Leonardo Senatore (ETH)

On the Effective Field Theory of Large Scale Structure

What is a fluid?

wikipedia: credit National Oceanic and Atmospheric Administration/ Department of Commerce

 $\partial_t \rho_\ell + \partial_i \left(\rho_\ell v_\ell^i \right) = 0$ $\partial_t v_\ell^i + v_\ell^j \partial_j v_\ell^i + \frac{1}{\rho_\ell} \partial_i p_\ell = \text{viscous terms}$

-From short to long

- -The resulting equations are simpler
- -Description arbitrarily accurate

-construction can be made without knowing the nature of the particles.

-short distance physics appears as a non trivial stress tensor for the long-distance fluid

Do the same for matter in our Universe

credit NASA

with Baumann, Nicolis and Zaldarriaga JCAP 2012 with Carrasco and Hertzberg JHEP 2012

$$\nabla^2 \Phi_{\ell} = H^2 \left(\delta \rho_{\ell} / \rho \right)$$

$$\partial_t \rho_{\ell} + H \rho_{\ell} + \partial_i \left(\rho_{\ell} v_{\ell}^i \right) = 0$$

$$\partial_t v_{\ell}^i + v_{\ell}^j \partial_j v_{\ell}^i + \partial_i \Phi_{\ell} = \partial_j \tau^{ij}$$

-construction can be made without knowing the nature of the particles.

-short distance physics appears as a non trivial stress tensor for the long-distance fluid

$$\tau_{ij} \sim \delta_{ij} \rho_{\rm short} \left(v_{\rm short}^2 + \Phi_{\rm short} \right)$$

–From short to long

-The resulting equations are simpler

-Description arbitrarily accurate

Dealing with the Effective Stress Tensor

- For long distances: expectation value over short modes (integrate them out) $\langle \tau_{ij}(\vec{x},t) \rangle_{\text{long fixed}} = f_{\text{very complicated}} \left(\{H, \Omega_m, \dots, m_{\text{dm}}, \dots, \rho_\ell(x)\}_{\text{past light cone}} \right)$ At long wavelengths \bigvee Taylor Expansion $\langle \tau_{ij}(\vec{x},t) \rangle_{\text{long fixed}} = \int^t dt' \left[c(t,t') \frac{\delta \rho_\ell}{\rho} (\vec{x}_{\text{fl}},t') + \mathcal{O} \left((\delta \rho_\ell / \rho)^2 \right) \right]$
- Equations with only long-modes

$$\partial_t v_{\ell}^i + v_{\ell}^j \partial_j v_{\ell}^i + \partial_i \Phi_{\ell} = \partial_j \tau^{ij}$$

$$\tau_{ij} \sim \delta \rho_{\ell} / \rho + \dots$$

every term allowed by symmetries

• each term contributes as factor of

$$\frac{\delta\rho_l}{\rho} \sim \frac{k}{k_{\rm NL}} \ll 1$$

Perturbation Theory within the EFT

• In the EFT we can solve iteratively $\delta_{\ell}, v_{\ell}, \Phi_{\ell} \ll 1$, where $\delta_{\ell} = \frac{\delta \rho_{\ell}}{\rho}$

$$\nabla^{2} \Phi_{\ell} = H^{2} \left(\delta \rho_{\ell} / \rho \right)$$

$$\partial_{t} \rho_{\ell} + H \rho_{\ell} + \partial_{i} \left(\rho_{\ell} v_{\ell}^{i} \right) = 0$$

$$\partial_{t} v_{\ell}^{i} + v_{\ell}^{j} \partial_{j} v_{\ell}^{i} + \partial_{i} \Phi_{\ell} = \partial_{j} \tau^{ij}$$

$$\tau_{ij} \sim \delta \rho_{\ell} / \rho + \dots$$

• Two scales:

les:

$$k \,[\text{Mean Free Path Scale}] \sim k \left[\left(\frac{\delta \rho}{\rho} \right) \sim 1 \right] \sim k_{\text{NL}}$$

Perturbation Theory within the EFT

- Solve iteratively some non-linear eq. $\delta_{\ell} = \delta_{\ell}^{(1)} + \delta_{\ell}^{(2)} + \ldots \ll 1$
- Second order:

$$\partial^2 \delta_{\ell}^{(2)} = \left(\delta_{\ell}^{(1)}\right)^2 \quad \Rightarrow \quad \delta_{\ell}^{(2)}(x) = \int d^4 x' \operatorname{Greens}(x, x') \left(\delta_{\ell}^{(1)}(x')\right)^2$$

• Compute observable:

$$\langle \delta_{\ell}(x_1)\delta_{\ell}(x_2)\rangle \supset \langle \delta_{\ell}^{(2)}(x_1)\delta_{\ell}^{(2)}(x_2)\rangle \sim \int d^4x_1' d^4x_2' \; (\text{Green's})^2 \; \langle \delta_{\ell}^{(1)}(x_1')^2 \delta_{\ell}^{(1)}(x_2')^2 \rangle$$

- We obtain Feynman diagrams
- Sensitive to short distance

$$x_2' \to x_1'$$

- Need to add counterterms from $\tau_{ij} \supset c_s^2 \delta_\ell$ to correct
- Loops and renormalization applied to galaxies

.... lots of work

Galaxy Statistics

Senatore **1406** with Lewandowsky *et al* **1512** with Perko *et al*. **1610**

Galaxies in the EFTofLSS

- On galaxies, a long history before us, summarized by McDonald, Roy 2010.
 - Senatore 1406 provided first complete parametrization.

