

HARDER STAN Ryuichiro Kitano (KEK)

Based on 2201.06664, Yu Hamada (KEK -> DESY), RK, Ryutaro Matsudo (KEK -> NTU), Hiromasa Takaura (KEK -> YITP), Mitsuhiro Yoshida (KEK)

> 2210.11083, Yu Hamada (KEK -> DESY), RK, Ryutaro Matsudo (KEK -> NTU), Hiromasa Takaura (KEK -> YITP)

2304.14020, Kåre Fridell (KEK/Florida State U.), RK, Ryoto Takai (KEK/Sokendai)

Also, study in progress with Koji Nakamura (KEK), Sayuka Kita (Tsukuba U.), Toshiaki Kaji (Waseda U.), Taiki Yoshida (Waseda U.), Kohei Yorita (Waseda U.)

BSM50 Workshop@Quy Nhon, Vietnam, January 7-13, 2024

Clearly, we need next generation colliders.

- 1. We must investigate the form of the Higgs potential by the observation of self-interactions.
- 2. We must check the possibility that one can actually produce dark matter artificially.
- 3. We must look for new physics at least up to about 10TeV (~ a loop factor higher than the EW scale).

We cannot stop here.

Higgs factories

(Wikipedia)

HL-LHC (2029?-)

14TeV pp collider, 3ab⁻¹ O(100M) Higgs bosons (Although hard to identify)

Higgs coupling at 1% level. (LHC measures at a few - 10% level)

g 20000

g 0000

t.b

-H

O(1M) Higgs bosons

Measurements of Higgs couplings at the level of 0.1%.

Future colliders?

e+e- (90-365GeV) → pp (100TeV)

Higgs/top factory

New physics searches

O(1M) Higgs

[muon smasher's guide]

$10 { m ~TeV} @ 10 { m ~ab}^{-1}$					
Production	Decay	Rate [fb]	$A\cdot\epsilon~[\%]$	$\Delta\sigma/\sigma~[\%]$	
	bb	490	7.4	0.17	
	cc	24	1.4	1.7	
	jj	72	37	0.19	
	$\tau^+\tau^-$	53	6.5	0.54	
	$WW^*(jj\ell\nu)$	53	21	0.30	
W fusion	$WW^*(4j)$	86	4.9	0.49	
W -IUSIOII	$ZZ^*(4\ell)$	0.1	6.6	12	
	$ZZ^*(jj\ell^+\ell^-)$	2.1	8.9	2.3	
	$ZZ^{*}(4j)$	11	4.6	1.4	
	$\gamma\gamma$	1.9	33	1.3	
	$Z(jj)\gamma$	0.9	27	2.0	
	$\mu^+\mu^-$	0.2	37	0.37	
7 fusion	bb	51	8.1	0.49	
2-1051011	$WW^*(4j)$	8.9	6.2	1.3	
W-fusion tth	bb	0.06	12	12	

Fantastic!

μ+μ- (10TeV?)

A lot of Higgs bosons through WW fusion.

Direct reach to 10TeV physics!

from symmetry

muon collider

this is what we want!

from symmetry

[MAP collaboration]

$10 { m ~TeV} @ 10 { m ~ab^{-1}}$					
Production	Decay	Rate [fb]	$A\cdot\epsilon~[\%]$	$\Delta\sigma/\sigma~[\%]$	
	bb	490	7.4	0.17	
	сс	24	1.4	1.7	
	jj	72	37	0.19	
	$ au^+ au^-$	53	6.5	0.54	
	$WW^*(jj\ell\nu)$	53	21	0.30	
W-fusion	$WW^*(4j)$	86	4.9	0.49	
	$ZZ^*(4\ell)$	0.1	6.6	12	
	$ZZ^*(jj\ell^+\ell^-)$	2.1	8.9	2.3	
	$ZZ^*(4j)$	11	4.6	1.4	
	$\gamma\gamma$	1.9	33	1.3	
	$Z(jj)\gamma$	0.9	27	2.0	
	$\mu^+\mu^-$	0.2	37	0.37	
7 fusion	bb	51	8.1	0.49	
27-1051011	$WW^*(4j)$	8.9	6.2	1.3	
W-fusion tth	bb	0.06	12	12	

[muon smasher's guide]

Very nice. Why don't we just do it now!

of course, there are technical challenges to realize this collider.

The most challenging part is to obtain enough luminosities.

