Neutrino masses and Mixing driven by Randomness

$m_{\nu 2} \sim \sqrt{\Delta m_{\odot}^{2}} \sim 0.008 \mathrm{eV}$

$$
m_{\nu_{3}} \sim \sqrt{\Delta m_{\mathbf{A T M}}^{2}} \sim 0.05 \mathbf{e V}
$$

Neutrinos Oscillate and this can be explained by tiny Sub eV masses
(assuming normal hierarchy)

Neutrino Mixing angles

Inter-generational transitions are small for quarks and almost zero for charged leptons

1st	2nd	3rd
\mathbf{u}	c	t

d	s	b

Information of large mixing can pass from the neutrino sector to other sectors giving severe constraints on the model parameter space

- Typically a large mass/small vev is required to generate the small masses
- in seesaw like mechanisms
- Can fit naturally in GUTs

Type
Type II
Type III

Consider Dirac Masses

$$
\mathcal{L}_{S M}+Y \bar{\nu}_{L} \nu_{R} \tilde{H}
$$

A deeper heavier structure With O(1) parameters, leading to hierarchial parameters

$\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\text {Clockwork }}+\mathcal{L}_{\text {int }}$,

Giudice and McCoullough,2016

The clockwork sector contains ($0,1, \ldots n-1$) left handed chiral fields and ($0,1, \ldots . . n$) right handed chiral fields.

$$
\begin{gathered}
H_{i j}^{C W}=m \delta_{i j}+q m \delta_{i+1, j} \\
\mathcal{L}_{\mathrm{int}}=-Y \tilde{H} \bar{L}_{L} \psi_{R n}
\end{gathered}
$$

We begin with one generation and the generalise to N generations.

$$
\begin{aligned}
& \mathcal{L}=\mathcal{L}_{\mathrm{Kin}}-m \sum_{j=0}^{n-1}\left(\bar{\psi}_{L, j} \psi_{R, j}-q \bar{\psi}_{L, j} \psi_{R, j+1}+H . c\right) \equiv \mathcal{L}_{\mathrm{Kin}}-\left(\bar{\psi}_{L} M_{\psi} \psi_{R}+H . c\right) \\
& M_{\psi}=m\left(\begin{array}{cccccc}
1 & -q & 0 & \cdots & & 0 \\
0 & 1 & -q & \cdots & & 0 \\
0 & 0 & 1 & \cdots & & 0 \\
\vdots & \vdots & \vdots & \ddots & & \vdots \\
& & & & -q & 0 \\
0 & 0 & 0 & \cdots & 1 & -q
\end{array}\right) \\
& \text { one zero mode, and } n \text { Dirac fermions }
\end{aligned}
$$

After EW

symmetry breaking from the interaction term

$$
\begin{gathered}
\nu_{L}\left(\begin{array}{ccccc}
N_{R 0} & N_{R 1} & N_{R 2} & \cdots & N_{R n} \\
v Y_{0} & v Y_{1} & v Y_{2} & \cdots & v Y_{n} \\
m_{\nu 1} & =v Y_{0} & M_{1} & 0 & \cdots \\
0 & N_{\nu 2} \\
N_{L 2} & 0 & M_{2} & \cdots & 0 \\
\vdots \\
N_{L n} & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & M_{n}
\end{array}\right) \\
Y_{0} \equiv Y\left(u_{R}\right)_{n}=\frac{Y}{q^{n}} \sqrt{\frac{q^{2}-1}{q^{2}-q^{-2 n}}}, \\
Y_{k} \equiv Y\left(U_{R}\right)_{n k}=Y \sqrt{\frac{2}{(n+1) \lambda_{k}}}\left[q \sin \frac{n k \pi}{n+1}\right], \quad k=1, \ldots, n .
\end{gathered}
$$

a kind of multi-degenerate-seesaw mechanism for Dirac neutrinos,
where large n reduces the neutrino mass

At least two clockworks for two mass scales.

Figure 2: Values of q_{1} and q_{2} (left panel) and difference between them (right panel), as a function of n_{1} and n_{2}, compatible with the measured values of the neutrino mass splittings and mixing angles within 1σ, for a scenario with two clockwork generations.