• Nature of Galaxies is very complicated

$$n_{\text{gal}}(x) = f_{\text{very complicated}} \left(\{H, \Omega_m, \dots, m_e, g_{ew}, \dots, \rho(x)\}_{\text{past light cone}} \right)$$

Galaxies in the EFTofLSS

$$\left(\frac{\delta n}{n}\right)_{\text{gal},\ell}(x) \sim \int^{\bullet} dt' \left[c(t,t') \left(\frac{\delta \rho}{\rho}\right)(\vec{x}_{\text{fl}},t') + \dots\right]$$

- all terms allowed by symmetries
- all physical effects included
 - -e.g. assembly bias

•

$$\left\langle \left(\frac{\delta n}{n}\right)_{\mathrm{gal},\ell}(x)\left(\frac{\delta n}{n}\right)_{\mathrm{gal},\ell}(y)\right\rangle =$$

$$=\sum_{n} \mathrm{Coeff}_{n} \cdot \langle \mathrm{matter \ correlation \ function} \rangle$$

Senatore 1406

It is familiar in dielectric E&M

• Polarizability:

$$\vec{P}(\omega) = \chi(\omega)\vec{E}(\omega) \implies \vec{P}(t) = \int dt'\chi(t-t')\vec{E}(t')$$

-Here we work in time-Fourier space, and theory is practically linear.

- The EFT of Non-Relativistic binaries Goldberger and Rothstein 2004 is non-local in time
 - -Here we solve perturbatively the inspiralling regime, and feed it into the longdistance theory (again time-Fourier space).

- The EFT is non-local in time $\implies \langle \tau_{ij}(\vec{x},t) \rangle_{\text{long fixed}} \sim \int^t dt' \ K(t,t') \ \delta\rho(\vec{x}_{\text{fl}},t') + \dots$
- Perturbative Structure has a decoupled structure

$$\delta\rho(x,t') = D(t')\delta\rho(\vec{x})^{(1)} + D(t')^2\delta\rho(\vec{x})^{(2)} + \dots$$

with Carrasco, Foreman, Green 1310

• A few coefficients for each *irrelevant* counterterm:

$$\Rightarrow \quad \langle \tau_{ij}(\vec{x},t) \rangle_{\text{long fixed}} \sim \int^{t} dt' \ K(t,t') \ \left[D(t') \delta \rho(\vec{x})^{(1)} + D(t')^{2} \delta \rho(\vec{x})^{(2)} + \ldots \right] \simeq \\ \simeq c_{1}(t) \ \delta \rho(\vec{x})^{(1)} + c_{2}(t) \ \delta \rho(\vec{x})^{(2)} + \ldots$$

$$c_i(t) = \int dt' \ K(t,t') \ D(t')^i$$

• Difference: Time-Local QFT: $c_1(t) \left[\delta \rho(\vec{x})^{(1)} + \delta \rho(\vec{x})^{(2)} + \ldots\right]$ Non-Time-Local QFT: $c_1(t) \delta \rho(\vec{x})^{(1)} + c_2(t) \delta \rho(\vec{x})^{(2)} + \ldots$

• More terms, but not a disaster

Baryonic effects

• When stars explode, baryons behave differently than dark matter

credit: Millenium Simulation, Springel *et al.* (2005)

• They cannot be reliably simulated due to large range of scales

Baryons

- Idea for EFT for dark matter:
 - Dark Matter moves $1/k_{\rm NL} \sim 10 \,{\rm Mpc}$
 - \implies an effective fluid-like system with mean free path ~ $1/k_{\rm NL}$
- Baryons heat due to star formation, but move the same:
 - Universe with CDM+Baryons \implies EFTofLSS with 2 specie

Baryons

• EFT Equations:

Continuity:
$$\dot{\rho}_{\sigma} + 3H\rho_{\sigma} + a^{-1}\partial_{i}\pi_{\sigma}^{i} = 0$$
,
Momentum: $\dot{\pi}_{c}^{i} + 4H\pi_{c}^{i} + a^{-1}\partial_{j}\left(\frac{\pi_{c}^{i}\pi_{c}^{j}}{\rho_{c}}\right) + a^{-1}\rho_{c}\partial_{i}\Phi = +a^{-1}\gamma^{i} - a^{-1}\partial_{j}\tau_{c}^{ij}$,
 $\dot{\pi}_{b}^{i} + 4H\pi_{b}^{i} + a^{-1}\partial_{j}\left(\frac{\pi_{b}^{i}\pi_{b}^{j}}{\rho_{b}}\right) + a^{-1}\rho_{b}\partial_{i}\Phi = -a^{-1}\gamma^{i} - a^{-1}\partial_{j}\tau_{b}^{ij}$.