Today, I talk about possibly a realistic scenario of **µ**+ **based** colliders.

 σ is the most difficult part. The **cooling** is the key.

Muon beam

Conventional muon beam proton π^+ emittance ~1000π mm • mrad = π mm Strong focusing pion decay Muon loss production BG π contamination

Taken from Mibe-san's lecture slide

Muon cooling

MICE Muon Ionization Cooling Experiment

MICE has made the first ever demonstration of the ionization cooling of muons – a major step in the journey to create the world's most powerful particle accelerator.

This process is repeated until the muon beam is almost laser-like, ready for injection into the main accelerator.

Infographic: STFC, Ben Gilliland

Principle works.

[Nature 2020, MICE collaboration]

simulation and plan for muon cooling of the MAP design

Figure 3. Ionization Cooling path in the 6D phase space.

Muon cooling which works for μ^+

There is a rather matured(?) technology only works for μ^+ .

Figure 3. Ionization Cooling path in the 6D phase space.

Looks like there is a good chance of realizing a low-emittance μ^+ beam!

g-2/EDM experiment @ KEK J-PARC

Muon g-2/EDM experiment at J-PARC

A new muon g-2/EDM measurement featuring a low emittance $\mu^{\scriptscriptstyle +}$ beam

Demonstration @ MLF S-line

- Collaborating with Muonium 1S-2S spectroscopy experiment.
 - A 244-nm pulsed laser developed by Okayama univ.
- Q-scan measurement is underway to evaluate the initial phase space.
- RFQ acceleration of cooled muon will be performed after in 2024.

S. Kamioka (talk@muon acceleration workshop, Nov. 2, 2023)

Yes, it has already been cooled and to be accelerated soon!!

(Actually, the acceleration of the μ +e-e- bound state has already been demonstrated!!)

μTRISTAN

$\mu^+e^-/\mu^+\mu^+$ collider with 1TeV μ^+ beam.

Prog. Theor. Exp. Phys. **2022** 053B02(16 pages) DOI: 10.1093/ptep/ptac059

μTRISTAN

Yu Hamada¹, Ryuichiro Kitano^{1,2}, Ryutaro Matsudo¹, Hiromasa Takaura^{1,*}, and Mitsuhiro Yoshida^{2,3}

¹*KEK Theory Center, Tsukuba 305-0801, Japan*

²Graduate University for Advanced Studies (Sokendai), Tsukuba 305-0801, Japan ³KEK Accelerator Department, Tsukuba 305-0801, Japan *E-mail: takaura.phys@gmail.com

Received January 21, 2022; Revised March 18, 2022; Accepted March 28, 2022; Published March

The ultra-cold muon technology developed for the muon g - 2 experiment vides a low-emittance μ^+ beam which can be accelerated and used for experiments. We consider the possibility of new collider experiments by μ^+ beam up to 1 TeV. Allowing the μ^+ beam to collide with a high-intensit TRISTAN energy, $E_{e^-} = 30$ GeV, in a storage ring with the same size as T cumference of 3 km), one can realize a collider experiment with the center $\sqrt{s} = 346$ GeV, which allows the production of Higgs bosons through vect processes. We estimate the deliverable luminosity with existing accelerator be at the level of 5×10^{33} cm⁻² s⁻¹, with which the collider can be a good I tory. $\mu^+\mu^+$ colliders up to $\sqrt{s} = 2$ TeV are also possible using the same ste have the capability of producing the superpartner of the muon up to TeV 30GeV e⁻ / 1TeV μ^+ : Higgs factory, \sqrt{s} =346GeV 1TeV μ^+ / 1TeV μ^+ : new physics search, \sqrt{s} =2TeV

Fig. 1. Conceptual design of the $\mu^+ e^-/\mu^+\mu^+$ collider.

How many cold muons?

Luminosity?

6.6 μ C x 2 x 0.016 x 0.5 x 0.07 ~ 7 nC / bunch ~ 4 x 10¹⁰ muons/bunch

$$\mathcal{L}_{\mu^{+}e^{-}} = 4.6 \times 10^{33} \, \text{cm}^{-2} \, \text{s}^{-1}.$$

$$\mathcal{L}_{\mu^{+}\mu^{+}} = 5.7 \times 10^{32} \, \text{cm}^{-2} \, \text{s}^{-1}.$$
 ab⁻¹ level for 10yrs running. not

bad.

Actually, these numbers are pretty much conservative ones compared to MAP estimates.