Results with three clockworks similar

Anderson localisation in particle physics

Using randomness in couplings to generate exponential hierarchies. Applications to neutrino masses

Sources of randomness :
(I) stringy landscapes

Balasubramaniam et.al
(II) dark sectors

Dienes, kumar et.al

$$
\begin{aligned}
S & =\sum_{j=1}^{N} \int d^{4} x\left\{\bar{\psi}\left(i \gamma^{\mu} D_{\mu}\right) \psi+\left(\overline{L_{j}} \Phi_{j, j+1} R_{j+1}+\overline{L_{j+1}} \Phi_{j+1, j} R_{j}\right)\right. \\
& \left.+\overline{L_{j}} M R_{j}+\text { h.c. }\right\}
\end{aligned}
$$

$$
\mathcal{L}_{N P}=\mathcal{L}_{k i n}-\sum_{i, j=1}^{n} \overline{L_{i}} \mathcal{H}_{i, j} R_{j}+\text { h.c. }
$$

$$
\mathcal{H}_{i, j}=\epsilon_{i} \delta_{i, j}-t_{i}\left(\delta_{i+1, j}+K \delta_{i, j+1}\right)
$$

$$
\begin{aligned}
M_{\text {mass }}= & {\left[\begin{array}{cc}
0 & M_{A} \\
M_{A} & 0
\end{array}\right] } \\
M_{A} & =\left[\begin{array}{ccccc}
\epsilon_{1} & -t & 0 & \ldots & 0 \\
-t & \epsilon_{2} & -t & \ldots & 0 \\
0 & -t & \epsilon_{3} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & -t & \epsilon_{N}
\end{array}\right]
\end{aligned}
$$

Right Handed Weyl Fermion
Left Handed Weyl Fermion
$\mathbf{p}_{\mathbf{i}}$ Coupling between Left handed L_{i} and right handed
Weyl fermion Ri+1
Coupling between Left handed L_{i+1} and right handed Weyl fermion R_{i}

Plot 3 - Histogram for mass distribution of hierarchical mass produced by lattice with 2%
randomness in ϵ_{i} for 25000 runs [Left]. Heat density plot for success ratio for values of $\mathrm{W}(\mathrm{TeV})$ and
α (\% randomness in ϵ_{i}) [Right].

$\epsilon_{i} \in[0, W]$

Strong localisation limit

$$
W \gg t
$$

$L\left(m_{i}^{2}, t, W\right) \sim\left(\ln \frac{W}{2 t}-1\right)^{-1}$

$$
\text { For } t=1, W=3, N=30
$$

(1) Generalised Clockwork

$$
\begin{gathered}
L_{C W}=L_{k i n}-\sum_{i=1}^{n} \bar{\psi}_{L_{i}} H_{i j} \psi_{R_{j}}+H . C \\
H_{i j}=m_{i} \delta_{i j}+q_{i} m_{i} \delta_{i+1, j}
\end{gathered}
$$

Zero Mode !
Localisation possible for regions of parameters (no large hierarchies)

Tiny Dirac neutrino masses!
Hong, Kurup, Perelstein

Plot 1(B) - Left plot shows the absolute value of left-handed mass eigenvectors in terms of CW fields and the right plot for right-handed mass eigenbasis with $\mathrm{y}=0.1$.

Zero Mode !

$$
\begin{aligned}
& \text { X - Left Handed CW Fermion } \\
& \text { - Right Handed CW Fermion }
\end{aligned}
$$

Localisation possible for regions of parameters (no large hierarchies)

Plot 2(B) - Left plot shows the absolute value of left-handed mass eigenvectors in terms of CW fields and the right plot for right-handed mass eigenbasis with $\mathrm{y}=0.1$.

Extremely efficient localisation with randomness/disorder

Gero Gresdroff

- CW 0-mode
- Random Site
- Random Coupling
- Both Random

Fig. 6 - Figure shows the Log of minimum component 0-mode of CW and lightest mode of disorder models achieved with $\mathrm{n}=10$ sites.