Baryons

• EFT Equations:

Continuity:
$$\dot{\rho}_{\sigma} + 3H\rho_{\sigma} + a^{-1}\partial_{i}\pi_{\sigma}^{i} = 0$$
,
Momentum: $\dot{\pi}_{c}^{i} + 4H\pi_{c}^{i} + a^{-1}\partial_{j}\left(\frac{\pi_{c}^{i}\pi_{c}^{j}}{\rho_{c}}\right) + a^{-1}\rho_{c}\partial_{i}\Phi = +a^{-1}\gamma^{i} + a^{-1}\partial_{j}\tau_{c}^{ij}$,
 $\dot{\pi}_{b}^{i} + 4H\pi_{b}^{i} + a^{-1}\partial_{j}\left(\frac{\pi_{b}^{i}\pi_{b}^{j}}{\rho_{b}}\right) + a^{-1}\rho_{b}\partial_{i}\Phi = -a^{-1}\gamma^{i} + a^{-1}\partial_{j}\tau_{b}^{ij}$.
dynamical friction effective force
• Counterterms: $\gamma^{i} \propto v_{rel}^{i}$
no derivative: marginal

operator

A marginal operator

• Dynamical friction term is indeed needed for renormalization of the theory, i.e. it is generated.

• Dynamical friction is a relevant operator: i.e. it cannot be treated perturbatively: it is an essential part of the linear *equations*:

$$a^{2}\delta_{I}^{(1)}{}''(a,\vec{k}) + \left(2 + \frac{a\mathcal{H}'(a)}{\mathcal{H}(a)}\right)a\delta_{I}^{(1)}{}'(a,\vec{k}) = \int^{a} da_{1}g(a,a_{1})a_{1}\delta_{I}^{(1)}{}'(a_{1},\vec{k}) \ .$$

-due to the time-translation breaking and actually even non-locality, very very very very very very very hard to handle consistently.

• we can make some guesses

• Luckily: it only affect the decaying mode of the isocurvature, which is very very very very very small by the time this effect kicks in.

Predictions for CMB Lensing

• Baryon corrections are detectable in next CMB S-4 experiments. But we can predict it:

Bispectrum at one loop

with D'Amico, Donath, Lewandowski, Zhang 2206

Bispectrum

• The tree level bispectrum had been already used for cosmological parameter analysis in

with Guido D'Amico, Jerome Gleyzes, Nickolas Kockron, Dida Markovic, Pierre Zhang, Florian Beutler, Hector Gill-Marin **1909**

Philcox, Ivanov 2112

- ~10% improvement on A_s
- Time to move to one-loop:
 - -Large effort:
 - data analysis with D'Amico, Donath, Lewandowski, Zhang 2206
 - theory model with D'Amico, Donath, Lewandowski, Zhang 2211
 - theory integration with Anastasiou, Braganca, Zheng 2212

Data Analysis ΛCDM

with D'Amico, Donath, Lewandowski, Zhang 2206

- Main result: ΛCDM
 - Improvements:
 - 30% on σ_8
 - 18% on *h*
 - 13% on Ω_m

- Compatible with Planck -no tensions
- Often Planck Comparable

Data Analysis Non-Gaussianities

with D'Amico, Lewandowski, Zhang 2201

with Cheung et al. 2008

Theory Model

• We add all the relevant biases (4th order) and counterterms (2nd order):

$$P_{11}^{r,h}[b_1] , P_{13}^{r,h}[b_1, b_3, b_8] , P_{22}^{r,h}[b_1, b_2, b_5] ,$$

$$B_{211}^{r,h}[b_1, b_2, b_5] , B_{321}^{r,h,(II)}[b_1, b_2, b_3, b_5, b_8] , B_{411}^{r,h}[b_1, \dots, b_{11}] ,$$

$$B_{222}^{r,h}[b_1, b_2, b_5] , B_{321}^{r,h,(I)}[b_1, b_2, b_3, b_5, b_6, b_8, b_{10}] ,$$

$$P_{13}^{r,h,ct}[b_1, c_{h,1}, c_{\pi,1}, c_{\pi v,1}, c_{\pi v,3}], P_{22}^{r,h,\epsilon}[c_1^{\text{St}}, c_2^{\text{St}}, c_3^{\text{St}}],$$

$$B_{321}^{r,h,(II),ct}[b_1, b_2, b_5, c_{h,1}, c_{\pi,1}, c_{\pi v,1}, c_{\pi v,3}], B_{321}^{r,h,\epsilon,(I)}[b_1, c_1^{\text{St}}, c_2^{\text{St}}, \{c_i^{\text{St}}\}_{i=4,...,13}],$$

$$B_{411}^{r,h,ct}[b_1, \{c_{h,i}\}_{i=1,...,5}, c_{\pi,1}, c_{\pi,5}, \{c_{\pi v,j}\}_{j=1,...,7}], B_{222}^{r,h,\epsilon}[c_1^{(222)}, c_2^{(222)}, c_5^{(222)}].$$

- IR-resummation:
 - For the power spectrum, we use the correct and controlled IR-resummation.
 - For the bispectrum, we use an approximate method Ivanov and Sibiryakov 2018

Derivation of theory model

with D'Amico, Donath, Lewandowski, Zhang 2211

Derivation of theory model with D'Amico, Donath, Lewandowski, Zhang 2211

- Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.
- Renormalization of velocity
 - In the EFTofLSS, the velocity is a composite operator needs to be renormalized:

$$v^i(x) = rac{\pi^i(x)}{
ho(x)}$$
 , so, it

 $[v^i]_R = v^i + \mathcal{O}_v^i ,$

• Under a diffeomorphisms:

 $v^i \to v^i + \chi^i \quad \Rightarrow \quad \mathcal{O}_v^i \text{ is a scalar}$

• In redshift space, we have local product of velocities, which need to be renormalized but have non-trivial transformations under diff.s:

$$[v^i v^j]_R \to [v^i v^j]_R + [v^i]_R \chi^j + [v^j]_R \chi^i + \chi^i \chi^j$$

• To achieve this, one can do: (so must include products $v^i \cdot \mathcal{O}_v^i$) $[v^i v^j]_R = [v^i]_R [v^j]_R + \mathcal{O}_{v^2}^{ij}$, where $\mathcal{O}_{v^2}^{ij}$ is a scalar

Derivation of theory model with D'Amico, Donath, Lewandowski, Zhang 2211

- Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.
- Spatially non-locally-contributing counterterm:
 - This is a normal effect, just strange-looking in the EFTofLSS context.
 - Normally, counterterms are local, but, contributing through non-local Green's functions, they contribute non-locally.

