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Axions and axion-like particles (ALPs)

Well motivated theoretically: 

• Peccei—Quinn solution to strong CP problem: new scalar field  charged under 
a new symmetry U(1)PQ coupled to chiral fermions 

• Spontaneous symmetry breaking yields a VEV for  

• Performing a chiral transformation on the fermion fields,                                                                 
one finds:

Φ = |Φ | eia/fa

Φ
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<latexit sha1_base64="7poOqsfcpeEK4nBjVnFVKslp3Ok="></latexit>

[Peccei, Quinn 1977; Weinberg 1978; Wilczek 1978]
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Axions and axion-like particles (ALPs)

Well motivated theoretically: 

• Peccei—Quinn solution to strong CP problem: new scalar field  charged under 
a new symmetry U(1)PQ coupled to chiral fermions 

• Spontaneous symmetry breaking yields a VEV for  

• Performing a chiral transformation on the fermion fields,                                                                 
one finds: 

• QCD instantons break the continuous shift symmetry  to a discrete subgroup, 
generating a potential and a mass for the axion and enforcing  mod 2π

Φ = |Φ | eia/fa
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Axions and axion-like particles (ALPs)

• Axion mass is inversely proportional to  and 
can be very light if  is sufficiently large: 

• Axion coupling to photons is also inversely 
proportional to  with a model-dependent 
coefficient

fa
fa

fa

[Kim 1979; Shifman, Vainshtein, Zakharov 1980 (KSVZ)]

m2
af

2
a =

m2
⇡f

2
⇡

2

mumd

(mu +md)2
<latexit sha1_base64="09VPesunJd+JfHb/9N/Su/IC8Eg="></latexit>

[Dine, Fishler, Srednicki 1981; Zhitnitsky 1980 (DFSZ)]
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Axions and axion-like particles (ALPs)

• Axion mass is inversely proportional to  and 
can be very light if  is sufficiently large: 

• Axion coupling to photons is also inversely 
proportional to  with a model-dependent 
coefficient

fa
fa

fa

[Kim 1979; Shifman, Vainshtein, Zakharov 1980 (KSVZ)]
[Dine, Fishler, Srednicki 1981; Zhitnitsky 1980 (DFSZ)]

Well motivated theoretically:

3
[Di Luzio, Gianotti, Nardi, Visinelli 2022]
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Axions and axion-like particles (ALPs)

• There are ways to relax the strict relation between the axion mass and photon coupling, so 
that the mass becomes a free parameter, while the strong CP problem can still be solved 

• More generally, axion-like particles (ALPs) can arise as pseudo Nambu—Golstone bosons of a 
spontaneously broken global U(1) symmetry in a large class of BSM models 

• For heavier ALPs, couplings to SM particles other than the photon play an important role 

• Particle-physics experiments can play an important role in constraining these couplings

4

Well motivated theoretically:

[for recent ideas, see e.g.: Elahi, Elor, Kivel, Laux, Najjari, Yu 2023; Gavela, Quílez, Ramos 2023]

[Bauer, MN, Thamm 2017; …]
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Effective Lagrangian for a light ALP 

• Assume that the scale of global symmetry breaking   is above the weak scale, and 
that the ALP is the only new particle at scales relevant to experiments 

• Consider the most general effective Lagrangian for a pseudoscalar boson  coupled to the 
SM via classically shift-invariant interactions, broken softly by amass term:  

• Importantly, all interactions are suppressed by inverse powers of   , with  

Λ = 4πf

a

f f / |2cGG | = fa

LD5
e↵ =

1

2
(@µa)(@

µa)� m2
a

2
a2 +

@µa

f

X

F

 ̄F cF �µ F + c�
@µa

f

�
�†i
 !
Dµ�

�

<latexit sha1_base64="lQmF5GA5GUgralZemA2mU7K+mEs="></latexit>

+ cGG
↵s

4⇡

a

f
Ga

µ⌫ G̃
µ⌫,a + cWW

↵2

4⇡

a

f
WA

µ⌫ W̃
µ⌫,A + cBB

↵1

4⇡

a

f
Bµ⌫ B̃

µ⌫

<latexit sha1_base64="iqd/dPtS7D116PoDQ/wKzL94I9c="></latexit>

5

[Georgi, Kaplan, Randall 1986]

couplings to chiral fermions coupling to Higgs doublet

coupling to SU(2)L bosonscoupling to gluons coupling to hypercharge boson
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Effective Lagrangian for a light ALP 

• Effective Lagrangian:  

• Using the five global U(1) of the SM Lagrangian (Y, B, Li) one can show that 5 out of the 49 
real coupling parameters in this Lagrangian are redundant 

• One can use this freedom to eliminate the coupling to the Higgs boson as well as one of the 
two couplings  or ; however the sum  is invariant 

• We will always work with physical combinations ( ) of coupling parameters!

cWW cBB cγγ = cWW + cBB
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RG evolution from the UV to lower scales 
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Figure 1: Logarithmically enhanced loop diagrams (in lowest order) responsible for the RG evolu-
tion e↵ects proportional to ctt (first graph), c̃V V (middle two graphs), and the cGG contribution to
ceiei (last graph) in the results shown in (0.19). [Replace figure!] Done.

contributions, which arise when the weak-scale particles are integrated out. However, one
finds that there are no matching contribution to the ALP–boson couplings cGG and c��, if the
ALP is much lighter than the weak scale. The matching contributions to the ALP–fermion
couplings have been calculated at one-loop order in the ALP vertices in [? ]. We now sum-
marize the numerical e↵ects of the combined e↵ects of RG evolution and weak-scale matching
for the fermion couplings that will be of relevance to our analysis. All of these couplings are
free of parameter redundancies.

Flavor-diagonal ALP couplings

With the top quark integrated out, we are left with the couplings of the ALP to the axial-vector
currents of the light SM fermions, as defined in (0.14). For the reference scale f = 1TeV, one
obtains [? ]

cuu,cc(mt) ' cuu,cc(⇤)� 0.116 ctt(⇤)�
h
6.35 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.02 c̃BB(⇤)

i
· 10�3 ,

cdd,ss(mt) ' cdd,ss(⇤) + 0.116 ctt(⇤)�
h
7.08 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.005 c̃BB(⇤)

i
· 10�3 ,

cbb(mt) ' cbb(⇤) + 0.097 ctt(⇤)�
h
7.02 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.005 c̃BB(⇤)

i
· 10�3 ,

ceiei(mt) ' ceiei(⇤) + 0.116 ctt(⇤)�
h
0.37 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.05 c̃BB(⇤)

i
· 10�3 .

(0.19)
As mentioned earlier, all ALP–fermion couplings are generated radiatively even if only a single
ALP coupling to a SM field is non-zero at the UV scale ⇤. To obtain these solutions (from [?
]), we have solved the RG equations in leading logarithmic approximation, thereby resumming
logarithmically enhanced contributions to all loop orders.

The most important evolution e↵ect is the contribution of the ALP–top-quark coupling
ctt(⇤) to all fermionic couplings in the low-energy theory. This e↵ect is due to a logarithmi-
cally enhanced one-loop contribution of order (here and below we only quote the lowest-order
logarithmic terms)

ctt
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⇡
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⇤2

m2
t

, (0.20)
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ALP fermion couplings at the weak scale for f = 1TeV

weak scale, we define the ALP Lagrangian in the broken phase of the electroweak symmetry
in terms of the SM mass eigenstates:
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where sw ⌘ sin ✓W and cw ⌘ cos ✓W denote the sine and cosine of the weak mixing angle, and
[? ]

c�� = cWW + cBB , c�Z = c2w cWW � s2w cBB , cZZ = c4w cWW + s4w cBB . (0.11)

The ALP couplings to fermions are defined in the fermion mass basis and read

Lfermion(µ) =
@µa

f

h
ūL kU(µ) �µ uL + ūR ku(µ) �µ uR + d̄L kD(µ) �µ dL + d̄R kd(µ) �µ dR

+ ⌫̄L k⌫(µ) �µ ⌫L + ēL kE(µ) �µ eL + ēR ke(µ) �µ eR
i
. (0.12)

They are related to the flavor matrices cF in (0.1) by the unitary rotations which diagonalize
the SM Yukawa matrices. The two matrices kU and kD are connected via the CKM matrix,
such that

kD = V †kUV , (0.13)

and are therefore not independent. Likewise, the ALP couplings to neutrinos are identical to
those to the left-handed charged leptons, i.e. k⌫ = kE.

The flavor-conserving ALP couplings to axial-vector currents of the SM fermions play a
particularly important role. We define

cfifi(µ) ⌘ [kf (µ)]ii � [kF (µ)]ii . (0.14)

In QCD and electromagnetic processes, the flavor-conserving vector currents are conserved,
and hence the corresponding ALP couplings [kf (µ)]ii + [kF (µ)]ii are unobservable.1 Choosing
f = 1TeV as a reference value, one finds that RG evolution e↵ects from the new-physics scale
⇤ = 4⇡f down to the scale µw = mt modify the ALP coupling to the top quark according to
[? ]

ctt(mt) ' 0.826 ctt(⇤)�
⇥
6.17 c̃GG(⇤) + 0.23 c̃WW (⇤) + 0.02 c̃BB(⇤)

⇤
· 10�3 , (0.15)

where the admixtures from the ALP–boson couplings are expressed in terms of the physical
coupling parameters defined in (0.8) and therefore involve the ALP–fermion couplings as well.

1This is no longer true in weak-interaction processes, where di↵erences of the vectorial couplings to di↵erent
quark flavors can appear in predictions for weak decay amplitudes [? ].
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Figure 1: Logarithmically enhanced loop diagrams (in lowest order) responsible for the RG evolu-
tion e↵ects proportional to ctt (first graph), c̃V V (middle two graphs), and the cGG contribution to
ceiei (last graph) in the results shown in (0.19). [Replace figure!] Done.

contributions, which arise when the weak-scale particles are integrated out. However, one
finds that there are no matching contribution to the ALP–boson couplings cGG and c��, if the
ALP is much lighter than the weak scale. The matching contributions to the ALP–fermion
couplings have been calculated at one-loop order in the ALP vertices in [? ]. We now sum-
marize the numerical e↵ects of the combined e↵ects of RG evolution and weak-scale matching
for the fermion couplings that will be of relevance to our analysis. All of these couplings are
free of parameter redundancies.

Flavor-diagonal ALP couplings

With the top quark integrated out, we are left with the couplings of the ALP to the axial-vector
currents of the light SM fermions, as defined in (0.14). For the reference scale f = 1TeV, one
obtains [? ]

cuu,cc(mt) ' cuu,cc(⇤)� 0.116 ctt(⇤)�
h
6.35 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.02 c̃BB(⇤)
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h
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h
0.37 c̃GG(⇤) + 0.22 c̃WW (⇤) + 0.05 c̃BB(⇤)

i
· 10�3 .

(0.19)
As mentioned earlier, all ALP–fermion couplings are generated radiatively even if only a single
ALP coupling to a SM field is non-zero at the UV scale ⇤. To obtain these solutions (from [?
]), we have solved the RG equations in leading logarithmic approximation, thereby resumming
logarithmically enhanced contributions to all loop orders.