Fig. 2 - Mass modes of Local lattice with uniform sites $\epsilon_{i}=\mathrm{W} \& t_{i}=t$ (left) and random sites $t_{i}=t$

$$
\& \epsilon_{i} \in[2 \mathrm{~W},-2 \mathrm{~W}] \text { (right) for } \mathrm{W}=4 \text { and } \mathrm{t}=1 / 4 \text { with } \mathrm{N}=8 \text { sites.. }
$$

$$
\mathcal{H}_{i, j}=a_{i} \delta_{i, j}+b_{i} \delta_{i+1, j}+d_{i} \delta_{i+2, j}
$$

Tiny Dirac neutrino masses !

Zero Mode !
Localisation possible for regions of parameters (no large hierarchies)

Site

- Right Handed CW Fermion

Plot 3(B) - Left plot shows the absolute value of left-handed mass eigenvectors in terms of CW fields and the right plot for right-handed mass eigenbasis with $\mathrm{y}=0.1$.

$$
\mathcal{L}_{\text {long-range }}=L_{\text {Kin }}-\sum_{i, j=1}^{N} \overline{L_{i}} \epsilon_{i, j} R_{j}-\sum_{i, j=1}^{N} \overline{L_{i}} \frac{g}{b|i-j|}\left(1-\delta_{i, j}\right) R_{j}+\text { h.c. } .
$$

$$
M_{\text {long-range }}=\left[\begin{array}{ccccc}
\epsilon_{1} & \frac{g}{b} & \frac{g}{b^{2}} & \cdots & \frac{g}{b^{N-1}} \\
\frac{g}{b} & \epsilon_{2} & \frac{g}{b} & \cdots & \frac{g}{b^{N-2}} \\
\frac{g}{b^{2}} & \frac{g}{b} & \epsilon_{3} & \cdots & \frac{g}{b^{N-3}} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\frac{g}{b^{N-1}} & \cdots & \cdots & \frac{g}{b} & \epsilon_{N}
\end{array}\right]
$$

$\epsilon_{i}=2 \mathrm{~W}, \mathrm{~g}=1, \mathrm{~N}=8 \mathrm{~b}=0.7, \mathrm{~W}=4$ Ji Ji fan et.al

Singh and Vempati, 2401.XXXX

Partially non local

$$
L_{\text {Petersen }}=L_{\text {Kin }}-\sum_{i, j=1}^{N} \overline{L_{i}} \epsilon_{i, j} R_{j}-\sum_{i, j=1}^{N / 4} \overline{L_{i}} \frac{g}{b^{|i-j|}}\left(\delta_{i, j+N / 4}+\delta_{i+N / 4, j}\right) R_{j}
$$

$$
-\sum_{i, j=1}^{N / 2} \overline{L_{i}} \frac{g}{b^{|i-j|}}\left(\delta_{i, j+N / 2}+\delta_{i+N / 2, j}\right) R_{j}-\sum_{i, j=N / 2+1}^{N} \overline{L_{i}} \frac{g}{b^{|i-j|}}\left(\delta_{i, j+1}\right) R_{j}
$$

$$
-\sum_{i, j=N / 2+1}^{N} \overline{L_{i}} \frac{g}{b^{|i-j|}}\left(\delta_{i+1, j}\right) R_{j}+h . c .
$$

$$
M_{\text {Petersen }}=
$$

Strong Localisation Limit :

$$
\begin{aligned}
& \boldsymbol{\epsilon}>\boldsymbol{t} \\
& \mathcal{H}_{i, j}=\epsilon_{i} \delta_{i, j}-t_{i}\left(\delta_{i+1, j}+K \delta_{i, j+1}\right)
\end{aligned}
$$

-independent of geometry of the Chain

- Some universal features for neutrino masses and mixing.

Dirac Case

$\mathcal{L}_{\text {int. }}=Y_{1} \bar{\nu}_{L} H R_{1}+Y_{2} \bar{\nu}_{R} H L_{n}+$ h.c.

O(1) eV neutrino masses (Demonstration)

Mixing angles are anarchical.