Derivation of theory model with D'Amico, Donath, Lewandowski, Zhang 2211

- Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.
- Spatially non-locally-contributing counterterm:
 - In the EFTofLSS, the Green's function is simple: $\overline{\partial^2}$
 - Counterterms typically come with $\partial^2 \mathcal{O}_{local} \implies \delta_{counter} \sim \frac{1}{\partial^2} \partial^2 \mathcal{O}_{local} \sim \mathcal{O}_{local}$ • result almost trivial
 - But at second order, and for velocity fields, contracted along the line of sight, derivatives do not simplify, so we get

$$\delta_{\text{counter}}(\vec{x}) \sim \hat{z}^{i} \hat{z}^{j} \partial_{i} \pi^{j}_{(2)}(\vec{x}) \sim \hat{z}^{i} \hat{z}^{j} \frac{\partial_{i} \partial_{j} \partial_{k} \partial_{m}}{\partial^{2}} \mathcal{O}_{\text{local}}$$
$$\sim \hat{z}^{i} \hat{z}^{j} \frac{\partial_{i} \partial_{j} \partial_{k} \partial_{m}}{\partial^{2}} \left(\frac{\partial_{k} \partial_{l}}{H^{2}} \Phi(\vec{x}) \frac{\partial_{l} \partial_{m}}{H^{2}} \Phi(\vec{x})\right)$$

- This is truly non-locally contributing, truly non-trivial.
- We check that all these terms are *needed and sufficient* for renormalization

Evaluational/Computational Challenge

with Anastasiou, Braganca, Zheng 2212

The best approach so far

Simonovic, Baldauf, Zaldarriaga, Carrasco, Kollmeier **2018**

- Nice trick for fast evaluation of the loops integrals
- The power spectrum is a numerically computed function
- Decompose linear power spectrum

$$P_{11}(k) = \sum_{n} c_n \, k^{\mu + i\alpha \, n}$$

• Loop can be evaluated analytically

$$P_{1-\text{loop}}(k) = \int_{\vec{q}} K(\vec{q}, \vec{k}) \ P_{11}(k-q) \ P_{11}(q) =$$
$$= \sum_{n_1, n_2} c_{n_1} c_{n_2} \left(\int_{\vec{q}} K(\vec{q}, \vec{k}) \ k^{\mu+i\alpha n_1} \ k^{\mu+i\alpha n_2} \right) = \sum_{n_1, n_2} c_{n_1} c_{n_2} M_{n_1, n_2}(k)$$

- -using quantum field theory techniques
- $M_{n_1n_2}$ is cosmology independent \Rightarrow so computed once

Computational Challenge

Philcox, Ivanov, Cabass, Simonovic, Zaldarriaga **2022**

• Two difficulties:

$$P_{1-\text{loop}}(k) = \int_{\vec{q}} K(\vec{q}, \vec{k}) \ P_{11}(k-q) \ P_{11}(q) =$$
$$= \sum_{n_1, n_2} c_{n_1} c_{n_2} \left(\int_{\vec{q}} K(\vec{q}, \vec{k}) \ k^{\mu+i\alpha n_1} \ k^{\mu+i\alpha n_2} \right) = \sum_{n_1, n_2} c_{n_1} c_{n_2} M_{n_1, n_2}(k)$$

- integrals are complicated due to fractional, complex exponents
- many functions needed, the matrix $M_{n_1n_2n_3}$ for bispectrum is about 50Gb, so, ~impossible to load on CPT for data analysis

• In order to ameliorate (solve) these issues, we use a different basis of functions.

Complex-Masses Propagators

with Anastasiou, Braganca, Zheng 2212

• Use as basis: $f(k^2, k_{\text{peak}}^2, k_{\text{UV}}^2, i, j) \equiv \frac{\left(k^2/k_0^2\right)^i}{\left(1 + \frac{(k^2 - k_{\text{peak}}^2)^2}{k_{\text{UV}}^4}\right)^j},$ • With just 16 functions: 10^{4} 5000 1000 P(k)500 P_{lin} 100 50 P_{fit} 0.04 0.02 $\Delta P/P$ 0.00-0.02-0.04 0.001 0.005 0.010 0.050 0.100 0.500 1 *k* [*h*/Mpc]

Complex-Masses Propagators ^{wit} 221

with Anastasiou, Braganca, Zheng 2212

• This basis is equivalent to massive propagators to integer powers

$$\frac{1}{\left(1 + \frac{(k^2 - k_{\text{peak}}^2)^2}{k_{\text{UV}}^4}\right)^j} = \frac{k_{\text{UV}}^4}{\left(k^2 - k_{\text{peak}}^2 - i \, k_{\text{UV}}^2\right)^j \left(k^2 - k_{\text{peak}}^2 + i \, k_{\text{UV}}^2\right)^j},$$

$$\frac{k_{\text{UV}}^2}{\left(k^2 - k_{\text{peak}}^2 - i \, k_{\text{UV}}^2\right) \left(k^2 - k_{\text{peak}}^2 + i \, k_{\text{UV}}^2\right)} = -\frac{i/2}{k^2 - k_{\text{peak}}^2 - i \, k_{\text{UV}}^2} + \frac{i/2}{k^2 - k_{\text{peak}}^2 + i \, k_{\text{UV}}^2}$$