The most important evolution e↵ect is the contribution of the ALP–top-quark coupling
ctt(⇤) to all fermionic couplings in the low-energy theory. This e↵ect is due to a logarithmi-
cally enhanced one-loop contribution of order (here and below we only quote the lowest-order
logarithmic terms)

ctt
↵t

⇡
ln

⇤2

m2
t

, (0.20)

7

where we have defined
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Figure 1: Logarithmically enhanced loop diagrams (in lowest order) responsible for the RG evolu-
tion e↵ects proportional to ctt (first graph), c̃V V (middle two graphs), and the cGG contribution to
ceiei (last graph) in the results shown in (0.19). [Replace figure!] Done.

contributions, which arise when the weak-scale particles are integrated out. However, one
finds that there are no matching contribution to the ALP–boson couplings cGG and c��, if the
ALP is much lighter than the weak scale. The matching contributions to the ALP–fermion
couplings have been calculated at one-loop order in the ALP vertices in [? ]. We now sum-
marize the numerical e↵ects of the combined e↵ects of RG evolution and weak-scale matching
for the fermion couplings that will be of relevance to our analysis. All of these couplings are
free of parameter redundancies.
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With the top quark integrated out, we are left with the couplings of the ALP to the axial-vector
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(0.19)
As mentioned earlier, all ALP–fermion couplings are generated radiatively even if only a single
ALP coupling to a SM field is non-zero at the UV scale ⇤. To obtain these solutions (from [?
]), we have solved the RG equations in leading logarithmic approximation, thereby resumming
logarithmically enhanced contributions to all loop orders.

The most important evolution e↵ect is the contribution of the ALP–top-quark coupling
ctt(⇤) to all fermionic couplings in the low-energy theory. This e↵ect is due to a logarithmi-
cally enhanced one-loop contribution of order (here and below we only quote the lowest-order
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ALP fermion couplings at the weak scale for f = 1TeV

weak scale, we define the ALP Lagrangian in the broken phase of the electroweak symmetry
in terms of the SM mass eigenstates:
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(0.10)
where sw ⌘ sin ✓W and cw ⌘ cos ✓W denote the sine and cosine of the weak mixing angle, and
[? ]

c�� = cWW + cBB , c�Z = c2w cWW � s2w cBB , cZZ = c4w cWW + s4w cBB . (0.11)

The ALP couplings to fermions are defined in the fermion mass basis and read

Lfermion(µ) =
@µa

f

h
ūL kU(µ) �µ uL + ūR ku(µ) �µ uR + d̄L kD(µ) �µ dL + d̄R kd(µ) �µ dR

+ ⌫̄L k⌫(µ) �µ ⌫L + ēL kE(µ) �µ eL + ēR ke(µ) �µ eR
i
. (0.12)

They are related to the flavor matrices cF in (0.1) by the unitary rotations which diagonalize
the SM Yukawa matrices. The two matrices kU and kD are connected via the CKM matrix,
such that

kD = V †kUV , (0.13)

and are therefore not independent. Likewise, the ALP couplings to neutrinos are identical to
those to the left-handed charged leptons, i.e. k⌫ = kE.

The flavor-conserving ALP couplings to axial-vector currents of the SM fermions play a
particularly important role. We define

cfifi(µ) ⌘ [kf (µ)]ii � [kF (µ)]ii . (0.14)

In QCD and electromagnetic processes, the flavor-conserving vector currents are conserved,
and hence the corresponding ALP couplings [kf (µ)]ii + [kF (µ)]ii are unobservable.1 Choosing
f = 1TeV as a reference value, one finds that RG evolution e↵ects from the new-physics scale
⇤ = 4⇡f down to the scale µw = mt modify the ALP coupling to the top quark according to
[? ]

ctt(mt) ' 0.826 ctt(⇤)�
⇥
6.17 c̃GG(⇤) + 0.23 c̃WW (⇤) + 0.02 c̃BB(⇤)

⇤
· 10�3 , (0.15)

where the admixtures from the ALP–boson couplings are expressed in terms of the physical
coupling parameters defined in (0.8) and therefore involve the ALP–fermion couplings as well.

1This is no longer true in weak-interaction processes, where di↵erences of the vectorial couplings to di↵erent
quark flavors can appear in predictions for weak decay amplitudes [? ].
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Figure 1: Logarithmically enhanced loop diagrams (in lowest order) responsible for the RG evolu-
tion e↵ects proportional to ctt (first graph), c̃V V (middle two graphs), and the cGG contribution to
ceiei (last graph) in the results shown in (0.19). [Replace figure!] Done.

contributions, which arise when the weak-scale particles are integrated out. However, one
finds that there are no matching contribution to the ALP–boson couplings cGG and c��, if the
ALP is much lighter than the weak scale. The matching contributions to the ALP–fermion
couplings have been calculated at one-loop order in the ALP vertices in [? ]. We now sum-
marize the numerical e↵ects of the combined e↵ects of RG evolution and weak-scale matching
for the fermion couplings that will be of relevance to our analysis. All of these couplings are
free of parameter redundancies.

Flavor-diagonal ALP couplings

With the top quark integrated out, we are left with the couplings of the ALP to the axial-vector
currents of the light SM fermions, as defined in (0.14). For the reference scale f = 1TeV, one
obtains [? ]
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(0.19)
As mentioned earlier, all ALP–fermion couplings are generated radiatively even if only a single
ALP coupling to a SM field is non-zero at the UV scale ⇤. To obtain these solutions (from [?
]), we have solved the RG equations in leading logarithmic approximation, thereby resumming
logarithmically enhanced contributions to all loop orders.

The most important evolution e↵ect is the contribution of the ALP–top-quark coupling
ctt(⇤) to all fermionic couplings in the low-energy theory. This e↵ect is due to a logarithmi-
cally enhanced one-loop contribution of order (here and below we only quote the lowest-order
logarithmic terms)
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[Bauer, MN, Renner, Schnubel, Thamm 2020; Chala, Guedes, Ramos, Santiago 2020]

ALP-fermion couplings at the weak scale, for   and  :Λ = 4πf f = 1 TeV

cuu,cc(mt) ' cuu,cc(⇤)� 0.116 ctt(⇤)�
h
6.35 c̃GG(⇤) + 0.19 c̃WW (⇤) + 0.02 c̃BB(⇤)

i
· 10�3
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Flavor diagonal ALP-fermion couplings
ALP fermion couplings at the weak scale for f = 1TeV

non-zero coupling at Λ →
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An interesting search channel is  

• Resulting bounds on the ALP—photon 
coupling (ALP decay) depend on the  
effective ALP coupling                     to Higgs 
bosons (ALP production)

h → aa → 4γ

(@µa)
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Figure 17: Constraints on the ALP mass and coupling to photons derived from various experiments
(colored areas without boundaries, adapted from [24]) along with the parameter regions that can be
probed using the Higgs decays h ! aa ! 4�. The left panel shows the reach of LHC Run-2 with
300 fb�1 of integrated luminosity (shaded in light green). We require at least 100 signal events. The
contours correspond to |Ce↵

ah |/⇤2 = 1 TeV�2 (solid), 0.1 TeV�2 (dashed) and 0.01 TeV�2 (dotted).
The red band shows the preferred parameter space where the (g � 2)µ anomaly can be explained at
95% CL. The right panel shows the regions excluded by existing searches for h ! �� and h ! 4�
(shaded in dark green), where we assume |Ce↵

ah |/⇤2 = 1TeV�2.

is not much weaker than our projection for 300 fb�1 shown by the solid line in the left panel
indicates that our requirement of 100 signal events is not unreasonable.

While the graphical displays in Figures 16 and 17 correctly represent the regions in the
ma � |C

e↵

�� | parameter space which can be probed using exotic Higgs decays, it is important
to emphasize that finding a signal in these search regions will require su�ciently large ALP–
Higgs couplings, as indicated by the solid, dashed and dotted contour lines in the plots.
Consequently, not finding a signal in any of these searches would not necessarily exclude the
existence of an ALP in this parameter space. An alternative way to present our results,
which makes this fact more explicit, is shown in Figure 18 for h ! Za (upper panel) and
h ! aa (lower panel). For three di↵erent values of the ALP mass, the green-shaded areas
to the right of the solid or dashed contours in the various plots now show the regions in the
parameter space of the relevant ALP–Higgs and ALP–photon couplings which can be probed
(again requiring at least 100 signal events) for di↵erent values of the a ! �� branching ratio.
This representation is more faithful in the sense that a negative search result would definitely
exclude the corresponding region of parameter space.

The colored lines overlaid in the plots indicate two interesting yet rather pessimistic sce-
narios, in which the ALP couplings to bosons are induced via loops of SM quarks only. Of
course, larger couplings can be expected if new particles contribute in the loops, or if for some
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An interesting search channel is  

• Resulting bounds on the ALP—photon 
coupling (ALP decay) depend on the  
effective ALP coupling                     to Higgs 
bosons (ALP production) 

• Bounds are independent of the  
branching ratio as long as this is larger than 
0.006, 0.049, and 0.49 for a Higgs coupling 
of 1, 0.1, and 0.01 TeV-2

h → aa → 4γ

h → γγ

300 fb-1

(@µa)
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Figure 7: Upper limits on B(� ! 00 ! 4W) at 95% CL as a function of the signal mass hypothesis and for the
assumption of promptly decaying ALPs.

Figure 8: Limits on the ALP mass and coupling to photons at 95% CL, assuming B(0 ! WW) = 1, ⇤ = 1 TeV with
|⇠eff

0�
| = 1 (solid line) and |⇠eff

0�
| = 0.1 (dashed line) as predicted in Ref. [19]. The shaded blue area represents the

excluded region. The nearly horizontal orange shaded area indicates the region favoured by an ALP explanation
for the (6 � 2)` discrepancy [19]. Also shown are exclusion limits from the respective ATLAS [64] and CMS [65]
Light-by-Light (LbyL) scattering analysis, and beam dump experiments, supernova SN1987a and cosmological
observations adapted from Ref. [66].
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An interesting search channel is  

• Resulting bounds on the ALP—photon 
coupling (ALP decay) depend on the  
effective ALP coupling                     to Higgs 
bosons (ALP production) 

• Bounds are independent of the  
branching ratio as long as this is larger than 
0.006, 0.049, and 0.49 for a Higgs coupling  
of 1, 0.1, and 0.01 TeV-2 

• Analysis by ATLAS confirms our estimates

h → aa → 4γ

h → γγ
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ALP production in rare kaon decays 

Most interesting search channel is  

• Model-independent analysis using chiral 
perturbation theory 

• Find that previous calculations used an 
incorrect implementation of chiral currents 

• Branching ratio gets enhanced by factor 37 
when the correct implementation is used 

• Obtain strong constraints on flavor-violating 
and flavor-conserving ALP couplings

K− → π−a

12

[Bauer, MN, Renner, Schnubel, Thamm 2021]
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].
In (7) the ALP enters in the quark mass matrix m̂q(a)

and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
The e↵ective chiral Lagrangian (7) can also be used

to study flavor-changing processes such as K�
! ⇡�a

and ⇡�
! e�⌫̄ea, which in the SM are mediated by the

weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by

Lji
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†⇤ji . (13)

This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.
The chiral representation of the e↵ective weak La-

grangian mediating the decays K�
! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
2

V ⇤
udVus g8f2

⇡ ,

with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)
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= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
The e↵ective chiral Lagrangian (7) can also be used

to study flavor-changing processes such as K�
! ⇡�a

and ⇡�
! e�⌫̄ea, which in the SM are mediated by the

weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
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V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
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kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
The e↵ective chiral Lagrangian (7) can also be used

to study flavor-changing processes such as K�
! ⇡�a

and ⇡�
! e�⌫̄ea, which in the SM are mediated by the

weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads
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where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�
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decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
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Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
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decays reconsideredK� ! ⇡�a
ALP pion mixing ALP eta mixing vertex contribution 

