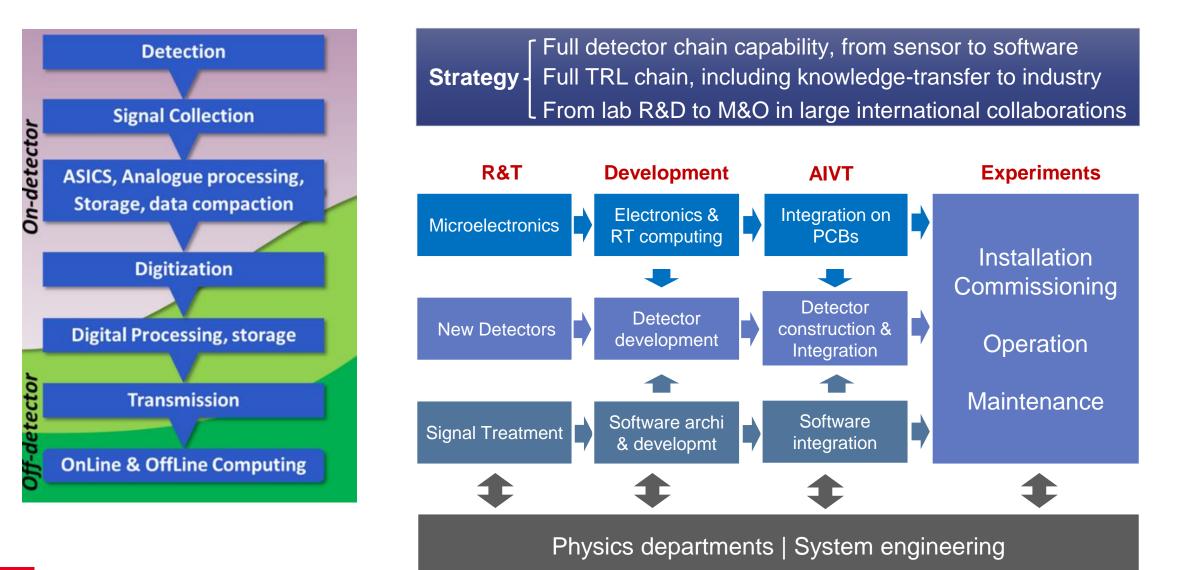
Cryomodules and superconducting cavities, studies on higher efficiency or gradients, and new cooling technologies

Simulation, design, manufacturing and operation of high-field / large / "special" / high homogeneity magnets

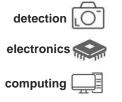
IFMIF	ISEULT (MRI)
TITAN / ICONE	CERN HL-LHC
NEWGAIN	CERN HFM
SARAF	EIC magnets
ESS	MADMAX
PIP-II	SUPRAFUSION (HTc)



Highlight – Magnets: ISEULT and HFM


11.7 T Iseult MRI

- Commissioning of the 11.7 T Iseult MRI
- □ The first images on humans were released in April, culmination of nearly 20 years of research and development by the CEA

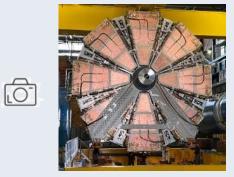

High Field Magnets

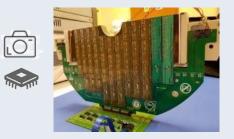
- In 2023 signature of two 5-years collaboration agreements between CEA-IRFU and CERN
 - Toward 16T magnets with Nb3Sn
 - Toward 20T magnets with HTS

Detection systems and Computing

Sample of projects in operation

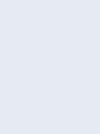
CLAS12 (hadronic hysics) @ Jefferson Lab (USA): Micromegas Tracker 30000 channels


T2K Micromegas Time projection chambers system Tokai Lab (Japon)


DESI (Dark Energy survey) 10 spectrometers installed at Mayal (USA)

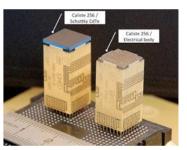
ATLAS Calorimeter 72 Digital Trigger boards (200Gb/s /board)

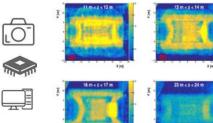
ATLAS New Small Wheels 400m² of Micromegas detectors

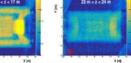


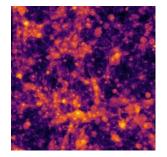
ALICE Muon Forward Tracker based on MAPS technology

ALICE muon arm

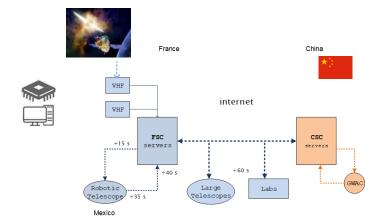

Upgraded back-end electronics


CERN

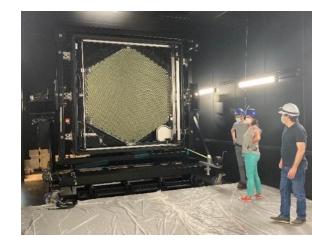

LHC phase 1 Upgrades



Solar Orbiter / Caliste: mini CdTe gamma camera



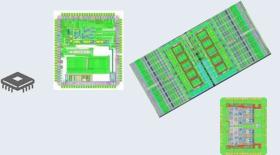
Muon imaging (here tomography of an historical reactor)