• So, each basis function:

$$f(k^2, k_{\text{peak}}^2, k_{\text{UV}}^2, i, j) = \sum_{n=1}^{j} k_{\text{UV}}^{2(n-i)} k^{2i} \left(\frac{\kappa_n}{(k^2 + M)^n} + \frac{\kappa_n^*}{(k^2 + M^*)^n} \right)$$

Complex-Masses Propagators ^{with} 221

with Anastasiou, Braganca, Zheng **2212**

• This basis is equivalent to massive propagators to integer powers

$$\frac{1}{\left(1+\frac{(k^2-k_{\rm peak}^2)^2}{k_{\rm UV}^4}\right)^j} = \frac{k_{\rm UV}^{4j}}{\left(k^2-k_{\rm peak}^2-i\,k_{\rm UV}^2\right)^j\left(k^2-k_{\rm peak}^2+i\,k_{\rm UV}^2\right)^j},$$

$$\frac{k_{\rm UV}^2}{\left(k^2-k_{\rm peak}^2-i\,k_{\rm UV}^2\right)\left(k^2-k_{\rm peak}^2+i\,k_{\rm UV}^2\right)} = \frac{i/2}{k^2-k_{\rm peak}^2-i\,k_{\rm UV}^2} + \frac{i/2}{k^2-k_{\rm peak}^2+i\,k_{\rm UV}^2}$$

Complex-Mass propagator

• So, each basis function:

$$f(k^2, k_{\text{peak}}^2, k_{\text{UV}}^2, i, j) = \sum_{n=1}^{j} k_{\text{UV}}^{2(n-i)} k^{2i} \left(\frac{\kappa_n}{(k^2 + M)^n} + \frac{\kappa_n^*}{(k^2 + M^*)^n} \right)$$

Complex-Masses Propagators

with Anastasiou, Braganca, Zheng 2212

• We end up with integral like this:

$$L(n_1, d_1, n_2, d_2, n_3, d_3) = \int_q \frac{(\mathbf{k}_1 - \mathbf{q})^{2n_1} \mathbf{q}^{2n_2} (\mathbf{k}_2 + \mathbf{q})^{2n_3}}{((\mathbf{k}_1 - \mathbf{q})^2 + M_1)^{d_1} (\mathbf{q}^2 + M_2)^{d_2} ((\mathbf{k}_2 + \mathbf{q})^2 + M_3)^{d_3}}$$

- with integer exponents.
- First we manipulate the numerator to reduce to:

$$T(d_1, d_2, d_3) = \int_q \frac{1}{((\boldsymbol{k}_1 - \boldsymbol{q})^2 + M_1)^{d_1} (\boldsymbol{q}^2 + M_2)^{d_2} ((\boldsymbol{k}_2 + \boldsymbol{q})^2 + M_3)^{d_3}},$$

• Then, by integration by parts, we find (i.e. QCD teaches us how to) recursion relations

$$\int_{q} \frac{\partial}{\partial q_{\mu}} \cdot (q_{\mu}t(d_1, d_2, d_3)) = 0$$

 $\Rightarrow \quad (3 - d_{1223})\hat{0} + d_1k_{1s}\widehat{1^+} + d_3(k_{2s})\widehat{3^+} + 2M_2d_2\widehat{2^+} - d_1\widehat{1^+}\widehat{2^-} - d_3\widehat{2^-}\widehat{3^+} = 0$

• relating same integrals with raised or lowered the exponents (easy terminate due to integer exponents).

Complex-Masses Propagators

with Anastasiou, Braganca, Zheng 2212

• We end up to three master integrals:

$$\operatorname{Tad}(M_j, n, d) = \int \frac{d^3 \boldsymbol{q}}{\pi^{3/2}} \frac{(\boldsymbol{p}_i^2)^n}{(\boldsymbol{p}_i^2 + M_j)^d}$$

• Bubble:

• Tadpole:

$$B_{\text{master}}(k^2, M_1, M_2) = \int \frac{d^3 \boldsymbol{q}}{\pi^{3/2}} \frac{1}{(q^2 + M_1)(|\boldsymbol{k} - \boldsymbol{q}|^2 + M_2)}$$

• Triangle:

$$T_{\text{master}}(k_1^2, k_2^2, k_3^2, M_1, M_2, M_3) = \int \frac{d^3 \boldsymbol{q}}{\pi^{3/2}} \frac{1}{(q^2 + M_1)(|\boldsymbol{k}_1 - \boldsymbol{q}|^2 + M_2)(|\boldsymbol{k}_2 + \boldsymbol{q}|^2 + M_3)},$$

