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–From short to long

–The resulting equations are simpler

–Description arbitrarily accurate

–construction can be made without knowing the nature of the particles.

–short distance physics appears as a non trivial stress tensor for the long-distance fluid

What is a fluid?
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–From short to long

–The resulting equations are simpler

–Description arbitrarily accurate

–construction can be made without knowing the nature of the particles.

–short distance physics appears as a non trivial stress tensor for the long-distance fluid

Do the same for matter in our Universe

with Baumann, Nicolis and Zaldarriaga JCAP 2012 
with Carrasco and Hertzberg JHEP 2012
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• For long distances: expectation value over short modes (integrate them out)

• Equations with only long-modes

• each term contributes as factor of 

Dealing with the Effective Stress Tensor

every term allowed by symmetries
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• In the EFT we can solve iteratively                          , where  

• Two scales:

Perturbation Theory within the EFT
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• Solve iteratively some non-linear eq.

• Second order:

• Compute observable:

• We obtain Feynman diagrams

• Sensitive to short distance

• Need to add counterterms from                      to correct

• Loops and renormalization applied to galaxies
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…. lots of work ….



Galaxy Statistics
Senatore 1406
with Lewandowsky et al 1512
with Perko et al. 1610



• On galaxies, a long history before us, summarized by                           .

–                     provided first complete parametrization.

• Nature of Galaxies is very complicated

Galaxies in the EFTofLSS Senatore 1406

McDonald, Roy 2010
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• all terms allowed by symmetries

• all physical effects included

–e.g. assembly bias

• .

Galaxies in the EFTofLSS
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• Polarizability:

–Here we work in time-Fourier space, and theory is practically linear.

• The EFT of Non-Relativistic binaries                                             is non-local in 
time

–Here we solve perturbatively the inspiralling regime, and feed it into the long-
distance theory (again time-Fourier space).

It is familiar in dielectric E&M
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• The EFT is non-local in time

• Perturbative Structure has a decoupled structure

•   A few coefficients for each irrelevant counterterm:

• where

• Difference:

• More terms, but not a disaster
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• When stars explode, baryons behave differently than dark matter 

• They cannot be reliably simulated due to large range of scales

Baryonic effects

credit: Millenium Simulation, 
Springel et al. (2005)



• Idea for EFT for dark matter:

– Dark Matter moves                                 

•             an effective fluid-like system with mean free path ~

•   Baryons heat due to star formation, but move the same: 

– Universe with CDM+Baryons            EFTofLSS with 2 specie

Baryons
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Figure 6: We fit to the simulations that include various baryonic e↵ects by comparing the quantity R =
PA

with baryon/PA
DM only as calculated in the EFT to the same quantity calculated from the data. Each simulation

has a di↵erent best-fit value of �c̄2
A. Here, we obtain a range of �c̄2

A: �c̄2
A ' 0.5 (hMpc�1)�2 is the blue curve,

which is the AGN data, while �c̄2
A ' 0.07 (hMpc�1)�2 is the yellow curve, which is the NOSN NOZCOOL

simulation. The rest of the curves are DMBLIMFV 1618 (dark red), NOSN (dark green), NOZCOOL
(cyan), REF (dark yellow), WDENS (purple), WML1V 848 (red), WML4 (green). The green region is the
size of the theoretical error, which we have calculated by estimating the size of the two loop corrections that
we have not included, using Eqs. (5.10) and (5.11). The dashed line is the same theoretical error after adding
in quadrature a 1% error for unknown systematics. This has only been plotted for the AGN simulation to
avoid clutter.
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• EFT Equations:

Baryons



• EFT Equations:

• Counterterms:

Baryons

effective forcedynamical friction
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• Dynamical friction term is indeed needed for renormalization of the theory, i.e. it is 
generated.

• Dynamical friction is a relevant operator: i.e. it cannot be treated perturbatively: it is an 
essential part of the linear equations:

–due to the time-translation breaking and actually even non-locality, very very very 
very very very hard to handle consistently.

• we can make some guesses

• Luckily: it only affect the decaying mode of the isocurvature, which is very very very 
very very small by the time this effect kicks in.