IS radiation FS radiation ALP flavor changing coupling

MB, Neubert, Renner, Schnubel,  
Thamm, 2102.13112, Phys.Rev.Lett. 127 (2021) 

ALP-pion mixing ALP-η mixing vertex graph
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].
In (7) the ALP enters in the quark mass matrix m̂q(a)

and through the covariant derivative defined in (5). For
the very special situation in which
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it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
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! e�⌫̄ea, which in the SM are mediated by the
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tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
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plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads
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where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
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decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
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⌘ = 4m2
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structive to see how the scheme-dependent contributions
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which
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⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
The e↵ective chiral Lagrangian (7) can also be used

to study flavor-changing processes such as K�
! ⇡�a

and ⇡�
! e�⌫̄ea, which in the SM are mediated by the

weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads
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where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �
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the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].
In (7) the ALP enters in the quark mass matrix m̂q(a)

and through the covariant derivative defined in (5). For
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it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
The e↵ective chiral Lagrangian (7) can also be used

to study flavor-changing processes such as K�
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! e�⌫̄ea, which in the SM are mediated by the

weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.
The chiral representation of the e↵ective weak La-

grangian mediating the decays K�
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads
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where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�
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decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
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K = B0 (ms+m̄), and 3m2
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Before considering the resulting decay amplitude, it is in-
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for physical observables. For flavor-conserving processes
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a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
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the special choice �q = q one can eliminate the non-
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The kappa dependence reads

3

only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
The e↵ective chiral Lagrangian (7) can also be used

to study flavor-changing processes such as K�
! ⇡�a

and ⇡�
! e�⌫̄ea, which in the SM are mediated by the

weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-
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dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
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V ⇤
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with |N8| ⇡ 1.53 · 10�7, we find for these contributions

D1 3
N8

2f
cGG (u � d)(m

2
⇡ � m2

a) ,

D2 3 �
N8

6f
cGG (2m2

K + m2
⇡ � 3m2

a) (u + d � 2s) ,

D3 3
N8

2f
cGG

h
� (�d � �s � d + s)(m

2
K + m2

⇡ � m2
a)

+ (�u � �d + u + s)(m
2
K � m2

⇡ + m2
a)

+ (�u � �s + u + d)(m
2
K � m2

⇡ � m2
a)
i
,

decays reconsideredK� ! ⇡�a
ALP pion mixing ALP eta mixing vertex contribution 

IS radiation FS radiation ALP flavor changing coupling

MB, Neubert, Renner, Schnubel,  
Thamm, 2102.13112, Phys.Rev.Lett. 127 (2021) 

ALP-pion mixing ALP-η mixing vertex graph

3

only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].
In (7) the ALP enters in the quark mass matrix m̂q(a)

and through the covariant derivative defined in (5). For
the very special situation in which
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it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
The e↵ective chiral Lagrangian (7) can also be used

to study flavor-changing processes such as K�
! ⇡�a

and ⇡�
! e�⌫̄ea, which in the SM are mediated by the

weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.
The chiral representation of the e↵ective weak La-

grangian mediating the decays K�
! ⇡�⇡0, KS !
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
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where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�
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decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
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Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
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kQ(µ�)� kq(µ�)
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= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
The e↵ective chiral Lagrangian (7) can also be used

to study flavor-changing processes such as K�
! ⇡�a

and ⇡�
! e�⌫̄ea, which in the SM are mediated by the

weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1
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decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
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K = B0 (ms+m̄), and 3m2

⌘ = 4m2
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Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
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The kappa dependence reads
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
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such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which
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it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
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tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
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This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
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octet operator can be transformed into the first one using
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uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
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(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
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agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
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the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
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Before considering the resulting decay amplitude, it is in-
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ALP production in rare kaon decays 

Most interesting search channel is  

• ALP flavor violation can arise from the UV 
theory or from the SM 

• Assuming MFV and   yields for the 
ALP—fermion couplings in the mass basis:

K− → π−a

f = 1 TeV

13

[Bauer, MN, Renner, Schnubel, Thamm 2021]
Assuming MFV (only          ) for  yt 6= 0

24
MB, Neubert, Renner, Schnubel,  
Thamm,  JHEP 04 (2021) 063 

Flavor off-diagonal ALP-fermion couplings

are integrated out have been studied in detail in [? ]. One finds that

[ku(µw)]ij = [ku(⇤)]ij ; i, j 6= 3 ,

[kU(µw)]ij = [kU(⇤)]ij ; i, j 6= 3 ,

[kd(µw)]ij = [kd(⇤)]ij ,

[ke(µw)]ij = [ke(⇤)]ij ,

[kE(µw)]ij = [kE(⇤)]ij .

(0.24)

Note that for ku and kU we only need the entries where i, j 6= 3, since the top quark has been
integrated out in the e↵ective theory below the weak scale. For the o↵-diagonal elements of
the coe�cient kD one obtains the more interesting result
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where the evolution functions U(µw,⇤) and It(µw,⇤) are defined as
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8⇡2
ctt(µ) , (0.26)

while the matching contribution [�̂kD(µw)]ij can be found in eq. (5.7) of [? ]. Via these
evolution functions, ALP couplings to any SM field at the UV scale will, at some loop order,
produce logarithmically-enhanced contributions to flavor-changing down-type quark couplings
below the electroweak scale. We will make use of this important point in Section ?? to place
new constraints on individual ALP couplings defined at the UV scale, by calculating their
flavor e↵ects to leading logarithmic approximation via these equations.

The above results simplify significantly if the ALP Lagrangian at the UV scale ⇤ respects
the principle of minimal flavor violation [? ]. One then finds that [? ]
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(0.28)

with xt = m2
t/m

2
W . The explicit solution for the evolution function It(µw,⇤) involves again

the ALP couplings ctt and c̃V V . For the reference scale f = 1TeV, one finds numerically (for
i 6= j)

[kD(mt)]ij ' [kD(⇤)]ij + 0.019V ⇤
tiVtj

h
ctt(⇤)� 0.0032 c̃GG(⇤)� 0.0057 c̃WW (⇤)

i
. (0.29)
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with xt = m2
t/m

2
W . The explicit solution for the evolution function It(µw,⇤) involves again

the ALP couplings ctt and c̃V V . For the reference scale f = 1TeV, one finds numerically (for
i 6= j)
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Flavor violation can come from the UV theory or from the SM

a

dj

di

a
W

t

dj

di

a

W

t

dj

di

f = 1TeV

vanishes for a flavor-universal ALP

possible UV flavor change flavor change through SM loops containing W-bosons

[kD(mt)]ij ' [kD(⇤)]ij + 0.019V ⇤
tiVtj

h
ctt(⇤)� 0.0032 c̃GG(⇤)� 0.0057 c̃WW (⇤)

i
.

<latexit sha1_base64="6/M3j4crJLKYpmN6pzXJJdrWSsA="></latexit>

[kU,E(mt)]ij = [ku,d,e(mt)]ij = 0
<latexit sha1_base64="QWyYbFO5+7MYAtdIbiUp9cU6KXk="></latexit>
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ALP production in rare kaon decays 

Most interesting search channel is  

• Importantly, one should not estimate the 
amplitude based on  and the 
ALP—pion mixing angle: 

• Such mixing angles are unphysical, and 
other diagrams must also be included!

K− → π−a

K− → π−π0

14

[Bauer, MN, Renner, Schnubel, Thamm 2021]

ALP-pion mixing ALP-η mixing

3

only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
⇥
kQ(µ�)� kq(µ�)

⇤
= 2cGG , (12)

it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
The e↵ective chiral Lagrangian (7) can also be used

to study flavor-changing processes such as K�
! ⇡�a

and ⇡�
! e�⌫̄ea, which in the SM are mediated by the

weak interactions and at low energies are described by
4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
transform non-linearly as ⌃ ! UL⌃. The e↵ective La-
grangian is invariant under this transformation if we treat
the quark mass matrix and the left-handed ALP cou-
plings as spurions transforming as m̂q(a) ! ULm̂q(a)

and k̂Q ! UL k̂QU †
L. Applying the Noether procedure

to the Lagrangians in the quark and meson pictures, and
accounting for an additional phase factor arising from the
chiral rotation of the fields, we find that the left-handed
quark currents q̄iL�µqjL must be represented in the chiral
theory by

Lji
µ = �

if2
⇡

4
e
i(��

qi
���

qj
)a/f ⇥

⌃ (Dµ⌃)†
⇤ji

3 �
if2

⇡

4


1 + i(�qi � �qj � qi + qj ) cGG

a

f

� ⇥
⌃ @µ⌃

†⇤ji

+
f2
⇡

4

@µa

f

⇥
k̂Q �⌃ k̂q⌃

†⇤ji . (13)

This generates both non-derivative and derivative cou-
plings of the ALP to the weak-interaction vertices. With
the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
in the literature. It has neither been taken into account
in the original paper [13] nor in later work based on it.

The chiral representation of the e↵ective weak La-
grangian mediating the decays K�

! ⇡�⇡0, KS !

⇡+⇡� and KS ! ⇡0⇡0 at leading order in the chiral ex-
pansion involves an operator transforming as an SU(3)
octet and two transforming as 27-plets [25–27]. (A second
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FIG. 1. Feynman graphs contributing to the K� ! ⇡�a de-

cay amplitude at leading order in the chiral expansion. Weak-

interaction vertices are indicated by a crossed circle, while

dots refer to vertices from the Lagrangian (7).

octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads

Lweak = �
4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
Before considering the resulting decay amplitude, it is in-
structive to see how the scheme-dependent contributions
involving the �q and q parameters cancel between the
various diagrams. In units of N8 = �

GFp
2

V ⇤
udVus g8f2

⇡ ,

with |N8| ⇡ 1.53 · 10�7, we find for these contributions
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].

In (7) the ALP enters in the quark mass matrix m̂q(a)
and through the covariant derivative defined in (5). For
the very special situation in which

Tr
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it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
The e↵ective chiral Lagrangian (7) can also be used

to study flavor-changing processes such as K�
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4-fermion operators built out of products of left-handed
currents. Under a left-handed, flavor o↵-diagonal rota-
tion qL ! UL qL of the quark fields, the meson fields
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the special choice �q = q one can eliminate the non-
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remain. Astoundingly, it appears that the contribution
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads
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! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
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the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
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Before considering the resulting decay amplitude, it is in-
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The kappa dependence reads
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only to condition (3). We study in detail how the depen-
dence on these auxiliary variables cancels in predictions
for physical observables. For flavor-conserving processes
such as a ! �� and a ! ⇡⇡⇡, an analogous study was
performed in [19].
In (7) the ALP enters in the quark mass matrix m̂q(a)

and through the covariant derivative defined in (5). For
the very special situation in which
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it is possible to choose the matrices q and �q in such

a way that k̂q and k̂Q both vanish. In this case, the
ALP only enters the Lagrangian through the quark mass
matrix (8), see e.g. [17]. However, condition (12) is not
invariant under renormalization-group evolution, and it
would need a fine tuning to realize this condition at the
low scale µ�.
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the special choice �q = q one can eliminate the non-
derivative couplings; however, the derivative couplings
remain. Astoundingly, it appears that the contribution
involving the derivative of the ALP field has been omitted
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octet operator can be transformed into the first one using
the equations of motion.) The octet operator receives a
huge dynamical enhancement known as the �I = 1

2 se-
lection rule [28]. The corresponding Lagrangian reads
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4GF
p
2

V ⇤
udVus g8 [LµLµ]32 , (14)

where |g8| ⇡ 5.0 [29], and the index pair “32” signals a
sL ! dL transition. We have calculated the K�

! ⇡�a
decay amplitude from the Lagrangians (7) and (14), eval-
uating the Feynman graphs shown in Figure 1. The first
two diagrams account for the ALP–meson mixing contri-
butions mentioned above, while the third graph contains
the ALP interactions at the weak vertex derived from
(13). The following two graphs describe ALP emission of
an initial- or final-state meson. They give nonzero con-
tributions if the ALP has non-universal vector-current
interactions with di↵erent quark flavors. The last di-
agram contains possible flavor-changing ALP–fermion
couplings, as parameterized by the o↵-diagonal elements
of the matrices kQ and kq in (1). To simplify the analy-
sis we set mu = md ⌘ m̄ in order to eliminate the ⇡0–⌘
mass mixing. (More general expressions, including also
the contribution from the 27-plet operators, will be pre-
sented elsewhere.) The meson masses are then given by
m2

⇡ = 2B0 m̄, m2
K = B0 (ms+m̄), and 3m2

⌘ = 4m2
K�m2

⇡.
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In the literature ALP (or axion) pion mixing is sometimes 
introduced as a measurable quantity, but this is not correct

3
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symmetry of the e↵ective Lagrangian (1). In QCD axion
models m2

a,0 vanishes and the axion mass is generated by
non-perturbative QCD dynamics [6, 20]. In more general
ALP models a non-zero bare mass can be generated by
means of non-abelian extensions of the SM.