Complex-Masses Propagators ^w₂₂

with Anastasiou, Braganca, Zheng **2212**

- The master integrals are evaluated with Feynman parameters, but with great care of branch cut crossing, which happens because of complex masses.
- Bubble Master:

$$B_{\text{master}}(k^2, M_1, M_2) = \frac{\sqrt{\pi}}{k} i [\log \left(A(1, m_1, m_2)\right) - \log \left(A(0, m_1, m_2)\right) \\ - 2\pi i H (\text{Im } A(1, m_1, m_2)) H (-\text{Im } A(0, m_1, m_2))], \\ A(0, m_1, m_2) = 2\sqrt{m_2} + i(m_1 - m_2 + 1), \\ A(1, m_1, m_2) = 2\sqrt{m_1} + i(m_1 - m_2 - 1), \\ m_1 = M_1/k^2 \text{ and } m_2 = M_2/k^2$$

P Triangle Master:

$$F_{\text{int}}(R_2, z_+, z_-, x_0) = s(z_+, -z_-) \frac{\sqrt{\pi}}{\sqrt{|R_2|}} \frac{\arctan\left(\frac{\sqrt{z_+ - x}\sqrt{x_0 - z_-}}{\sqrt{x_0 - z_+}\sqrt{x_0 - z_-}}\right)}{\sqrt{x_0 - z_+}\sqrt{x_0 - z_-}} \Big|_{x=0}^{x=1}$$

• Very simple expressions with simple rule for branch cut crossing.

Result of Evaluation

with Anastasiou, Braganca, Zheng 2212

- All automatically coded up.
- For BOSS analysis, evaluation of matrix is 2.5CPU hours and 800 Mb storage, very fast matrix contractions.
- Accuracy with 16 functions:

Back to data-analysis: Pipeline Validation

with D'Amico, Donath, Lewandowski, Zhang 2206

Measuring and fixing phase space

- We consider synthetic data, i.e. data made out of the model, and analyze them:
 - Green: biased.
- Why?
 - -Priors centered on zero?
 - Grey: biased
 - -Bug in pipeline?
 - Test by reducing covar.
 - Red: non-biased
- It must be phase space projection
- But the grey line offers
 - -an honest measurement of it.

Measuring and fixing phase space

• We add:

$$\ln \mathcal{P}_{\rm pr}^{\rm ph. \, sp. \, 4sky} = -48 \left(\frac{b_1}{2}\right) + 32 \left(\frac{\Omega_m}{0.31}\right) + 48 \left(\frac{h}{0.68}\right) \,,$$

$\sigma_{ m proj}/\sigma_{ m stat}$	Ω_{m}	h	σ_8	ω_{cdm}
1 sky, $\sim 100 V_{\rm 1 sky}$	-0.1	-0.14	-0.21	-0.2
1 sky, V_{1sky} , adjust.	0.13	0.06	0.04	0.15
4 skies, $V_{4 skies}$, adjust.	0.1	0.	-0.05	0.07

• no more proj. effect.

Scale cut from NNLO

• We can estimate the k_{max} without the use of simulations, by adding NNLO terms, and seeing when they make a difference on the posteriors.

$$P_{\rm NNLO}(k,\mu) = \frac{1}{4} c_{r,4} b_1^2 \mu^4 \frac{k^4}{k_{\rm NL,R}^4} P_{11}(k) + \frac{1}{4} c_{r,6} b_1 \mu^6 \frac{k^4}{k_{\rm NL,R}^4} P_{11}(k) ,$$

$$B_{\rm NNLO}(k_1,k_2,k_3,\mu,\phi) = 2 c_{\rm NNLO,1} K_2^{r,h}(\vec{k}_1,\vec{k}_2;\hat{z}) K_1^{r,h}(\vec{k}_2;\hat{z}) f \mu_1^2 \frac{k_1^4}{k_{\rm NL,R}^4} P_{11}(k_1) P_{11}(k_2)$$

$$+ c_{\rm NNLO,2} K_1^{r,h}(\vec{k}_1;\hat{z}) K_1^{r,h}(\vec{k}_2;\hat{z}) P_{11}(k_1) P_{11}(k_2) f \mu_3 k_3 \frac{(k_1^2 + k_2^2)}{4k_1^2 k_2^2 k_{\rm NL,R}^4} \Big[-2\vec{k}_1 \cdot \vec{k}_2 (k_1^3 \mu_1 + k_2^3 \mu_2)$$

$$+ 2f \mu_1 \mu_2 \mu_3 k_1 k_2 k_3 (k_1^2 + k_2^2) \Big] + \text{perm.} ,$$

• For our $k_{\rm max}$, we find the following shifts, which are ok:

$\Delta_{\rm shift}/\sigma_{\rm stat}$	Ω_m	h	σ_8	ω_{cdm}	$\ln(10^{10}A_s)$	S_8
$P_{\ell} + B_0$: base - w/ NNLO	-0.03	-0.09	-0.03	-0.1	0.05	-0.04

Scale-cut from simulations

Scale-cut from simulations

- Patchy:
 - Volume ~2000 BOSS
 - safely within $\sigma_{\rm data}/3$
- After phase-space correction