A marginal operator



• Baryon corrections are detectable in next CMB S-4 experiments. But we can predict it:

Predictions for CMB Lensing



Bispectrum at one loop
with D’Amico, Donath, Lewandowski, Zhang 2206



• The tree level bispectrum had been already used for cosmological parameter analysis in

• ~10% improvement on 

• Time to move to one-loop:

–Large effort:

• data analysis

• theory model

• theory integration

Bispectrum

with Guido D’Amico, Jerome Gleyzes, 
Nickolas Kockron, Dida Markovic, Pierre Zhang,  Florian Beutler, Hector Gill-Marin 1909

Philcox, Ivanov 2112
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• Main result:

• Improvements:

• 30% on 

• 18% on

• 13% on 

• Compatible with Planck

–no tensions

• Often Planck Comparable 

Data Analysis
with D’Amico, Donath, Lewandowski, Zhang 2206
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• .

Data Analysis Non-Gaussianities
with D’Amico, Lewandowski, Zhang 2201
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• We add all the relevant biases (4th order) and counterterms (2nd order):

• IR-resummation:

• For the power spectrum, we use the correct and controlled IR-resummation.

• For the bispectrum, we use an approximate method
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• Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.

• Renormalization of velocity

• In the EFTofLSS, the velocity is a composite operator                               , so, it 
needs to be renormalized:

• Under a diffeomorphisms:

• In redshift space, we have local product of velocities, which need to be renormalized 
but have non-trivial transformations under diff.s:

• To achieve this, one can do: (so must include products                  )

[vi]R ! [vi]R + �
i
,

[vivj ]R ! [vivj ]R + [vi]R�
j + [vj ]R�

i + �
i
�
j
,

[vivjvk]R ! [vivjvk]R + ([vivj ]R�
k + 2 perms.) + ([vi]R�

j
�
k + 2 perms.) + �

i
�
j
�
k
,

[vivjvkvl]R ! [vivjvkvl]R + ([vivjvk]R�
l + 3 perms.) + ([vivj ]R�

k
�
l + 5 perms.)

+ ([vi]R�
j
�
k
�
l + 3 perms.) + �

i
�
j
�
k
�
l
.

(4.14)

One way to write renormalized quantities satisfying the above in terms of the non-renormalized

fields is

[vi]R = v
i +Oi

v ,

[vivj ]R = [vi]R[v
j ]R +Oij

v2
,

[vivjvk]R = ([vivj ]R[v
k]R + 2 perms.)� 2[vi]R[v

j ]R[v
k]R +Oijk

v3
,

[vivjvkvl]R = ([vivjvk]R[v
l]R + 3 perms.)� ([vivj ]R[v

k
v
l]R + 2 perms) +Oijkl

v4
,

(4.15)

where all of the O terms are Galilean scalars. The last expression is not unique in the sense

that other operators could have been used that are not independent from the ones shown, like

[vi]R[vj ]R[vk]R[vl]R and [vivj ]R[vk]R[vl]R, for example. Definitions using di↵erent bases can di↵er

in their scalar parts O. Note that v
i is renormalized here because it is the composite operator

⇡
i
/⇢ [27].

We can similarly renormalize products involving �. Demanding the correct Galilean transfor-

mations means we want

[�vi]R ! [�vi]R + [�]R�
i
, (4.16)
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j
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i
�
j
�
k
,

[�vivjvkvl]R ! [�vivjvkvl]R + ([�vivjvk]R�
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j
�
k
�
l + 3 perms.) + [�]R�

i
�
j
�
k
�
l
.

One way to write renormalized quantities satisfying the above in terms of the non-renormalized
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where [·]R denotes a renormalized quantity. In order to have the correct transformation properties

under the Galilean transformation v
i ! v

i + �
i, we wish to have

v
i(x) =

⇡
i(x)

⇢(x)
(4.12)

[vi]R ! [vi]R + �
i
,

[vivj ]R ! [vivj ]R + [vi]R�
j + [vj ]R�

i + �
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�
j
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k + 2 perms.) + ([vi]R�

j
�
k + 2 perms.) + �

i
�
j
�
k
,

[vivjvkvl]R ! [vivjvkvl]R + ([vivjvk]R�
l + 3 perms.) + ([vivj ]R�

k
�
l + 5 perms.)

+ ([vi]R�
j
�
k
�
l + 3 perms.) + �

i
�
j
�
k
�
l
.