To study the low-energy interactions of a light ALP
with the pseudoscalar mesons (⇡, K, ⌘), the Lagrangian
(1) is matched onto a chiral e↵ective Lagrangian, in which

⌃(x) = exp
⇥
i
p

2
f⇡

�a⇡a(x)
⇤
contains the pseudoscalar me-

son fields (�a are the Gell-Mann matrices). In order
to find the bosonized form of the ALP–gluon interac-
tion, one eliminates the aGG̃ term in favor of ALP cou-
plings to quark bilinears, whose chiral representation is
well known. This is accomplished with a chiral rotation
[12, 13, 22]

q(x) ! exp


�i (�q + q �5) cGG

a(x)

f

�
q(x) , (2)

where �q and q are hermitian matrices, which we choose
to be diagonal in the quark mass basis. Under this field
redefinition the measure of the path integral is not in-
variant [23], and this generates extra contributions to
the ALP couplings to gluons and photons. Imposing the
condition

Trq = u + d + s = 1 (3)

ensures that the ALP–gluon interaction is eliminated
from the Lagrangian at the expense of modifying the
ALP–photon and ALP–fermion couplings as well as the
quark mass matrix. Denoting the modified couplings
with a hat, one finds (with Nc = 3 the number of colors)

ĉ�� = c�� � 2Nc cGG TrQ2q ,

k̂Q(a) = ei�
�
q a/f

�
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q

�
e�i��
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+
q a/f

�
kq + �+

q

�
e�i�+

q a/f ,

(4)

where �±
q = cGG (�q ± q), and Q = diag(Qu, Qd, Qs)

contains the electric charges of the quarks in units of e.
The phase factors in the last two relations cancel for all
diagonal elements of the matrices k̂Q and k̂q. As long as
the condition (3) is satisfied, any choice of the matrices
�q and q describes the same physics. The derivative
couplings of the ALP to the left- and right-handed quark
currents are implemented by including the ALP field in
the definition of the covariant derivative [24], such that

iDµ⌃ = i@µ⌃+ eAµ [Q,⌃] +
@µa

f

⇣
k̂Q⌃�⌃ k̂q

⌘
, (5)

where Aµ is the photon field. This definition implies

(Dµ⌃)⌃† +⌃ (Dµ⌃)† = @µ

�
⌃⌃†� = 0 . (6)

The leading-order chiral Lagrangian can then be ex-

pressed in the form

L
�
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f
Fµ⌫ F̃µ⌫ ,

(7)
where the parameter B0 ⇡ m2

⇡/(mu+md) is proportional
to the chiral condensate. Throughout this Letter we work
consistently at lowest order in the chiral expansion and
neglect the e↵ects of ⇡0–⌘–⌘0 mixing. With our choice
of diagonal matrices �q and q, the modified quark mass
matrix takes the form

m̂q(a) = exp

✓
�2iq cGG

a

f

◆
mq , (8)

where mq = diag(mu, md, ms).
The e↵ective chiral Lagrangian (7) has been the basis

for numerous studies of low-energy phenomena involv-
ing axions or light ALPs. Expanding the Lagrangian to
quadratic order in fields, one finds that the ALP acquires
the mass term

m2
a = c2

GG
f2
⇡ m2

⇡

f2

2mumd

(mu + md)2
+ m2

a,0


1 +O

✓
f2
⇡

f2

◆�
,

(9)
up to higher-order corrections in the chiral expansion
[6, 20]. Higher-order terms generate a periodic poten-
tial for the ALP field a, which breaks the continuous shift
symmetry of the classical Lagrangian to the discrete shift
symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle

✓⇡a =
f⇡

2
p
2f


m2

a (ĉuu � ĉdd)

m2
⇡ � m2
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�
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a

�
, (10)

where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject
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symmetry a ! a + n⇡f/cGG. One also finds that there
are mass-mixing and kinetic-mixing contributions involv-
ing the ALP and the neutral mesons ⇡0 and ⌘, whose ex-
plicit form depends on the parameters q. For instance,
at first order in 1/f one obtains ⇡0 = ⇡0

phys + ✓⇡aaphys

with the mixing angle

✓⇡a =
f⇡

2
p
2f


m2

a (ĉuu � ĉdd)

m2
⇡ � m2

a

�
m2

⇡�

m2
⇡ � m2

a

�
, (10)

where ĉqq = cqq + 2q cGG with

cqq = (kq � kQ) , � = 4cGG
muu � mdd

md + mu
. (11)

Via the quantities ĉqq and � the mixing angle depends
on the auxiliary parameters q in (2). The special choice
q = m�1

q /Tr(m�1
q ) eliminates the mass-mixing contri-

bution �, leaving a contribution from kinetic mixing
that is proportional to m2

a and hence is negligible for a
QCD axion with m2

a ⇠ f2
⇡/f2. This “default choice”

defines a scheme, which is frequently adopted in the lit-
erature. It is important to realize, however, that ✓⇡a is
not a physical quantity. For instance, one can find values
of u, d and s such that ✓⇡a = 0 and ✓⌘a = 0 [19]. In
our discussion below we treat the quantities �q and q

in the field redefinition (2) as free parameters, subject

AK+!a⇡+ 6= ✓AK+!⇡0⇡+

decays reconsideredK� ! ⇡�a

ALP pion mixing

MB, Neubert, Renner, Schnubel,  
Thamm, 2102.13112, Phys.Rev.Lett. 127 
(2021) 
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Whereas  is known from  decay, the couplings  and   are at 
present completely unknown     

• however, contributions promotional to  vanish for the case of MFV (or flavor universality) in 
the UV, which we assume from now on

g8 = 3.61 ± 0.28 K → ππ gθ
8 g′￼8

g′￼8



Matthias Neubert Flavor Probes of Axion-Like Particles

ALP production in rare kaon decays 

16

Most interesting search channel is  

• At NLO in chiral perturbation theory the 
calculation is far more involved 

• NLO (p4) QCD and weak chiral Lagrangians 
need to be supplemented by 3 resp. 9 
operators involving   

• Sensitivity to several unknown (or poorly 
known) low-energy constants

K− → π−a

Dμ θ

[Cornella, Galda, MN 2023]

i W 8

i Zi Z 0
i i W ✓ 8

i Z✓
i Z 0✓

i Z✓✓
i

1 h�6L2L2
i 2 0 1 (Dµ✓) h�6{Lµ, S}i (2.66) 1

2
(2.67)

2 h�6LµL2Lµ
i �

1

2
0 2 i(Dµ✓) h�6[Lµ, P ]i (2.66) 1

2
(2.67)

3 h�6LµL⌫i hLµL⌫
i 0 0 3 i(Dµ✓) h�6[L⌫ ,W µ⌫ ]i Z✓

3
0 Z✓✓

3

4 h�6Lµi hLµL2
i 1 0 4 (Dµ✓) h�6Lµ

i hSi �
3

4
0 1

2

5 h�6{S, L2
}i

3

2

3

4
5 (@µDµ✓) h�6P i Z✓

5
0 Z✓✓

5

6 h�6Lµi hSLµ
i �

1

4
0 6 (Dµ✓) h�6{Lµ, L2

}i – 0 –

7 h�6Si hL2
i �

9

8

1

2
7 (Dµ✓) h�6Lµ

i hL2
i – 0 –

8 h�6L2
i hSi �

1

2
0 8 (Dµ✓) h�6L⌫i hLµL⌫

i – 0 –

9 i h�6[P, L2]i 3

4
�

3

4
9 i✏µ⌫⇢�(Dµ✓) h�6L⌫L⇢L�

i – 0 –

10 h�6S2
i

2

3

5

12

11 h�6Si hSi �
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11

18

12 �h�6P 2
i �

5

12

5

12

13 �h�6P i hP i 0 0

19 h�6 [lµ, [L2, Lµ]]i �
5

4
0

20 i
2
h�6 [lµ, {L⌫ ,W µ⌫

}]i 3

4
0

21 �h�6 [lµ, [S, Lµ]]i 5

6
0

23 �i h�6 [lµ, {P, Lµ
}]i 5

12
0

24 �i h�6 [lµ, Lµ]i hP i 0 0

28 i✏µ⌫⇢� h�6Lµ
i hL⌫L⇢L�

i 0 0

Table 2.4: CP-invariant operators W 8

i (left) and W ✓ 8
i (right) entering the O(p4)

weak octet chiral Lagrangian (2.64) for the SM extended by an ALP. The coe�cients

Zi are taken from [60]. For the operator W 8

23
there is an additional contribution from

the redundant operator W 8

22
, see (2.56). The calculation of the coe�cients Z 0

i is

described in Section 2.7, whereas consistency conditions on the coe�cients Z✓
i and

Z✓✓
i are derived in Section 3.3. Entries with a dash remain unconstrained.

again to linear order in Dµ✓, we find that there are 12 such operators, which we can

organize by the number of insertions of the left-handed current Lµ. We find

1) (@µDµ✓) h�6P i , 7) (2Dµ✓) h�6L
µ
i ,

2) (@⌫Dµ✓) h�6W
µ⌫
i , 8) (Dµ✓) h�6{L

µ, L2
}i ,

3) (Dµ✓) h�6{L
µ, S}i , 9) (Dµ✓) h�6L⌫L

µL⌫
i ,

4) i(Dµ✓) h�6[L
µ, P ]i , 10) (Dµ✓) h�6L

µ
i hL2

i ,

5) i(Dµ✓) h�6[L⌫ ,W
µ⌫ ]i , 11) (Dµ✓) h�6L⌫i hL

µL⌫
i ,

6) (Dµ✓) h�6L
µ
i hSi , 12) i✏µ⌫⇢�(D

µ✓) h�6L
⌫L⇢L�

i .

(2.57)

We have used that @⌫Dµ✓ = @µD⌫✓, and that the equation of motion following from
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i Oi �i i O✓
i �✓

i

1 hL2
i
2 3

32
1 �(@µDµ✓) hP i 0

2 hLµL⌫
i hLµL⌫i

3

16
2 �(Dµ✓) hLµSi �

1

4

3 hL4
i 0 3 (Dµ✓) hLµL2

i 0

4 hL2
i hSi 1

8

5 hL2Si 3

8

6 hSi2 11

144

7 �hP i
2 0

8 1

2
hS2

� P 2
i

5

48

12 1

4
hS2 + P 2

i
5

24

Table 2.2: Operators in the O(p4) QCD Lagrangian (2.52) relevant for the SM

extended by a light ALP. We use the short-hand notation L2
⌘ LµLµ. The coe�cients

�i and �✓
i are taken from [44] and [45], respectively.