BOSS data

Data Analysis ΛCDM

with D'Amico, Donath, Lewandowski, Zhang 2206

- Main result: ΛCDM
 - Improvements:
 - 30% on σ_8
 - 18% on h
 - 13% on Ω_m

- Compatible with Planck -no tensions
- Remarkable consistency –of observables

Data Analysis Non-Gaussianities

with D'Amico, Lewandowski, Zhang 2201

with Cheung et al. 2008

Direct Measurement of formation time of galaxies

with Donath and Lewandowski 2307

$$\begin{aligned} & \operatorname{Galaxies in the EFTofLSS} \quad \stackrel{\text{Senatore 1406}}{\operatorname{Mirbabayi et al. 1412}} \\ & n_{\operatorname{gal}}(x) = f_{\operatorname{very complicated}} \left(\{H, \Omega_m, \dots, m_e, g_{ew}, \dots, \rho(x)\}_{\operatorname{past light cone}} \right) \\ & \text{At long wavelengths} \quad & \bigvee \quad \operatorname{Taylor Expansion} \\ & \left(\frac{\delta n}{n} \right)_{\operatorname{gal},\ell}(x) \sim \int^t dt' \; \left[c(t,t') \; \left(\frac{\delta \rho}{\rho} \right)(\vec{x}_{\mathrm{fl}},t') + \dots \right] \end{aligned}$$

- all terms allowed by symmetries
- all physical effects included
 - -e.g. assembly bias

•
$$\left\langle \left(\frac{\delta n}{n}\right)_{\mathrm{gal},\ell}(x)\left(\frac{\delta n}{n}\right)_{\mathrm{gal},\ell}(y)\right\rangle = \\ = \sum_{n} \mathrm{Coeff}_{n} \cdot \langle \mathrm{matter \ correlation \ function} \rangle_{n}$$

• This means that one *does not* get the same terms as in the local-in-time expansion

- If we could measure one of these terms, we could *measure* that Galaxies take an Hubble time to form. We have never measured this: we take pictures of different galaxies at different stages of their evolution. But we have never *seen* a galaxy form in an Hubble time.
 - -This would be the first direct evidence that the universe lasted an Hubble time.
- So, detecting a non-local-in-time bias would allow us to measure that, and from the size, the formation time. Unfortunately, so far, not yet.

- Mathematics again:
 - non-local in time

time:

$$\delta_g^{(n)}(\vec{x},t) = \sum_{\mathcal{O}_m} \int^t dt' H(t') c_{\mathcal{O}_m}(t,t') \\ \times [\mathcal{O}_m(\vec{x}_{\rm fl}(\vec{x},t,t'),t')]^{(n)},$$

$$\mathcal{O}_{m=3} \supset \delta^2 \theta, \delta^3, \dots$$

• more non local in time: $[\mathcal{O}_m(\vec{x}_{\mathrm{fl}}(\vec{x},t,t'),t')]^{(n)} = \sum_{\alpha=1}^{n-m+1} \left(\frac{D(t')}{D(t)}\right)^{\alpha+m-1} \mathbb{C}_{\mathcal{O}_m,\alpha}^{(n)}(\vec{x},t)$

$$\Rightarrow \qquad \delta_g^{(n)}(\vec{x},t) = \sum_{\mathcal{O}_m} \sum_{\alpha=1}^{n-m+1} c_{\mathcal{O}_m,\alpha}(t) \, \mathbb{C}_{\mathcal{O}_m,\alpha}^{(n)}(\vec{x},t)$$

$$\delta_{g,\text{loc}}^{(n)}(\vec{x},t) = \sum_{\mathcal{O}_m} c_{\mathcal{O}_m}(t) \mathcal{O}_m^{(n)}(\vec{x},t) , \qquad \delta_g^{(n)}(\vec{x},t) = \sum_{\mathcal{O}_m} \sum_{\alpha=1}^{n-m+1} c_{\mathcal{O}_m,\alpha}(t) \mathbb{C}_{\mathcal{O}_m,\alpha}^{(n)}(\vec{x},t)$$

- it turns out that up to 4th order, the two basis of operators were identical.
- but at 5th order they are not!
 - out of 29 independent operators, 3 cannot be written as local in time ones.
- \Rightarrow By looking at, eg,

$$\langle \delta_{g_1}^{(5)}(\vec{x}_1) \delta_{g_2}^{(1)}(\vec{x}_2) \delta_{g_3}^{(1)}(\vec{x}_3) \delta_{g_4}^{(1)}(\vec{x}_4) \delta_{g_5}^{(1)}(\vec{x}_5) \delta_{g_6}^{(1)}(\vec{x}_6) \rangle$$

• we can detect these biases, and, from their size, determine:

-the order of magnitude of the formation time of galaxies

-direct evidence that the universe lasted 13 Billion years

Peeking into the next Decade

with Donath, Bracanga and Zheng 2307

Next Decade

- After validating our technique against the MCMC's on BOSS data, we Fisher forecast for DESI and Megamapper
- Prediction of one-loop Power Spectrum and Bispectrum
- Here, and in the NG analysis, introduce a `*perturbativity prior*': impose expected size and scaling of loop

• Also a `galaxy formation prior', 0.3 in each EFT-parameter

0.66 0.67 0.68 1.0 1.2 1.4 $\log(b_1)$ C_2

2 0 2 C₄

Results: Non-Gaussianities c_2

400

0.66

0.67

1.0

1.1

1.2

 $^{-1}$

0

C4

1

BOSS: $\sigma(\cdot)$	$f_{ m NL}^{ m loc.}$	$f_{ m NL}^{ m eq.}$	$f_{ m NL}^{ m orth.}$	
$P + B_{\mathrm{Tree}}$	37	357	142	
P+B	23	253	67	
P+B+p.p.	17	228	62	
P+B+p.p.+g.p.	15	163	49	

0

-400

DESI: $\sigma(\cdot)$	$f_{ m NL}^{ m loc.}$	$f_{ m NL}^{ m eq.}$	$f_{ m NL}^{ m orth.}$
$P + B_{\text{Tree}}$	3.61	142	71.5
P+B	3.46	114	30.2
P+B+p.p.	3.26	91.5	27.0
P+B+p.p.+g.p.	3.19	77.0	21.8

MMo: $\sigma(\cdot)$	$f_{ m NL}^{ m loc.}$	$f_{ m NL}^{ m eq.}$	$f_{ m NL}^{ m orth.}$
$P + B_{\text{Tree}}$	0.29	23.4	8.7
P+B	0.27	17.7	4.6
P + B + p.p.	0.26	16.0	4.2
P+B+p.p.+g.p.	0.26	12.6	3.4

• Just using perturbativity prior, potentially a factor of 20, 3, 6 over Planck!!