(4.13)

One way to write renormalized quantities satisfying the above in terms of the non-renormalized

fields is

[vi]R = v
i +Oi

v ,

[vivj ]R = [vi]R[v
j ]R +Oij

v2
,

[vivjvk]R = ([vivj ]R[v
k]R + 2 perms.)� 2[vi]R[v

j ]R[v
k]R +Oijk

v3
,

[vivjvkvl]R = ([vivjvk]R[v
l]R + 3 perms.)� ([vivj ]R[v

k
v
l]R + 2 perms) +Oijkl

v4
,

(4.14)

where all of the O terms are Galilean scalars. The last expression is not unique in the sense

that other operators could have been used that are not independent from the ones shown, like

[vi]R[vj ]R[vk]R[vl]R and [vivj ]R[vk]R[vl]R, for example. Definitions using di↵erent bases can di↵er

in their scalar parts O. Note that v
i is renormalized here because it is the composite operator

⇡
i
/⇢ [27].

We can similarly renormalize products involving �. Demanding the correct Galilean transfor-

mations means we want

[�vi]R ! [�vi]R + [�]R�
i
, (4.15)

[�vivj ]R ! [�vivj ]R + [�vi]R�
j + [�vj ]R�

i + [�]R�
i
�
j
,

[�vivjvk]R ! [�vivjvk]R + ([�vivj ]R�
k + 2 perms.) + ([�vi]R�

j
�
k + 2 perms.) + [�]R�

i
�
j
�
k
,

[�vivjvkvl]R ! [�vivjvkvl]R + ([�vivjvk]R�
l + 3 perms.) + ([�vivj ]R�

k
�
l + 5 perms.)

+ ([�vi]R�
j
�
k
�
l + 3 perms.) + [�]R�

i
�
j
�
k
�
l
.

One way to write renormalized quantities satisfying the above in terms of the non-renormalized

22

where [·]R denotes a renormalized quantity. In order to have the correct transformation properties

under the Galilean transformation v
i ! v

i + �
i, we wish to have

v
i(x) =

⇡
i(x)

⇢(x)
(4.12)

[vi]R ! [vi]R + �
i
,

[vivj ]R ! [vivj ]R + [vi]R�
j + [vj ]R�

i + �
i
�
j
,

[vivjvk]R ! [vivjvk]R + ([vivj ]R�
k + 2 perms.) + ([vi]R�

j
�
k + 2 perms.) + �

i
�
j
�
k
,

[vivjvkvl]R ! [vivjvkvl]R + ([vivjvk]R�
l + 3 perms.) + ([vivj ]R�

k
�
l + 5 perms.)

+ ([vi]R�
j
�
k
�
l + 3 perms.) + �

i
�
j
�
k
�
l
.

(4.13)

One way to write renormalized quantities satisfying the above in terms of the non-renormalized

fields is

[vi]R = v
i +Oi

v ,

[vivj ]R = [vi]R[v
j ]R +Oij

v2
,

[vivjvk]R = ([vivj ]R[v
k]R + 2 perms.)� 2[vi]R[v

j ]R[v
k]R +Oijk

v3
,

[vivjvkvl]R = ([vivjvk]R[v
l]R + 3 perms.)� ([vivj ]R[v

k
v
l]R + 2 perms) +Oijkl

v4
,

(4.14)

where all of the O terms are Galilean scalars. The last expression is not unique in the sense

that other operators could have been used that are not independent from the ones shown, like

[vi]R[vj ]R[vk]R[vl]R and [vivj ]R[vk]R[vl]R, for example. Definitions using di↵erent bases can di↵er

in their scalar parts O. Note that v
i is renormalized here because it is the composite operator

⇡
i
/⇢ [27].

We can similarly renormalize products involving �. Demanding the correct Galilean transfor-

mations means we want

[�vi]R ! [�vi]R + [�]R�
i
, (4.15)

[�vivj ]R ! [�vivj ]R + [�vi]R�
j + [�vj ]R�

i + [�]R�
i
�
j
,

[�vivjvk]R ! [�vivjvk]R + ([�vivj ]R�
k + 2 perms.) + ([�vi]R�

j
�
k + 2 perms.) + [�]R�

i
�
j
�
k
,

[�vivjvkvl]R ! [�vivjvkvl]R + ([�vivjvk]R�
l + 3 perms.) + ([�vivj ]R�

k
�
l + 5 perms.)

+ ([�vi]R�
j
�
k
�
l + 3 perms.) + [�]R�

i
�
j
�
k
�
l
.