The definitions of the remaining operators are shown in the left portion of Table 2.2.

Note that, since s = mq and p = 0 in our model, the operator O12 = h�†�i is a

field-independent constant and can be dropped from the Lagrangian. On the other

hand, the basis must be extended by additional operators containing the fields ✓ and

haµi in the invariant combination Dµ✓ in (2.16), which according to (2.49) is minus

the trace of Lµ. An exhaustive derivation of such terms has been performed in [45].

For the purposes of this work, we can restrict ourselves to operators linear in Dµ✓,

since we consistently work to first order in a/f (with f � 4⇡F being the ALP decay

constant). There are only three such operators, denoted by O✓
i , whose definition is

given in the right portion of Table 2.2. They correspond to O53, O46, and O31 in the

notation of [45].

Using the transformation properties shown in Table 2.1 along with relations

(2.43), it is straightforward to check that the operators Oi and O✓
i are invariant

under both parity and charge conjugation, as required by the symmetries of QCD.5

All in all, the O(p4) QCD Lagrangian then takes the form

L
(p4)
QCD

=
8X

i=1

Li Oi +
3X

i=1

L✓
i O

✓
i . (2.52)

The bare low-energy constants L(✓)
i are customarily written as

L(✓)
i = L(✓)

i,r (µ) + ��(✓)
i , (2.53)

5The operators O41, O48, O52 listed in [45] are even under C but odd under P .

– 15 –
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T1 T2 T3 T4

T5

1

Figure 3.1: Feynman graphs contributing to the K�
! ⇡�a decay amplitude at

tree level. The ALP is represented by a dashed line. The black square denotes an

insertion of a vertex from the O(p2) QCD Lagrangian in (2.18), while the black dot

• refers to a vertex from the O(p2) weak Lagrangian in (2.41).

For the relevant low-energy constants collected in Table 2.3, the values obtained

after performing the scaling in (3.5) are indeed of O(1). For the first parameter set,

e.g., we obtain L̂4,r(µ) = 0.00± 0.38, L̂5,r(µ) = 1.52± 0.13, L̂7 = �0.38± 0.25, and

L̂8,r(µ) = 0.63± 0.25, all at the scale µ = m⇢. From (2.52), it follows that

d

d lnµ
L̂(✓)

i,r
(µ) = �8�(✓)

i
, (3.6)

which according to Table 2.2 yields O(1) coe�cients on the right-hand side.

In our analysis below, we will perform the rescaling (3.5) for all low-energy

constants in the QCD chiral Lagrangian at O(p4), and based on the prefactors in

(2.41) and (2.61) we will perform a similar rescaling of the low-energy constants

arising in the weak chiral Lagrangian at O(p4). Concretely, we define

L(✓)

i
⌘

L̂(✓)

i

8 (4⇡)2
, N (✓)

i
⌘

N̂ (✓)

i

2 (4⇡)2
. (3.7)

3.2 Amplitude at leading order

With the general chiral Lagrangian described in the previous section at hand, we

can now move forward to the calculation of the physical amplitude for the process of

interest, K�
! ⇡�a. We work at first order in a/f , where f is the decay constant of

the ALP, and to order GF . This setup features two sources of flavor violation: the

SM weak interactions, and flavor-violating ALP couplings. We neglect contributions

from the product of the two.

At LO in the chiral expansion, it is su�cient to sum all tree-level Feynman di-

agrams. These are shown in Figure 3.1. In diagram T1 the flavor-changing s ! d

transition occurs via a flavor-changing ALP–quark interaction, while in T2�4 the fla-

vor change originates from the CKM matrix. We do not draw explicitly vertices

involving mixing between neutral states, since these have been removed via the ro-

tations in (2.32). Adding up the four diagrams we obtain the LO result

ALO = A
FV

LO
+A

weak,8

LO
+A

weak,8
0

LO
+A

weak,8✓

LO
+A

weak,27,1/2

LO
+A

weak,27,3/2

LO
. (3.8)
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QCD chiral Lagrangian (LO) 

Diagrams involving flavor-changing ALP couplings:

D1 D2 C1

1

Figure 3.3: Feynman diagrams contributing to the K�
! ⇡�a decay amplitude

at NLO in the chiral expansion, and generated by flavor-violating ALP interactions.

The black square denotes the insertion of a vertex from the O(p2) QCD Lagrangian

in (2.18), while the empty square⇤ refers to a vertex from theO(p4) QCD Lagrangian

in (2.49).
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Note that this is a finite renormalization, and the scale dependence on the right-hand

side cancels between the logarithms and the renormalized low-energy constants. In

other words, both F⇡ and F are physical parameters. Here we choose to work in

terms of F instead of F⇡, since �F⇡ would induce large NLO corrections.

By substituting (3.17) in the LO amplitude (3.8), e↵ectively we split it up in two

pieces,

ALO(m
2

i
) = ALO(m

2

i,NLO
) +A

�m
2
i

LO
⌘ A

0
LO

+A
�m

2
i
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. (3.21)

The first one is formally of O(p2) and is strictly speaking the “true” LO result,

while the second is part of the O(p4) correction. Both these quantities are trivially

independent of the q parameters. In the following we will drop the prime when

referring to the LO result. The third term in (3.14), A(p
4
)

1-loop
, comprises all 1-particle

irreducible one-loop graphs built out of O(p2) vertices, including at most one weak

vertex. These leads to 21 distinct topologies, displayed in Figure 3.3 (D1�2) and

Figure 3.4 (D3�21), each with various internal states, for a total of 89 distinct graphs.

Finally, the last term in (3.14), A(p
4
)

tree , contains tree-level diagrams with one O(p4)

insertion and arbitrarily many O(p2) insertions. The corresponding topologies are

C1 in Figure 3.3 and C2�10 in Figure 3.5. Only C10 has two distinct possible virtual

states (⇡0 and ⌘8), hence in total we have 11 distinct graphs. Note that even though

we have removed the ALP mixing with ⇡0 and ⌘8 at LO, both are generated at

NLO. Instead of performing a NLO diagonalization of the mass and kinetic terms,

we choose to keep these terms explicitly and treat them as interactions. This is

shown explicitly in graphs D11 and C10.
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Most interesting search channel is  

• At NLO in chiral perturbation theory the 
calculation is far more involved 

• NLO (p4) QCD and weak chiral Lagrangians 
need to be supplemented by 3 resp. 9 
operators involving   

• Sensitivity to several unknown (or poorly 
known) low-energy constants

K− → π−a

Dμ θ

[Cornella, Galda, MN 2023]
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Diagrams involving flavor-changing ALP couplings:Most interesting search channel is  

• At NLO in chiral perturbation theory the 
calculation is far more involved 

• NLO (p4) QCD and weak chiral Lagrangians 
need to be supplemented by 3 resp. 9 
operators involving   

• Sensitivity to several unknown (or poorly 
known) low-energy constants

K− → π−a

Dμ θ

[Cornella, Galda, MN 2023]Figure 4.1: Total (LO+NLO) contribution of flavor-violating ALP couplings to

the K�
! ⇡�a decay amplitude. The gray (light blue) band corresponds to the 1�

uncertainty estimated using the inputs of the first (second) column of Table 2.3 for

the QCD low-energy constant L5,r. The region ma ⇡ m⇡0 is excluded for the reason

explained below (2.35).

4 Phenomenological consequences

We now provide numerical estimates of the NLO e↵ects calculated above. For our

study we use PDG values for the meson masses and the kaon width, i.e. mK� =

493.7MeV, m⇡� = 139.6MeV and �K� = 5.31 · 10�14MeV [67], along with the

FLAG average for the pion decay constant, F⇡� = (130.2± 0.8)MeV [58].

4.1 Numerical size of higher-order e↵ects

To illustrate the magnitude of the corrections, we plot the LO and NLO contri-

butions to the decay amplitude for K�
! ⇡�a, defined as in (3.9), as a function

of the ALP mass. The contribution proportional to the flavor-violating ALP cou-

pling is illustrated in Figure 4.1, while those proportional to the flavor-conserving

ALP couplings are shown in Figures 4.2 and 4.3. The same plots apply for the CP-

conjugate amplitude for K+
! ⇡+a decay. (Recall that we are neglecting the very

small CP-violating e↵ects in the SM, see the discussion after (2.47).)

Keeping in mind that at LO iAFV
⌘ FK!⇡

0
(m2

a) = 1, Figure 4.1 shows that the

NLO corrections to the contribution involving flavor-violating ALP couplings are

relatively small over the entire mass range, reaching a maximum value of about 8%

at the largest kinematically allowed value of ma. As can be seen from the explicit

expressions in Appendix B, iAFV

NLO
depends on a single low-energy constant, L5,r.

Using (2.55) together with the corresponding value from Table 2.3 yields a fully

scale independent expression for iAFV. The only source of uncertainty, illustrated

by the light-blue band, is the error on L5,r. As a check of the correctness of our

– 37 –

iAFV

LO+NLO
= �(m2

K �m2

⇡)
[kd + kD]12

2f
FK!⇡
0

(q2 = m2

a) ; FK!⇡
0

(0) = (1LO � 0.023NLO)
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T1 T2 T3 T4

T5

1

Figure 3.1: Feynman graphs contributing to the K�
! ⇡�a decay amplitude at

tree level. The ALP is represented by a dashed line. The black square denotes an

insertion of a vertex from the O(p2) QCD Lagrangian in (2.18), while the black dot

• refers to a vertex from the O(p2) weak Lagrangian in (2.41).

For the relevant low-energy constants collected in Table 2.3, the values obtained

after performing the scaling in (3.5) are indeed of O(1). For the first parameter set,

e.g., we obtain L̂4,r(µ) = 0.00± 0.38, L̂5,r(µ) = 1.52± 0.13, L̂7 = �0.38± 0.25, and

L̂8,r(µ) = 0.63± 0.25, all at the scale µ = m⇢. From (2.52), it follows that

d

d lnµ
L̂(✓)

i,r
(µ) = �8�(✓)

i
, (3.6)

which according to Table 2.2 yields O(1) coe�cients on the right-hand side.

In our analysis below, we will perform the rescaling (3.5) for all low-energy

constants in the QCD chiral Lagrangian at O(p4), and based on the prefactors in

(2.41) and (2.61) we will perform a similar rescaling of the low-energy constants

arising in the weak chiral Lagrangian at O(p4). Concretely, we define

L(✓)

i
⌘

L̂(✓)

i

8 (4⇡)2
, N (✓)

i
⌘

N̂ (✓)

i

2 (4⇡)2
. (3.7)

3.2 Amplitude at leading order

With the general chiral Lagrangian described in the previous section at hand, we

can now move forward to the calculation of the physical amplitude for the process of

interest, K�
! ⇡�a. We work at first order in a/f , where f is the decay constant of

the ALP, and to order GF . This setup features two sources of flavor violation: the

SM weak interactions, and flavor-violating ALP couplings. We neglect contributions

from the product of the two.