Luminosity comparison

	MAP	μTRISTAN(μ⁺μ⁺)
normalized emittance	25π mm mrad	0.1-1π mm mrad
bunch length	1 cm	0.01-0.1 cm
efficiency	0.1	0.01 - 0.07
total luminosity (arb. unit)	1	2.5 - 10000

(eff)² / (emittance * bunch length)

(could be much better for μ^+e^-)

Number of muons may be smaller, but

we see that if we only use μ^+ , we can have (much) better luminosities.

And, the technology is more matured! Express ticket for muon colliders?

mewTRISTAN https://stablediffusionweb.com

What can we do at µTRISTAN?

µ+e-: Very asymmetric

All the particles go to the direction of the muon.

We need a coverage of η ~-4 (2°), which is the same level as the design of the ATLAS at HL-LHC.

Z boson fusion recoil mass

Total width may be measured.

Much better!

Detector matters

Delphes

Higher energy? µTevatron?

50GeV electron + 3TeV muon at a **6km** ring

√s = 775 GeV

hh production: 89 events/ab⁻¹ (maybe we need more for coupling measurements)

Higgs production@µ+µ+

about a factor of two smaller than $\mu^+\mu^-$ (not too bad?)

maybe we should plan 5-10TeV colliders.

√s [TeV]

ZBF

Higgs production@µ+µ+

about 1/3 of µ⁺µ⁻

ZBF:

of Events in 10ab-1

New physics?

Supersymmetrv

Regions for $N_{event}/year > 100$.

Scalar muons up to TeV even for very heavy gauginos. Almost completely cover the muon g-2 motivated region.

DM?

study@µ+µ- [Han et al. '20]

same search is possible at $\mu^+\mu^+$

S/B is good in this process.

10TeV machine can cover 1TeV Higgsino and 1-2TeV Wino.

track + VBF search?

indirect search: [Fukuda, Moroi, Niki, Wei '23]

mono-µ

muon specific

µ+µ+ has a big advantage inlooking for new physicsassociated with the muon.

reach to O(100)TeV physics!

elastic scattering and lepton flavor violating scattering.

[Fridell, RK, Takai '23]

m₁ = 0 $\delta_{CP} = \phi_1 = \phi_2 = 0$ 2 TeV, 1 ab⁻¹, Elastic 100 TeV, 10 ab⁻¹, 100 events 2 TeV, 1 ab⁻¹, 10 events 50 $\mu \rightarrow 3e$ $\mu \rightarrow e\gamma$ 2 TeV, 1 ab⁻¹, 100 events $\tau \rightarrow 3\mu$ 10 その他のT崩壊たち

[Hamada, RK, Matsudo, Takaura '22]

		RR	$\mathbf{L}\mathbf{L}$	RL	
	C_{HWB}	$10 { m TeV}$	$9.4 { m TeV}$	$2.3 { m TeV}$	
	C_{HD}	$5.5 { m TeV}$	$3.5 { m ~TeV}$	$2.3~{\rm TeV}$	
	$C^{(1)}_{H\ell}$	$8.0 { m TeV}$	0	$4.9~{\rm TeV}$	
	$C_{H\ell}^{(3)}$	$14 { m TeV}$	$7.0 { m TeV}$	$6.7 { m ~TeV}$	
	$C_{H_{c}}^{IIV}$	0	$7.5 \mathrm{TeV}$	$5.3~{ m TeV}$	
ſ	$C_{\ell\ell}$	7.7 TeV	$5.0 { m TeV}$	$3.3 { m TeV}$	1
	$C_{\ell\ell}$	$100 { m TeV}$	0	0	
	$C_{\mu\mu\mu\mu}^{\mu\mu\mu\mu}$	0	$100~{\rm TeV}$	0	
	$C_{\ell e}$	0	0	$46~{\rm TeV}$	

Table 1: Constraints on SMEFT operators at 2-sigma level. $\sqrt{s} = 2$ TeV. The bin size for θ is taken as 1° and each bin covers the range $\theta_i - 0.5^\circ < \theta < \theta_i + 0.5^\circ$. The considered range of θ_i is $16^\circ \le \theta_i \le 164^\circ$.

Summary

µ⁺ may have a better chance. Interesting to consider a km size experiment as a relatively near future project.

Fig. 1. Conceptual design of the $\mu^+ e^- / \mu^+ \mu^+$ collider.