One way to write renormalized quantities satisfying the above in terms of the non-renormalized

22

and the one-loop contributions are

B
r

222 = 8

Z

~q

P11(q)P11(|~k2 � ~q|)P11(|~k1 + ~q|)

⇥ F
r

2 (�~q,~k1 + ~q; ẑ)F r

2 (~k1 + ~q,~k2 � ~q; ẑ)F r

2 (~k2 � ~q, ~q; ẑ) ,

B
r,(I)
321 = 6P11(k1)F

r

1 (~k1; ẑ)

Z

~q

P11(q)P11(|~k2 � ~q|)

⇥ F
r

3 (�~q,�~k2 + ~q,�~k1; ẑ)F r

2 (~q,~k2 � ~q; ẑ) + 5 perms. ,

B
r,(II)
321 = 6P11(k1)P11(k2)F

r

1 (~k1; ẑ)F
r

2 (~k1,~k2; ẑ)

Z

~q

P11(q)F
r

3 (~k1, ~q,�~q; ẑ) + 5 perms. ,

B
r

411 = 12P11(k1)P11(k2)F
r

1 (~k1; ẑ)F
r

1 (~k2; ẑ)

Z

~q

P11(q)F
r

4 (~q,�~q,�~k1,�~k2; ẑ) + 2 perms. .

(4.11)

As a final point, we note that we have explicitly displayed and factored out the major source of

time dependence, which is through the factors of D(a)n in Eq. (4.4), in the above equations. The

kernels F r
n in Eq. (4.4) are in fact time dependent as well, coming from factors of f(a) that enter

Eq. (4.3) through the factors of ~v. While we fully take into account this time dependence (which

in any case is relatively mild), we do not explicitly write the time argument in the F
r
n kernels, to

remove clutter; all kernels and observables with the redshift space marking ‘r’ are understood to

contain this time dependence through f(a). For details on how to evaluate the above integrals,

see App. B.

4.2 Renormalization of dark matter in redshift space

Ultimately, we want a renormalized expression for the redshift space overdensity �r in Eq. (4.3).

The first two terms, containing only � and ⇡
j , have already been renormalized in Sec. 3, and

this is entirely determined by the local stress-tensor counterterms in ⌧
ij . The non-linear terms in

Eq. (4.3), however, are contact operators (i.e. UV sensitive) and must be separately renormalized

[15], which essentially amounts to adding new counterterms directly to Eq. (4.3). Here we present

a systematic renormalization similar to [24] and address some subtleties that appear since we are

going to quadratic order in the counterterms.

As can be seen in Eq. (4.3), we ultimately want to renormalize products like ⇡i
v
j
v
k · · · . In order

to build up to that, let us start with the renormalization of velocity products, up to [vivjvkvl]R,

where [·]R denotes a renormalized quantity. In order to have the correct transformation properties

under the Galilean transformation v
i ! v

i + �
i, we wish to have

v
i(x) =

⇡
i(x)

⇢(x)
(4.12)

v
i ! v

i + �
i ) Oi

v is a scalar (4.13)
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One way to write renormalized quantities satisfying the above in terms of the non-renormalized

fields is

[vi]R = v
i +Oi

v ,

[vivj ]R = [vi]R[v
j ]R +Oij

v2
, where Oij

v2
is a scalar

[vivjvk]R = ([vivj ]R[v
k]R + 2 perms.)� 2[vi]R[v
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where all of the O terms are Galilean scalars. The last expression is not unique in the sense

that other operators could have been used that are not independent from the ones shown, like

[vi]R[vj ]R[vk]R[vl]R and [vivj ]R[vk]R[vl]R, for example. Definitions using di↵erent bases can di↵er

in their scalar parts O. Note that v
i is renormalized here because it is the composite operator

⇡
i
/⇢ [27].

v
i · Oi

v (4.16)

22



• Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.

• Spatially non-locally-contributing counterterm:

• This is a normal effect, just strange-looking in the EFTofLSS context.

• Normally, counterterms are local, but, contributing through non-local Green’s 
functions, they contribute non-locally. 
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• Counterterms: major algebraic effort for 4th order and some theoretical subtle aspects.

• Spatially non-locally-contributing counterterm:

• In the EFTofLSS, the Green’s function is simple: 

• Counterterms typically come with 

• result almost trivial

• But at second order, and for velocity fields, contracted along the line of sight, 
derivatives do not simplify, so we get

• This is truly non-locally contributing, truly non-trivial.