Majorana Case

$$
\mathcal{L}_{N P}=L_{k i n}-t \overline{L_{1}} \Psi-\sum_{i, j=1}^{n} \overline{L_{i}} \mathcal{H}_{i, j} R_{j}-W \Psi \Psi+h . c .
$$

Hierachial neutrino masses with suppression but anarchical mixing angles.

Hierarchial neutrino masses with anarchic mixing angles is a feature of the strong localisation regime independent of the type of geometry, couplings (non-local, partially local etc.)

In the case of strong disorder in couplings (t) parameter, $t \gg \epsilon$, geometry does play a mild role, but mixing angles are mostly anarchic, except one!.

Role of Geometry : Weak Disorder

Dirac Scenario : Local Lattice (only nearest neighhour)

Mixing angles are "localised".

Fully non-local

Partially non-local

For the Majorana case, we get similar " localisation"

Phenomenology

BSM@50, Jan 2024

Constraints become weaker for non-local and partially local case.

Outlook

Randomness in couplings can lead to exponentially hierarchal couplings.

In the regime of strong coupling, the geometry of the mass chains does not matter significantly. They predict hierarchal neutrino masses and anarchical mixing angles for both Dirac or Majorana scenarios.

In the weak coupling regime, geometry does play a role and can be chosen carefully to "localise" the mixing angles.

Experimental signatures become weaker for non-local /partially non-local cases compared to local case.

Majorana Case

The gears have large couplings as before.

Figure 3: Majorana masses (left panel) and Yukawa couplings (right panel) of the singlet fermions of the clockwork sector, normalized respectively to m and Y, for the specific case $n=10, q=2$ and $\widetilde{q}=0.1$ (dark blue) or $\widetilde{q}=10$ (light blue).

Generalisation with Majorana Masses for the New Fermions

$\mathcal{L}_{\text {Clockwork }}=\mathcal{L}_{\text {kin }}-\sum_{i=0}^{n-1}\left(m_{i} \bar{\psi}_{L i} \psi_{R i}-m_{i}^{\prime} \bar{\psi}_{L i} \psi_{R i+1}+\right.$ h.c. $)-\sum_{i=0}^{n-1} \frac{1}{2} M_{L i} \overline{\psi_{L i}^{c}} \psi_{L i}-\sum_{i=0}^{n} \frac{1}{2} M_{R i} \overline{\psi_{R i}^{c}} \psi_{R i}$, $m_{i}=m, m_{i}^{\prime}=m q M_{R i}=M_{L i}=m \widetilde{q}$ for all i.

$$
\mathcal{M}=m\left(\begin{array}{cccccccc}
\widetilde{q} & 0 & \cdots & 0 & 1 & -q & \cdots & 0 \\
0 & \widetilde{q} & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots \\
0 & 0 & \cdots & \widetilde{q} & 0 & 0 & 0 & -q \\
1 & 0 & \cdots & 0 & \widetilde{q} & 0 & \cdots & 0 \\
-q & 1 & \cdots & 0 & 0 & \widetilde{q} & \cdots & 0 \\
\vdots & \vdots \\
0 & 0 & \cdots & -q & 0 & 0 & 0 & \widetilde{q}
\end{array}\right)
$$

$$
\begin{aligned}
M_{0} & =m \widetilde{q} \\
M_{k} & =m \widetilde{q}-m \sqrt{\lambda_{k}}, \quad k=1, \ldots, n \\
M_{n+k} & =m \widetilde{q}+m \sqrt{\lambda_{k}}, \quad k=1, \ldots, n,
\end{aligned}
$$