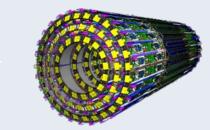
Sample of projects in development

SVOM satellite for gamma ray burst detection (launch 2024) FE electronics On-board computing Ground Segment (detection & world broadcast of alerts)


NectarCAM for the medium size telescopes of CTA (2024-2028) Digitizers chips, software Integration and qualification of 9 camera Mirrors


ESS Advanced beam diagnostics (2023) High Intensity profile monitors and low energy beam loss monitors

Sirius Silicon detectors used at GANIL/Spiral2-S3



LISA gravitational wave interferometer in space (launch 2032) Contribution to the LISA optical bench (ground equipment): ultra-stable mechanical structures Data analysis based on IA technologies

[O-

ATLAS Itk Module assembly and testing. 1/4 of the silicon internal Tracker

HyperK Neutrinos Oscillations (Japan, 2025) High precision clock distribution system

[O-

DRDs @ IRFU

Involvement mainly in 4 DRDs

DRD1 Gazeous detectors - WP 1, 4, 7, 8, 9

- Maxim TITOV co-spokesperson
- TPC expertize (NA61/ ND280 Upgrade++/ DUNE ND) & R&D for the ILC

DRD3 Solid state detectors – WP1

- R&D for radhard and low power readout
- CACTUS/miniCACTUS (MAPS with high timing resolution < 50ps)

DRD6 Calorimetry – WP3

- Optical calorimeters, 5D Calorimetry and high temporal resolution (ClearMind)
- Scintillating bolometers for 0v2β (BINGO, TINY, CUPID)

DRD7 Electronics – WP3

- High performance TDC and ADC
- Continuation of efforts on HGCROC for CMS phase 2 AND EIC/AC-LGADs (10ps and below low power TDCs)

Participation to DRD4 on photodetectors, building on ClearMind experiment

			< 2030	2030- 2035	2035- 2040	2040- 2045	> 204
Gaseous	DRDT 1.1	Improve time and spatial resolution for gaseous detectors with			-	-	
	DRDT 1.2	long-term stability Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out			-	-	
	DRDT 1.3	schemes Develop environmentally friendly gaseous detectors for very large areas with high-rate capability				•	
	DRDT 1.4	Achieve high sensitivity in both low and high-pressure TPCs		•			
	DRDT 2.1	Develop readout technology to increase spatial and energy resolution for liquid detectors		•			
Liquid	DRDT 2.2	Advance noise reduction in liquid detectors to lower signal energy thresholds		•			
	DRDT 2.3	Improve the material properties of target and detector components in liquid detectors		•			
	DRDT 2.4	Realise liquid detector technologies scalable for integration in large systems		•			
Solid DF state DF	DRDT 3.1	Achieve full integration of sensing and microelectronics in monolithic CMOS pixel sensors				•	\rightarrow
	DRDT 3.2	Develop solid state sensors with 4D-capabilities for tracking and calorimetry				-	\rightarrow
	DRDT 3.3	Extend capabilities of solid state sensors to operate at extreme fluences					
	DRDT 3.4	Develop full 3D-interconnection technologies for solid state devices in particle physics				-	\rightarrow
	DRDT 4.1	Enhance the timing resolution and spectral range of photon detectors				-	\rightarrow
PID and Photon	DRDT 4.2	Develop photosensors for extreme environments				-	\rightarrow
T HOUSE		Develop RICH and imaging detectors with low mass and high resolution timing					
		Develop compact high performance time-of-flight detectors Promote the development of advanced quantum sensing technologies					
Quantum		Investigate and adapt state-of-the-art developments in quantum technologies to particle physics				->	
Gradittain		Establish the necessary frameworks and mechanisms to allow exploration of emerging technologies		>			
		Develop and provide advanced enabling capabilities and infrastructure			-		
Calorimetry		Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution Develop high-granular calorimeters with multi-dimensional readout					
Catorimetry		for optimised use of particle flow methods Develop calorimeters for extreme radiation, rate and pile-up					
		environments					
Electronics Di		Advance technologies to deal with greatly increased data density Develop technologies for increased intelligence on the detector					
		Develop technologies in support of 4D- and 5D-techniques					
		Develop novel technologies to cope with extreme environments and	_				
		required longevity Evaluate and adapt to emerging electronics and data processing technologies					
	DRDT 8.1	Develop novel magnet systems	_			_	-
	DRDT 8.2	Develop improved technologies and systems for cooling				-	-
Integration	DRDT 8.3	Adapt novel materials to achieve ultralight, stable and high precision mechanical structures. Develop Machine Detector Interfaces.		•		-	-
	DRDT 8.4	Adapt and advance state-of-the-art systems in monitoring including environmental, radiation and beam aspects					
Training	DCT1	Establish and maintain a European coordinated programme for training in instrumentation					
	DCT 2	Develop a master's degree programme in Instrumentation				20	

European Strategy in Particle Physics Update

□ Full commitment

- Specific animation within IRFU
- Organization of French community contribution together with CNRS/IN2P3

Thank you for your attention