• We check that all these terms are needed and sufficient for renormalization 
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The local counterterm that contributes non-locally: Let us start from the first subtlety,

focussing initially on the case of dark matter. So far, the counterterms in the EFTofLSS have been

explored at high order only for dark matter. This fact has prevented the emergence of a subtlety

that, on hindsight, is rather straightforward. The equations in the Newtonian limit contain the

Poisson equation, whose solution is famously not local in space. This is mapped for example in the

non-locality of the perturbative kernels. In fact, even though the absence of a tree-level speed of

sounds makes the kernel just space dependent (rather than spacetime dependent), the dependence

on the spatial wavenumber is not analytic, so that, once written in real space, they are non-local.

For example, the solution of the locally-observable tidal tensor of the gravitational field, �, due to

a density perturbation, �, is, schematically,

1

@2
(1.1)

@
2Olocal ) �counter ⇠

1

@2
@
2Olocal ⇠ Olocal (1.2)

(1.3)

@i@j�(~x, t) ⇠ H
2@i@j

@2
�(~x, t) ⇠ H

2
Z

d
3
x
0

1

|~x� ~x0|
@

@x0i

@

@x0j
�(~x0, t) , (1.4)

with H being the Hubble constant. This is non-local unless i = j and we sum over i. btw, above,

is there a piece of @i@j� that does not depend directly on �, i.e. the traceless part?

[[[[[LS: I would say ‘no’, this is the solution to the only di↵. equation involving �, in

Newton gravity]]]]

As we discuss in more detail later, counterterms are local, i.e. the response of the stress

tensor to the long wavelength fields is local. But the way the counterterms contribute to the

fields is through being convolved with the Green’s functions of the fields themselves, which, as we

mentioned, are not local. This subtlety does not show up for linear counterterms, though. For the

dark matter overdensity, only the divergence of the momentum matters, which in turn is a↵ected,

at linear level, only by � through @
2� ⇠ �. So, the linear equation and the resulting Green’s

function are accidentally local. In this way, once one uses the counterterms at linear order (i.e.

not multiplied by other fields), one obtains a local contribution.

But this local result is an artifact of the density field and of low order in the perturbative series,

which limits the available tensorial structures. Already once one looks at the momentum, ⇡i, one

finds that the traceless part of @i⇡j , which is observable, is a↵ected at linear order by the traceless

part of @i@j�, which, as argued above, is non-local. So the associated Green’s function will be non-

local. Therefore, unless accidental cancellations happen, one should expect the local counterterms

to contribute non locally. This is the situation we will encounter in in this paper, as the momentum

is important for redshift space distortions where, additionally, the anisotropy induced by the line

of sight provides a richer tensorial structure where accidental cancellations are more rare.

Explicitly, we find that for the momentum, ⇡i, we need a counterterm that contributes in a

way schematically given by

⇡
i

(2) �
1

H

@i@j@k

@2
⌧
jk

(2) , (1.5)

5

where ⌧
jk is the stress tensor, and the subscript (n) or superscript (n) indicates n-th order in

perturbation theory. Now, among the second-order response terms for the stress tensor, we have

terms such as

⌧
ij

(2) �
⇢̄

k
2
NLH

2
@i@k�@k@j� , (1.6)

with ⇢̄ being the background density. This is indeed local. This term a↵ects non-locally the

gradient of the momentum as

@j⇡
i

(2) �
⇢̄

k
2
NLH

2

@j@i@k@m

H@2
(@k@l�@l@m�) . (1.7)

In turn, in redshift space, the dark matter overdensity, �r, at second order is a↵ected as

�
(2)
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ẑ
i
ẑ
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The 1/@2 does not simplify in the final expression: this is a counterterm that contributes non-

locally to the observable � in redshift space. There are several such terms in the perturbative

expansion, and similar terms appear also when considering the stochastic counterterms. As a

validation of the above, we explicitly find that these terms are needed to renormalize the redshift

space matter-overdensity bispectrum at one-loop order.1

When passing to biased tracers, a further subtlety arises. In the EFTofLSS, the biased-tracer

density in redshift space, which is constructed as combinations of the biased-tracer density and

momentum, is written as a local linear combination of composite operators of the matter field [7].