$$
\lambda_{k} \equiv q^{2}+1-2 q \cos \frac{k \pi}{n+1} .
$$

can be diagonalised the matrix

$$
\begin{gathered}
\mathcal{U}=\left(\begin{array}{ccc}
\overrightarrow{0} & \frac{1}{\sqrt{2}} U_{L} & -\frac{1}{\sqrt{2}} U_{L} \\
\vec{u}_{R} & \frac{1}{\sqrt{2}} U_{R} & \frac{1}{\sqrt{2}} U_{R}
\end{array}\right) . \\
\overrightarrow{0}_{j}=0, \quad j=1, \ldots, n, \\
\left(u_{R}\right),\left(=\frac{1}{q^{j}} \sqrt{\frac{q^{2}-1}{q^{2}-q^{-2 n}}}, \quad j=1, \ldots, n,\right. \\
\left(U_{L}\right)_{j k}=\sqrt{\frac{2}{n+1}} \sin \frac{j k \pi}{n+1}, \quad j, k=1, \ldots, n, \\
\left(U_{R}\right)_{j k}=\sqrt{\frac{2}{(n+1) \lambda_{k}}}\left[q \sin \frac{j k \pi}{n+1}-\sin \frac{(j+1) k \pi}{n+1}\right], \quad j=0, \ldots, n, \quad k=1, \ldots, n,
\end{gathered}
$$

under the universality assumption, the presence of the Majorana masses does not change the mixing matrices !!.

The purely majorana mass mode has same features as the zero mode

Generalisation with Majorana Masses for the New Fermignso , Jan 2024

pseudo-Dirac Masses

Phenomenology unexplored

Perhaps ICECUBE

Normal Seesaw like scenario

$$
m_{\nu} \approx \sum_{k} \frac{Y_{k}^{2} v^{2}}{M_{k}}
$$

Neutrino mass limits push the gear masses to GUT scale.

Sterile neutrino phenomenology needs to be explored

Figure 9: Neutrino Mass at tree level in Majorana Case.

Gear masses are pushed to the GUT scale as they give large corrections to the neutrino masses.

In this case, no signals at the weak scale due to "gears", the new fermions.

Back Up

$$
\begin{aligned}
M_{\text {fermion }} & =\left[\begin{array}{cccccc}
0 & v_{1}^{1} & v_{1}^{2} & v_{1}^{3} & \ldots & v_{1}^{n} \\
v_{n}^{1} & \lambda_{1} & 0 & 0 & \ldots & 0 \\
v_{n}^{2} & 0 & \lambda_{2} & 0 & \ldots & 0 \\
v_{n}^{3} & 0 & 0 & \lambda_{3} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
v_{n}^{n} & 0 & 0 & 0 & \ldots & \lambda_{n}
\end{array}\right] \\
m_{0} & \approx \sum_{i=1}^{n} \frac{v_{1}^{i} v_{n}^{i}}{\lambda_{i}} \propto \sum_{i=1}^{n} v^{2} \frac{e^{-\frac{n}{L_{n}}}}{\lambda_{i}}
\end{aligned}
$$

- Lattice Site
- Link Field

Non Local and Two Dimensional Graphs

Example with 15 vertices:

- three zero modes !
-localisation of the zero modes

$$
\begin{aligned}
\mathcal{L}_{N P}= & \mathcal{L}_{k i n}-\sum_{i, j=1}^{15} m_{i} \overline{L_{i}} \delta_{i, j} R_{j}+m\left(\overline{L_{1}} q_{1,7} R_{7}+\overline{L_{1}} q_{1,8} R_{8}+\overline{L_{7}} q_{7,4} R_{4}+\overline{L_{7}} q_{7,9} R_{9}+\overline{L_{7}} q_{7,8} R_{8}+\overline{L_{8}} q_{8,5} R_{5}\right. \\
& +\overline{L_{8}} q_{8,9} R_{9}+\overline{L_{4}} q_{4,9} R_{9}+\overline{L_{4}} q_{4,11} R_{11}+\overline{L_{4}} q_{4,12} R_{12}+\overline{L_{9}} q_{9,5} R_{5}+\overline{L_{5}} q_{5,13} R_{13}+\overline{L_{5}} q_{5,15} R_{15}+ \\
& \overline{L_{2}} q_{2,10} R_{10}+\overline{L_{2}} q_{2,11} R_{11}+\overline{L_{10}} q_{10,6} R_{6}+\overline{L_{10}} q_{10,12} R_{12}+\overline{L_{10}} q_{10,11} R_{11}+\overline{L_{11} 1} q_{11,12} R_{12}+\overline{L_{6}} q_{6,12} R_{12} \\
& \left.+\overline{L_{6}} q_{6,14} R_{14}+\overline{L_{6}} q_{6,15} R_{15}+\overline{L_{3}} q_{3,13} R_{13}+\overline{L_{3}} q_{3,14} R_{14}+\overline{L_{3}} q_{3,15} R_{15}+\overline{L_{13}} q_{13,14} R_{14}+\overline{L_{14}} q_{14,15} R_{15}\right) \\
& +m \overline{L_{i}} q_{i \leftrightarrow j} R_{j}+h . c .
\end{aligned}
$$