At LO in the chiral expansion, it is su�cient to sum all tree-level Feynman di-

agrams. These are shown in Figure 3.1. In diagram T1 the flavor-changing s ! d

transition occurs via a flavor-changing ALP–quark interaction, while in T2�4 the fla-

vor change originates from the CKM matrix. We do not draw explicitly vertices

involving mixing between neutral states, since these have been removed via the ro-

tations in (2.32). Adding up the four diagrams we obtain the LO result

ALO = A
FV

LO
+A

weak,8

LO
+A

weak,8
0

LO
+A

weak,8✓

LO
+A

weak,27,1/2

LO
+A

weak,27,3/2

LO
. (3.8)
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QCD chiral Lagrangian (LO) 

Diagrams with flavor-conserving ALP couplings:

D1 D2 C1

1

Figure 3.3: Feynman diagrams contributing to the K�
! ⇡�a decay amplitude

at NLO in the chiral expansion, and generated by flavor-violating ALP interactions.

The black square denotes the insertion of a vertex from the O(p2) QCD Lagrangian

in (2.18), while the empty square⇤ refers to a vertex from theO(p4) QCD Lagrangian

in (2.49).

where [44, 49] [Please re-check my reformatted result!]

�F⇡ =
F⇡

(4⇡F )2


m2

K
ln

µ2

m2

K

+ 2m2

⇡
ln

µ2

m2
⇡

+ 2m2

K
L̂4,r(µ) +m2

⇡

⇣
L̂4,r(µ) + L̂5,r(µ)

⌘�
.

(3.20)

Note that this is a finite renormalization, and the scale dependence on the right-hand

side cancels between the logarithms and the renormalized low-energy constants. In

other words, both F⇡ and F are physical parameters. Here we choose to work in

terms of F instead of F⇡, since �F⇡ would induce large NLO corrections.

By substituting (3.17) in the LO amplitude (3.8), e↵ectively we split it up in two

pieces,

ALO(m
2

i
) = ALO(m

2

i,NLO
) +A

�m
2
i

LO
⌘ A

0
LO

+A
�m

2
i

LO
. (3.21)

The first one is formally of O(p2) and is strictly speaking the “true” LO result,

while the second is part of the O(p4) correction. Both these quantities are trivially

independent of the q parameters. In the following we will drop the prime when

referring to the LO result. The third term in (3.14), A(p
4
)

1-loop
, comprises all 1-particle

irreducible one-loop graphs built out of O(p2) vertices, including at most one weak

vertex. These leads to 21 distinct topologies, displayed in Figure 3.3 (D1�2) and

Figure 3.4 (D3�21), each with various internal states, for a total of 89 distinct graphs.

Finally, the last term in (3.14), A(p
4
)

tree , contains tree-level diagrams with one O(p4)

insertion and arbitrarily many O(p2) insertions. The corresponding topologies are

C1 in Figure 3.3 and C2�10 in Figure 3.5. Only C10 has two distinct possible virtual

states (⇡0 and ⌘8), hence in total we have 11 distinct graphs. Note that even though

we have removed the ALP mixing with ⇡0 and ⌘8 at LO, both are generated at

NLO. Instead of performing a NLO diagonalization of the mass and kinetic terms,

we choose to keep these terms explicitly and treat them as interactions. This is

shown explicitly in graphs D11 and C10.
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C2 C3 C4

C5 C6 C7

C8 C9 C10

1

Figure 3.5: Feynman diagrams contributing the K ! ⇡a at NLO generated by

flavor-conserving ALP interactions involving one insertion of the O(p4) QCD La-

grangian in (2.58) (empty square ⇤) or O(p4) weak Lagrangian in (2.58) (empty dot

#). The black square and circle • are as explained in Figure 3.4.

of KS ! ⇡+⇡� decay, in which case the one-loop diagrams in chiral perturbation

theory generate a significant strong rescattering phase [62]. In principle, non-zero

imaginary parts could arise from the loop diagrams L4, L8, L9, L20, and L21 in

Figure 3.4, when the initial-state kaon in graph L8 decays into two pions, or when

the final-state ALP couples to a two-pion state (remaining graphs). However, the

vertex factors in these diagrams ensure that all relevant cuts vanish. In diagram

L8, the Feynman rule for the K� ⇡� ⇡0 vertex (black circle) is proportional to the

di↵erence of the two pion propagators, yielding a sum of two tadpole integrals that

are real. Similarly, in diagrams L4, L20, and L21 the Feynman rule for the a ⇡ ⇡

vertex is proportional to the di↵erence of the two pion propagators, yielding a sum

of two tadpole integrals in all cases. In diagram L9 a contribution remains with

two propagators in the loop, which arises when the upper right pion propagator is

cancelled by the numerator structure. In this case, however, the loop contains a K ⇡

intermediate state, which cannot be on-shell, since ma < mK � m⇡ for the decay

K�
! ⇡�a to be kinematically allowed.
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D3 D4 D5 D6

D7 D8 D9 D10

D11 D12 D13 D14

D15 D16 D17 D18

D19 D20 D21

1

Figure 3.4: Feynman diagrams contributing the K�
! ⇡�a at NLO generated by

flavor-conserving ALP interactions via insertions of the O(p2) Lagrangians only. The

flavor change is generated by the insertion of a vertex from the weak O(p2) chiral

Lagrangian in (2.39) and shown by a black dot •. The black square refers to a

vertex from the QCD O(p2) chiral Lagrangian in (2.17).

remaining (finite) result ALO + ANLO retains an explicit lnµ dependence, which is

canceled by the µ dependence of the low-energy constants. Given the length of

the result, we provide complete expressions diagram by diagram in a Mathematica

notebook attached to the arXiv preprint of this article as an ancillary file.

An unexpected aspect of our result is the complete absence of an absorptive

part of the K�
! ⇡�a decay amplitude. This is in stark contrast to the case

– 24 –
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Figure 3.1: Feynman graphs contributing to the K�
! ⇡�a decay amplitude at

tree level. The ALP is represented by a dashed line. The black square denotes an

insertion of a vertex from the O(p2) QCD Lagrangian in (2.18), while the black dot

• refers to a vertex from the O(p2) weak Lagrangian in (2.41).

For the relevant low-energy constants collected in Table 2.3, the values obtained

after performing the scaling in (3.5) are indeed of O(1). For the first parameter set,

e.g., we obtain L̂4,r(µ) = 0.00± 0.38, L̂5,r(µ) = 1.52± 0.13, L̂7 = �0.38± 0.25, and

L̂8,r(µ) = 0.63± 0.25, all at the scale µ = m⇢. From (2.52), it follows that

d

d lnµ
L̂(✓)

i,r
(µ) = �8�(✓)

i
, (3.6)

which according to Table 2.2 yields O(1) coe�cients on the right-hand side.

In our analysis below, we will perform the rescaling (3.5) for all low-energy

constants in the QCD chiral Lagrangian at O(p4), and based on the prefactors in

(2.41) and (2.61) we will perform a similar rescaling of the low-energy constants

arising in the weak chiral Lagrangian at O(p4). Concretely, we define

L(✓)

i
⌘

L̂(✓)

i

8 (4⇡)2
, N (✓)

i
⌘

N̂ (✓)

i

2 (4⇡)2
. (3.7)

3.2 Amplitude at leading order

With the general chiral Lagrangian described in the previous section at hand, we

can now move forward to the calculation of the physical amplitude for the process of

interest, K�
! ⇡�a. We work at first order in a/f , where f is the decay constant of

the ALP, and to order GF . This setup features two sources of flavor violation: the

SM weak interactions, and flavor-violating ALP couplings. We neglect contributions

from the product of the two.

At LO in the chiral expansion, it is su�cient to sum all tree-level Feynman di-

agrams. These are shown in Figure 3.1. In diagram T1 the flavor-changing s ! d

transition occurs via a flavor-changing ALP–quark interaction, while in T2�4 the fla-

vor change originates from the CKM matrix. We do not draw explicitly vertices

involving mixing between neutral states, since these have been removed via the ro-

tations in (2.32). Adding up the four diagrams we obtain the LO result

ALO = A
FV

LO
+A

weak,8

LO
+A

weak,8
0

LO
+A

weak,8✓

LO
+A

weak,27,1/2

LO
+A

weak,27,3/2

LO
. (3.8)
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weak chiral Lagrangian (LO) 

C2 C3 C4

C5 C6 C7

C8 C9 C10

1

Figure 3.5: Feynman diagrams contributing to the K ! ⇡a decay amplitude

at NLO in the chiral expansion, generated by flavor-conserving ALP interactions

involving one insertion of the O(p4) QCD Lagrangian in (2.49) (empty square ⇤) or

O(p4) weak Lagrangian in (2.49) (empty dot #). The black square and circle •

are as explained in Figure 3.4.

proportional to G8 in the limit where haµi = 0 and ✓ = 0 (i.e. hcai = 0 and cGG = 0).

This requires knowledge of the coe�cients �i, �✓

i
and Zi collected in Tables 2.2

and 2.4. The cancellation of the remaining poles, proportional to G8 (2cGG + hcai)

and G✓

8
(2cGG + hcai), is achieved via the operators W ✓ 8

1�3
, choosing the anomalous

dimensions as given in Table 2.4. The remaining (finite) result ALO +ANLO retains

an explicit lnµ dependence, which is canceled by the scale dependence of the various

low-energy constants. We have derived closed analytic expressions for the NLO

corrections, which are however too lengthy to display them here. Instead, we provide

complete expressions diagram by diagram in a Mathematica notebook attached to

the arXiv version of this article as an ancillary file.

An unexpected aspect of our result is the complete absence of an absorptive

part of the K�
! ⇡�a decay amplitude. This is in stark contrast to the case of

the KS ! ⇡+⇡� decay, in which case the one-loop diagrams in chiral perturbation

theory generate a significant strong rescattering phase [63]. In principle, non-zero

imaginary parts could arise from the loop diagrams D4, D8, D9, D20, and D21 in

Figure 3.4, when the initial-state kaon in graph L8 decays into two pions, or when

the final-state ALP couples to a two-pion state (remaining graphs). However, the

– 32 –
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Figure 4.2: LO (solid) and NLO (dashed lines) contributions proportional to G8 to

the K�
! ⇡�a decay amplitude, as defined in (3.9). The bands show the combined

1� uncertainties estimated using the inputs of the second column of Table 2.3 for

the QCD low-energy constants and varying the scale µ0 by a factor of
p
2 around

the default choice µ0 = 1.4GeV. The gray vertical line in the region ma ⇡ m⇡0 is

excluded for the reasons explained below (2.35). (The divergence in the second plot

appears stronger only because we have chosen a di↵erent scale on the vertical axis.)

result we have verified that, for ma = 0, iAFV

NLO
coincides with the NLO correction

to the K�
! ⇡� form factor at q2 = 0, usually denoted by f2, which amounts to

f2 ⇡ �0.023 [68].
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Figure 4.2: LO (solid) and NLO (dashed lines) contributions proportional to G8 to

the K�
! ⇡�a decay amplitude, as defined in (3.9). The bands show the combined

1� uncertainties estimated using the inputs of the second column of Table 2.3 for

the QCD low-energy constants and varying the scale µ0 by a factor of
p
2 around

the default choice µ0 = 1.4GeV. The gray vertical line in the region ma ⇡ m⇡0 is

excluded for the reasons explained below (2.35). (The divergence in the second plot

appears stronger only because we have chosen a di↵erent scale on the vertical axis.)
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result we have verified that, for ma = 0, iAFV

NLO
coincides with the NLO correction

to the K�
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Figure 4.3: LO (solid) and NLO (dashed lines) contributions proportional to G✓
8

(top) and G0
8
(bottom) to the K�

! ⇡�a decay amplitude. The meaning of the

bands and vertical line is the same as in Figure 4.2.

cal results for the amplitudes for the case ma = 0. For the contribution proportional

to flavor-violating ALP couplings, we obtain

iAFV

LO+NLO
= �(m2

K �m2

⇡)
[kd + kD]12

2f
(1LO � 0.023NLO) , (4.1)

with negligible uncertainty. For the contributions proportional to the octet couplings
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, we have
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Bounds on ALP couplings

Most interesting search channel is  

• Current experimental limits on  
(NA62) imply bounds on the different ALP 
couplings (one at a time), which we express 
in the form of parameters  

• New-physics scales probed range from few to 
tens of TeV  

 (*)   assuming 

K− → π−a

K− → π−X

Λeff
ci

= f/ |ci |

gθ
8 = 0

23

ci(µ�)

⇤e↵ (min)

ci [TeV]

ma = 0 MeV ma = 200 MeV

[kD + kd]12 2.9 · 108 3.0 · 108

c̃GG
(⇤) 43 39

cauu 1.5 2.0

cadd + cass 15 9

cadd � cass
(⇤⇤) 8 4

cvdd � cvss
(⇤⇤) 23 22

Table 4.1: 90% CL lower bounds on the e↵ective scale ⇤e↵

ci ⌘ f/|ci| of the ALP

couplings ci at the scale µ� for the cases ma = 0 and ma = 200 MeV, derived

using the 90% C.L. values on K ! ⇡X provided by NA62 [69] as explained in the

main text. These bounds are independent of the specific UV structure of the ALP

couplings. The bounds for couplings denoted by (⇤) depend on the value of g✓
8
, while

those for couplings denoted with (⇤⇤) depend on g0
8
. Here we set g✓

8
= g0

8
= 0.