Results: Curvature and Neutrinos

DESI: $\sigma(\cdot)$	h	$\ln(10^{10}A_s)$	Ω_m	n_s	Ω_k
P+B	0.004	0.035	0.002	0.011	0.013
P + B + p.p.	0.004	0.032	0.002	0.008	0.012
P+B+p.p.+g.p.	0.004	0.025	0.002	0.007	0.009

P+B0.0020.00520.00030.0020.0015 $P+B+p.p.$ 0.0020.00460.00030.0020.0012 $P+B+p.p.+g.p.$ 0.0020.00440.00030.0010.0011	MMo: $\sigma(\cdot)$	h	$\ln(10^{10}A_s)$	Ω_m	n_s	Ω_k
P+B+p.p.0.0020.00460.00030.0020.0012 $P+B+p.p.+g.p.$ 0.0020.00440.00030.0010.0011	P+B	0.002	0.0052	0.0003	0.002	0.0015
P+B+p.p.+g.p. 0.002 0.0044 0.0003 0.001 0.0011	P + B + p.p.	0.002	0.0046	0.0003	0.002	0.0012
	P+B+p.p.+g.p.	0.002	0.0044	0.0003	0.001	0.0011

- Just using perturbativity prior, potentially factor of 5 over Planck!
 - Important for the landscape of string theory.
- Neutrinos: guaranteed evidence/detection:

$$2\sigma$$
 DESI, 14σ MegaMapper

Ω

$\sigma(\cdot)$	h	$\ln(10^{10}A_s)$	Ω_m	n_s	$f_{\rm NL}^{\rm loc.}$	$f_{\rm NL}^{\rm eq.}$	$f_{\rm NL}^{\rm orth.}$
P+B	0.0021	0.0047	0.00034	0.0017	0.27	18	4.6
P+B+g.p.:	0.0020	0.0045	0.00033	0.016	0.26	13	3.6
P+B: bias fixed	0.0016	0.0034	0.00021	0.0010	0.17	3.6	1.7
$P+B:n_b\to\infty$	0.00019	0.00045	0.000029	0.00017	0.11	5.4	1.5

MegaMapper

Summary

- After the initial, successful, application to BOSS data:
 - -measurement of cosmological parameters
 - -new method to measure Hubble
 - -perhaps fixing tensions
- the EFTofLSS is starting to look ahead to
 - -higher-order and higher-n point functions
 - -enlightening what next surveys could do, and how to design them
 - an eye to BSM: primordial non-Gaussianities, neutrinos, curvature, etc..
 - -learning about some astrophysics, qualitative facts on the universe

• Nice recursion relations for these operators:

 $\mathcal{O}_m^{(m+2)} = \mathbb{C}_{\mathcal{O}_m,3}^{(m+2)} +$ $\left[\mathcal{O}_{m}(\vec{x}_{\mathrm{fl}}(\vec{x},t,t'),t')\right]^{(n)} = \sum_{1}^{n-m+1} \left(\frac{D(t')}{D(t)}\right)^{\alpha+m-1} \mathbb{C}_{\mathcal{O}_{m},\alpha}^{(n)}(\vec{x},t)$ $\implies \qquad \mathcal{O}_m^{(n)}(\vec{x},t) = \sum_{\mathcal{O}_m,\alpha}^{n} \mathbb{C}_{\mathcal{O}_m,\alpha}^{(n)}(\vec{x},t) ,$

equal-time completeness relation

 $\mathcal{O}_m^{(m+1)} = \mathbb{C}_{\mathcal{O}}^{(m+1)}$

 $\stackrel{fluid recursion}{\stackrel{\bullet}{\Rightarrow}} \mathbb{C}^{(n)}_{\mathcal{O}_m,\alpha}(\vec{x},t) = \sum_{q=m}^{n-1} \frac{1}{n-\alpha-m+1} \partial_i \mathbb{C}^{(q)}_{\mathcal{O}_m,\alpha}(\vec{x},t) \frac{\partial_i}{\partial^2} \theta(\vec{x},t)^{(n-q)},$ $\mathcal{O}_{m}^{(m)} = \mathbb{C}_{\mathcal{O}_{m},1}^{(m)}$ $\mathcal{O}_{m}^{(m+1)} = \mathbb{C}_{\mathcal{O}_{m},2}^{(m+1)} + \mathbb{C}_{\mathcal{O}_{m},1}^{(m+1)}$ • Easy higher order: $\mathcal{O}_{m}^{(m+2)} = \mathbb{C}_{\mathcal{O}_{m},3}^{(m+2)} - \mathbb{C}_{\mathcal{O}_{m},2}^{(m+2)} - \mathbb{C}_{\mathcal{O}_{m},1}^{(m+2)}$