$M_{\text {Fractal }}=\left(\begin{array}{ccccccccccccccc}2 m & m f & m f^{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{m}{f} & 2 m & m f & m f^{2} & m f^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{m}{f^{2}} & \frac{m}{f} & 2 m & 0 & m f^{2} & m f^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{m}{f^{2}} & 0 & 2 m & m f & 0 & m f^{3} & m f^{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{m}{f^{3}} & \frac{m}{f^{2}} & \frac{m}{f} & 2 m & m f & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{m}{f^{3}} & 0 & \frac{m}{f} & 2 m & 0 & 0 & m f^{3} & m f^{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{m}{f^{3}} & 0 & 0 & 2 m & m f & 0 & 0 & m f^{4} & m f^{5} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{m}{f^{4}} & 0 & 0 & \frac{m}{f} & 2 m & 0 & 0 & 0 & m f^{4} & m f^{5} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{m}{f^{3}} & 0 & 0 & 2 m & m f & 0 & 0 & 0 & m f^{5} & m f^{6} \\ 0 & 0 & 0 & 0 & 0 & \frac{m}{f^{4}} & 0 & 0 & \frac{m}{f} & 2 m & 0 & 0 & m f^{3} & m f^{4} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{m}{f^{4}} & 0 & 0 & 0 & 2 m & m f & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{m}{f^{5}} & \frac{m}{f^{4}} & 0 & 0 & \frac{m}{f} & 2 m & m f & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{m}{f^{5}} & 0 & \frac{m}{f^{3}} & 0 & \frac{m}{f} & 2 m & m f & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{m}{f^{5}} & \frac{m}{f^{4}} & 0 & 0 & \frac{m}{f} & 2 m & m f \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{m}{f^{6}} & 0 & 0 & 0 & 0 & \frac{m}{f} & 2 m\end{array}\right)$

Plot 2(B) - Left plot shows the absolute value of components of left-handed mass eigenvectors and the right plot for the right-handed mass eigenvector.

Singh and vempati, 2023

BSM@50, Jan 2024

Phenomenology

Putting in the full Standard Model (leptonic sector)

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\text {Clockwork }}+\mathcal{L}_{\text {int }}
$$

Exchange of clockwork gears leads to lepton flavour violation.

Consider for example a rare process, which has not yet
Been discovered...similar to rare flavour violating processes in the Hadronic sector.

$$
\mu \rightarrow e+\gamma
$$

But there are strong limits on it

$$
\begin{gathered}
B(\mu \rightarrow e \gamma) \simeq \frac{3 \alpha_{\mathrm{em}} v^{4}}{8 \pi}\left|\sum_{\alpha=1}^{N} \sum_{k=1}^{n_{\alpha}} \frac{Y_{k}^{e \alpha} Y_{k}^{\mu \alpha}}{M_{k}^{\alpha 2}} F\left(x_{k}^{\alpha}\right)\right|^{2} \\
F(x) \equiv \frac{1}{6(1-x)^{4}}\left(10-43 x+78 x^{2}-49 x^{3}+4 x^{4}-18 x^{3} \log x\right),
\end{gathered}
$$

Present limit of around 40 TeV !!

Fig. 6 - These Feynman diagrams show the 1-loop contribution of fermions in Higgs mass radiative corrections. The Left diagram shows it for the same fermions in the loop with $y_{i i}$ coupling and the right diagram shows it for different fermions in the loop with $y_{i j}$ coupling strength.

Higgs corrections !!

LFV at colliders

A lot of things still left to be explored.

Conclusions

We presented localisation in models which are "finite" not equavilent to extra dimensions and they provide interesting phenomena.