�
�
2.7� 0.4 "(2)

�
(cadd + cass) + 2.31 (cadd � cass)

+ 0.54 (cvdd � cvss)
⇤
, (4.6)

iA
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27

LO
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G3/2
27

F 2
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2

K

2f

⇥ �
0.9 + 30.2 "(2)

�
c̃GG +

�
1.4� 15.1 "(2)

�
cauu

�
�
1.4 + 15.1 "(2)

�
(cadd + cass)� 0.46 (cadd � cass)

+ 0.54 (cvdd � cvss)
⇤
.

In these expressions, all ALP couplings are evaluated at the scale µ� = 1.6 GeV

in the MS scheme. The full amplitude can be easily obtained by adding up the

contributions in (4.3)-(4.6).

The measurement posing the strongest bounds on the magnitude of the e↵ective

couplings |ci|/f appearing in the amplitude (or, equivalently, on the e↵ective scale

⇤e↵

ci ⌘ f/|ci|) is the NA62 constraint on the branching ratio for the decay K+
!

⇡+X, where X is a scalar or pseudoscalar particle decaying to invisibles and/or

outside the detector. For mX 2 [0, 110] MeV, NA62 obtains upper limits B(K+
!

⇡+X) < 3 � 6 ⇥ 10�11 (90% CL). For mX 2 [160, 260] MeV the bound tightens

to B(K+
! ⇡+X) < 1 ⇥ 10�11 (90% CL). We can express these limits as upper

bounds on the absolute value of the amplitude |A(K ! ⇡X)| and use them to derive

lower bounds on the e↵ective scales ⇤e↵

ci by switching on one coupling at a time. In

Table 4.1 we report these bounds for two representative cases, ma = 0 MeV and

ma = 200 MeV, obtained setting g✓
8
= g0

8
= 0. Due to the amplitude depending

on the unknown low-energy couplings g✓
8
and g0

8
, we make assumptions about their

– 40 –

[Cornella, Galda, MN 2023]



Matthias Neubert Flavor Probes of Axion-Like Particles

ci(µ�)

⇤e↵ (min)

ci [TeV]

ma = 0 MeV ma = 200 MeV

[kD + kd]12 2.9 · 108 3.0 · 108

c̃GG
(⇤) 43 39

cauu 1.5 2.0

cadd + cass 15 9

cadd � cass
(⇤⇤) 8 4

cvdd � cvss
(⇤⇤) 23 22

Table 4.1: 90% CL lower bounds on the e↵ective scale ⇤e↵

ci ⌘ f/|ci| of the ALP

couplings ci at the scale µ� for the cases ma = 0 and ma = 200 MeV, derived

using the 90% C.L. values on K ! ⇡X provided by NA62 [69] as explained in the

main text. These bounds are independent of the specific UV structure of the ALP

couplings. The bounds for couplings denoted by (⇤) depend on the value of g✓
8
, while

those for couplings denoted with (⇤⇤) depend on g0
8
. Here we set g✓

8
= g0

8
= 0.

�
�
2.7� 0.4 "(2)

�
(cadd + cass) + 2.31 (cadd � cass)

+ 0.54 (cvdd � cvss)
⇤
, (4.6)
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G3/2
27

F 2
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0.9 + 30.2 "(2)

�
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�
1.4� 15.1 "(2)

�
cauu

�
�
1.4 + 15.1 "(2)

�
(cadd + cass)� 0.46 (cadd � cass)

+ 0.54 (cvdd � cvss)
⇤
.

In these expressions, all ALP couplings are evaluated at the scale µ� = 1.6 GeV

in the MS scheme. The full amplitude can be easily obtained by adding up the

contributions in (4.3)-(4.6).

The measurement posing the strongest bounds on the magnitude of the e↵ective

couplings |ci|/f appearing in the amplitude (or, equivalently, on the e↵ective scale

⇤e↵

ci ⌘ f/|ci|) is the NA62 constraint on the branching ratio for the decay K+
!

⇡+X, where X is a scalar or pseudoscalar particle decaying to invisibles and/or

outside the detector. For mX 2 [0, 110] MeV, NA62 obtains upper limits B(K+
!

⇡+X) < 3 � 6 ⇥ 10�11 (90% CL). For mX 2 [160, 260] MeV the bound tightens

to B(K+
! ⇡+X) < 1 ⇥ 10�11 (90% CL). We can express these limits as upper

bounds on the absolute value of the amplitude |A(K ! ⇡X)| and use them to derive

lower bounds on the e↵ective scales ⇤e↵

ci by switching on one coupling at a time. In

Table 4.1 we report these bounds for two representative cases, ma = 0 MeV and

ma = 200 MeV, obtained setting g✓
8
= g0

8
= 0. Due to the amplitude depending

on the unknown low-energy couplings g✓
8
and g0

8
, we make assumptions about their
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Bounds on ALP couplings

Most interesting search channel is  

• Current experimental limits on  
(NA62) imply bounds on the different ALP 
couplings (one at a time), which we express 
in the form of parameters  

• New-physics scales probed range from few to 
tens of TeV 

• Very strong bounds on flavor-changing ALP 
couplings call for a flavor symmetry!

K− → π−a

K− → π−X

Λeff
ci

= f/ |ci |

23
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• Large flavor-changing ALP couplings can be 
avoided by assuming a flavor-universal ALP 
at the UV scale   

• Still, at low energies flavor-changing 
couplings are generated by RG effects

Λ = 4πf

Bounds on ALP couplings
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Figure 5: One-loop matching contributions to the ALP–fermion couplings. In the second diagram
(V1V2) = (WW ), (ZZ), (Z�) or (�Z). In the last two diagrams V = W, Z, but in the sum of all
contributions only the W -boson graphs with internal top quarks (plus the corresponding graphs with
Goldstone bosons) give rise to non-zero contributions.

diagrams involving Higgs bosons give contributions proportional to the Yukawa couplings of
the external fermions. Since the top quark is integrated out in the e↵ective theory below the
weak scale, these graphs are proportional to y

2
f for some light SM fermion f and hence can

be neglected. The first diagram in Figure 5 arises from ALP mixing with the Z boson via a
top-quark loop. The second graph gives rise to matching contributions proportional to the
ALP–boson couplings. The corresponding e↵ects were calculated in [22] for the case where
the external fermions are leptons. Here we generalize these results to the case of quarks,
where however contributions involving virtual top quarks require a special treatment. The
remaining diagrams contain vertex and external-leg corrections from loops involving heavy W

and Z bosons. We have calculated these diagrams in a general R⇠ gauge, finding that the sum
of all contributions yields a gauge-invariant answer. Moreover, the sum of all contributions
involving Z bosons and their Goldstone bosons vanishes. For the diagrams involving W

bosons a non-zero contribution remains, which arises from graphs containing internal top
quarks. These diagrams contribute to the couplings kD(µw) in the left-handed down-quark
sector only, and they are the only source of flavor o↵-diagonal e↵ects. Combining all terms,
we find the matching contributions (with F = U,D,E, ⌫ and f = u, d, e)
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These contributions must be added to the RG-evolved coe�cients at µ = µw, so that one
obtains kF,f (µw) +�kF,f (µw) for the ALP–fermion couplings just below the weak scale. All
scale-dependent parameters on the right-hand side of the above relations are evaluated at the
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Bounds on ALP couplings

• Large flavor-changing ALP couplings can be 
avoided by assuming a flavor-universal ALP 
at the UV scale   

• Still, at low energies flavor-changing 
couplings are generated by RG effects 

(*)   assuming 

Λ = 4πf

gθ
8 = 0
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ci(⇤)

⇤e↵ (min)

ci [TeV]

ma = 0 MeV ma = 200 MeV

c̃GG(⇤)(⇤) 49 98

c̃WW (⇤) 2.5 6

c̃BB(⇤) 0.02 0.03

c̃u(⇤) 1.8 · 103 4.0 · 103

c̃d(⇤) 50 80

Table 4.2: 90% CL lower bounds on the e↵ective scale ⇤e↵

ci ⌘ f/|ci| of the ALP

couplings ci at the high scale ⇤ in the flavor universal limit for the cases ma = 0 and

ma = 200 MeV. These bounds are derived by setting ⇤ = 4⇡f with f = 1 TeV. We

used the 90% C.L. values provided by NA62 [69] for the experimental limits. The

bounds reported here are derived assuming g✓
8
= 0. A di↵erent choice would a↵ect

the bound on c̃GG(⇤), which we therefore mark with (⇤).

ALP can be written as

iAuniv = �10�11GeV


1TeV

f

� ⇥
(2.4± 1.0) c̃GG(⇤)

+ (9.37± 0.02) · 10�2c̃WW (⇤)

+ (0.57± 0.02) · 10�3c̃BB(⇤)

� (68± 1) c̃u(⇤)� (2.5± 1.0) c̃d(⇤)
⇤
.

(4.13)

where we expressed everything explicitly in terms of the physical ALP couplings.

Interestingly, the amplitude is sensitive to five out of the six physical parameters

characterizing the flavor universal scenario. Although this expression is valid for

ma = 0, the coe�cients vary less than 10% across the entire allowed mass range. The

values for g8, g
1/2
27

, and g3/2
27

used in this equation are those provided in (2.50). We

have omitted the uncertainties associated with these values, as they are consistently

subdominant compared to the arising from the low-energy constants.

As in the previous section, we can use the NA62 constraint on the branching

ratio for the decay K+
! ⇡+X to derive lower bounds on the e↵ective scales ⇤e↵

ci

associated to the five physical couplings appearing in the amplitude. In Table 4.2 we

report these bounds for two representative cases, ma = 0 MeV and ma = 200 MeV,

setting g✓
8
= 0. A graphical representation of these bounds is provided in Figure 4.4,

where we also show how they change when choosing di↵erent values of f (hence

⇤ = 4⇡f) in the running. Overall, all bounds get slightly stronger for larger values

of f . Finally, Figure 4.5 shows how the bound on ⇤e↵

c̃GG
changes for g✓

8
6= 0.

For c̃u(⇤), c̃WW (⇤), and c̃BB(⇤) the dominant contribution to K�
! ⇡�a origi-

– 43 –
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Bounds on ALP couplings

• Large flavor-changing ALP couplings can be 
avoided by assuming a flavor-universal ALP 
at the UV scale   

• Still, at low energies flavor-changing 
couplings are generated by RG effects 

• One obtains very strong bounds on the ALP 
couplings to gluons, W-bosons and quarks, 
which are the best particle-physics bounds 
on these couplings in the mass range below 
340 MeV

Λ = 4πf
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Table 4.2: 90% CL lower bounds on the e↵ective scale ⇤e↵

ci ⌘ f/|ci| of the ALP

couplings ci at the high scale ⇤ in the flavor universal limit for the cases ma = 0 and

ma = 200 MeV. These bounds are derived by setting ⇤ = 4⇡f with f = 1 TeV. We

used the 90% C.L. values provided by NA62 [69] for the experimental limits. The

bounds reported here are derived assuming g✓
8
= 0. A di↵erent choice would a↵ect

the bound on c̃GG(⇤), which we therefore mark with (⇤).

ALP can be written as
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where we expressed everything explicitly in terms of the physical ALP couplings.

Interestingly, the amplitude is sensitive to five out of the six physical parameters

characterizing the flavor universal scenario. Although this expression is valid for

ma = 0, the coe�cients vary less than 10% across the entire allowed mass range. The

values for g8, g
1/2
27

, and g3/2
27

used in this equation are those provided in (2.50). We

have omitted the uncertainties associated with these values, as they are consistently

subdominant compared to the arising from the low-energy constants.

As in the previous section, we can use the NA62 constraint on the branching

ratio for the decay K+
! ⇡+X to derive lower bounds on the e↵ective scales ⇤e↵

ci

associated to the five physical couplings appearing in the amplitude. In Table 4.2 we

report these bounds for two representative cases, ma = 0 MeV and ma = 200 MeV,

setting g✓
8
= 0. A graphical representation of these bounds is provided in Figure 4.4,

where we also show how they change when choosing di↵erent values of f (hence

⇤ = 4⇡f) in the running. Overall, all bounds get slightly stronger for larger values

of f . Finally, Figure 4.5 shows how the bound on ⇤e↵

c̃GG
changes for g✓

8
6= 0.

For c̃u(⇤), c̃WW (⇤), and c̃BB(⇤) the dominant contribution to K�
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Bounds on ALP couplings

• Large flavor-changing ALP couplings can be 
avoided by assuming a flavor-universal ALP 
at the UV scale   

• Still, at low energies flavor-changing 
couplings are generated by RG effects 

• Bound on  depends on the unknown 

low-energy constant 

Λ = 4πf

c̃GG(Λ)
gθ

8
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Figure 4.4: 90% CL lower bounds on the e↵ective scale ⇤e↵

ci ⌘ f/|ci| of the ALP

couplings ci(⇤) for a flavor universal ALP as a function of the scale f (hence of

⇤ = 4⇡f) used in the running. The solid and dashed lines correspond to the case

ma = 0 and ma = 200 MeV, respectively. The bounds shown here are derived for

g✓ = 0. This assumption a↵ects only ⇤e↵

c̃GG
.

Figure 4.5: 90% CL lower bounds on the e↵ective scale ⇤e↵

c̃GG
associated to the ALP

coupling c̃GG(⇤) for a flavor universal ALP as a function of the low-energy constant

g✓
8
and of the scale f (hence of ⇤ = 4⇡f) used in the running.

nates from iAuniv

FV
via the RG-induced ALP coupling to strange and down quarks as

per (4.10). As demonstrated in the previous section, this contribution can be accu-

rately determined at NLO in the chiral expansion. Consequently, the constraints on

these couplings are solely dictated by the size of their contribution to the amplitude.
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Bounds on ALP couplings

• Large flavor-changing ALP couplings can be 
avoided by assuming a flavor-universal ALP  
at the UV scale   

• Still, at low energies flavor-changing 
couplings are generated by RG effects 

• Bounds get stronger (logarithmically) as one 
raises the value of 

Λ = 4πf

f
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via the RG-induced ALP coupling to strange and down quarks as

per (4.10). As demonstrated in the previous section, this contribution can be accu-

rately determined at NLO in the chiral expansion. Consequently, the constraints on

these couplings are solely dictated by the size of their contribution to the amplitude.
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Other flavor bounds (examples)

ALP—uR coupling in the UV: 

28

ALP—dR coupling in the UV: 
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B ! K⇤a(µµ)
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K +
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K+ ! ⇡+e+e�Figure 21: Left: Flavor bounds on universal ALP couplings to right-handed up-type quarks with
cu = cu , with all other Wilson coe�cients zero at ⇤ = 4⇡f and f = 1 TeV. Right: Comparison of
flavor constraints (light gray) with the constraint on Z ! a� decays from the LEP measurement of
the Z boson width, contours of constant Br(h ! aa) = 10�1, 10�2 and 10�3 depicted as red dotted,
dashed and solid lines and contours of constant Br(h ! Za) = 10�1, 10�2 and 10�3 shown as blue
dotted, dashed and solid lines, respectively.

are depicted as red dotted, dashed and solid lines, respectively. The ALP coupling to top
quarks also induces the exotic Higgs decay h ! Za, and the corresponding contours of con-
stant Br(h ! Za) = 10�1

, 10�2 and 10�3 are shown as blue dotted, dashed and solid lines. In
contrast to ALPs coupled to SU(2)L gauge bosons, neither flavor constraints nor the measure-
ment of the Z width exclude even large branching ratios for exotic Higgs decays for ma & 5
GeV in the case of universal ALP couplings to up-type quarks, but Br(h ! Za) & 0.1% is in
conflict with the measurement of the chromomagnetic moment of the top quark.

3.7.5 ALP coupling to right-handed down-type quarks

For universal ALP couplings to right-handed down-type quarks cd(⇤) = kd(⇤) = cd , the
ALP branching ratios are shown in the lower right panel of Figure ?? and the constraints from
flavor observables are shown in Figure 22. Since only couplings to down quarks are present,
flavor-violating couplings of ALPs to down-type quarks are only generated by the RG-induced
contributions to ctt at one-loop (2.11) or induced by ALP-pion mixing. Constraints from B-
meson mixing that require two flavor-changing ALP couplings are therefore almost irrelevant
in this scenario and constraints from Bs ! µ

+
µ
�, Br(B ! K

⇤
⌫̄⌫) and Br(K+ ! ⇡

+
⌫̄⌫)

are substantially weaker compared to the scenarios that allow for ALP couplings to up-type
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Figure 22: Left; Flavor bounds on universal ALP couplings to down-type quarks with cd = cd ,
with all other Wilson coe�cients zero at ⇤ = 4⇡f and f = 1 TeV. Right: Constraints from flavor
observables (light gray) are compared to the constraint on Z ! a� decays from the LEP measurement
of the Z boson width. Contours of constant Br(h ! aa) = 10�1, 10�2 and 10�3 are depicted as red
dotted, dashed and solid lines, respectively. Contours of constant Br(h ! Za) = 10�1, 10�2 and
10�3 are shown as blue dotted, dashed and solid lines, respectively.

quarks at the UV scale. ALP decays into photons are mediated at 1-loop, whereas ALP-
lepton couplings are also two loop e↵ects. As a result, observables with photon final states
such as K

+ ! ⇡
+
�� and KL ! ⇡

0
�� are stronger relative to other constraints compared

to the scenario in which ALPs couple through cu in the UV. Radiative Upsilon decays lead
to important constraints because of the tree level coupling of the ALP to b-quarks. Searches
for resonances in ⌥ ! � + invisible by BaBar [113] and ⌥ ! � + hadrons [115] provide the
strongest limit for ALPs with masses ma & m⇡. The corresponding decays of J/ ! �a

are strongly suppressed because of the small ALP coupling to charm quarks induced only
by RGE e↵ects. Couplings below |cdd|/f . 10�1

/TeV are almost unconstrained by flavor
observables. This does not mean that this parameter space is unconstrained in this scenario.
Astrophysical and cosmological constraints, such as energy loss of red giants [133–135] and
supernova observations [136, 137] are sensitive to long-lived particles with couplings to photons
or nuclei and lead to strong constraints for ma < m⇡. The contribution of �(Z ! a�) to the
total Z width results in the constraint |cdd|/f & 442/TeV. The excluded parameter space is
shown in the right panel in Figure 22. Higgs decays are strongly suppressed for ALP couplings
to down-type quarks, because the amplitudes are proportional to the Yukawa coupling of the
b-quark. They are only induced by ctt generated by running and matching. The corresponding
sensitivity on h ! aa and h ! aZ are therefore orders of magnitude weaker compared to
Figure 21.
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Bounds on ALP couplings

These bounds also apply to very light ALPs and to the QCD axion, and they imply competitive 
bounds, e.g., on the axion couplings to nucleons:

29

[Cornella, Galda, MN 2023]

Figure 4.6: Exclusion limits for the ALP–neutron (left) and ALP–proton (right)

couplings derived from various experiments (adapted from [71]). The red solid lines

correspond to the bounds implied by our analysis of K±
! ⇡±a decays. The red

dashed lines show a possible exclusion limit assuming an improvement of the theo-

retical uncertainty and the experimental bound by a factor of 3 each.

relaxed and, without any assumption on the flavor structure of the various couplings,

the uncertainty due to the NLO contributions does not allow us to put a competitive

bound on |gan| and |gap|.

The situation changes if we impose the assumption of flavor-universality at the

high scale ⇤ = 4⇡f . Compared with the numbers in Table 4.2, we then find that

the lower bound on ⇤e↵

c̃d
is relaxed from 50TeV to 22TeV, whereas the bound on ⇤e↵

c̃u

remains almost unchanged. Using the second relation in (4.11), we then obtain to

good approximation (with N = n, p)

gaN <
mN

2⇤e↵

c̃d

|g0 ± gA| , (4.17)

where the upper (lower) sign refers to the neutron (proton). Numerically, we find9

|gan| . 3.7⇥10�5 and |gap| . 1.8⇥10�5. We represent these bounds by solid red lines

in Figure 4.6 and compare them with other bounds from astrophysical measurements

and non-accelerator experiments. For comparison, we show as a dashed lines the

bounds one would obtain assuming that the theoretical uncertainties can be reduced

by a factor of 3, and the experimental bound on the K±
! ⇡±a branching ratio can

also be improved by a factor 3. Notably, the bounds derived from K±
! ⇡±a decays,

first derived at LO in [27], currently represent the only particle-physics probes of the

ALP–nucleons couplings in the mass range shown in Figure 4.6. In particular, one can

see that these bounds can compete with several current bounds from non-accelerator

9To derive these bounds we have used RG evolution from ⇤ = 4⇡f (with f = 1TeV) down to
µ� = 1.6GeV. Given the flatness of the line corresponding to ⇤e↵

c̃d
in Figure 4.4, the choice of ⇤ has

only a very small impact on the results.
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Conclusions

• Axions and axion-like particles belong to a class of well-motivated light BSM particles with 
weak couplings to the Standard Model (interactions via higher-dimensional operators) 

• They are an interesting target for searches in high-energy physics, using collider, flavor, and 
precision probes 

• Examples from Higgs physics ( ) and rare meson decays ( ) have 
been discussed in detail; the latter provide the strongest particle-physics bounds on almost 
all ALP couplings to the SM 

• The bounds extend to the region of very low ALP masses, which are usually accessed using 
non-accelerator probes

h → aa → 4γ K− → π−a
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