We do not have the equations of motion and the associated Green’s function for them. This was

the way that we identified the non-locally-contributing counterterm in dark matter: by simply

solving the equations of motion in the presence of a local counterterm. But because of the local

relation to dark matter, it is expected that the non-locally-contributing counterterms should be

completely determined by the one of dark matter. This is so even for the momentum of biased

tracers, which, for dark matter, was the operator being a↵ected by the non-locally-contributing

counterterm. Indeed, by the equivalence principle, biased tracers should have the same velocity

as the underlying dark matter fields at leading order in derivatives. In fact, there is a symmetry

1At this point, one might wonder why counterterms are local to start with. The terms that we have identified

have the property that the region that can non-locally a↵ect a mode is at most of order of the wavelength of the

mode itself. For counterterms, for example in ⌧
ij , we are integrating out short modes, and so at most regions within

1/kNL can a↵ect, which is equivalent to a normal local response.

6

Figure 3: Two contributions for the one-loop power spectrum. Left: comparison between

analytical result, P̄22, and exact numerical result, P22. Right: comparison between analytical

result, P̄ comp
13 , and exact numerical result, P13. These result were obtained using N = 16

fitting functions.

Figure 4: Left: Comparison between analytical result, P̄1�loop, and exact numerical result,

P1�loop, obtained by summing the contributions in Fig. 3. Right: 1-loop error relative to the

full power spectrum including the linear contribution at redshifts z = 0 and z = 1.

3.2 One-loop bispectrum in real space

1

@2
(3.20)

The matter one-loop order contribution to the bispectrum B1�loop consists of four dia-
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• Nice trick for fast evaluation of the loops integrals 

• The power spectrum is a numerically computed function

• Decompose linear power spectrum

• Loop can be evaluated analytically

–using quantum field theory techniques

–

The best approach so far
Simonovic, Baldauf, Zaldarriaga, 

Carrasco, Kollmeier 2018
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1 Introduction and Conclusions

The E↵ective Field Theory of Large Scale Structure (EFTofLSS) [3, 4] describes the dynamics

of the large-scale structures of the universe in the mildly non-linear regime. The development

of the theory, from its initial formulation to the application to data, has been a decade

long e↵ort, where several important developments have been obtained at all stages. Very

schematically, it has been necessary to develop the description of dark matter, biased tracers

and redshift space distorsions, as well as a non perturbative treatment of some infrared e↵ects.

We provide a summary of some important results obtained prior the application to data in

this footnote 1. [[[[Henry liked this footnote, so I put it. In practice, it saves us a lot of

e↵ort for writing the introduction :) .]]]] [[[[[Henry and Diogo: we need to fix the names

of the references. You have changed them from the arxiv name, but then this means that

some are duplicate. Can we go back to the standard arxive name please? Sorry for the extra

work, but in this way we can recycple the blibliography and many citations, and it is also

easier to add citations and things like that. I did it for the introduction, but we will cut and

paste Babis and yours section here, so it needs to be done for those, Luckly, it is just a few

places]]][[[Additionally, can you please download from the arxiv the source file of your past

papers, and make the bibliography look as nice/useful as there (for example not having the

arxiv number nor clickable if present, is really missing a lot of usefulness). however, I would

care of these aesthetic requirements once we are done with the physics iterations (after you

have found the solution, you can just send me the first part of the tex file to cut and paste

here, to keep it simple).]]]

Mn1n2 is cosmology independent ) so computed once (1.1)

With the results of [36] the EFTofLSS became ready to be applied to data, in particular

to the power spectrum of galaxies in redshfit space. Ref. [51, 52, 55] provided the first

1The initial formulation of the EFTofLSS was performed in Eulerian space in [3, 4], and subsequently

extended to Lagrangian space in [5]. The dark matter power spectrum has been computed at one-, two-

and three-loop orders in [4, 6–10, 10–12, 12–15]. These calculations were accompanied by some theoretical

developments of the EFTofLSS, such as a careful understanding of renormalization [4, 16, 17] (including rather-

subtle aspects such as lattice-running [4] and a better understanding of the velocity field [6, 18]), of several

ways for extracting the value of the counterterms from simulations [4, 19], and of the non-locality in time of the

EFTofLSS [6, 8, 20]. These theoretical explorations also include an enlightening study in 1+1 dimensions [19].

An IR-resummation of the long displacement fields had to be performed in order to reproduce the Baryon

Acoustic Oscillation (BAO) peak, giving rise to the so-called IR-Resummed EFTofLSS [21–25]. Accounts

of baryonic e↵ects were presented in [26, 27]. The dark-matter bispectrum has been computed at one-loop

in [28, 29], the one-loop trispectrum in [30], and the displacement field in [31]. The lensing power spectrum

has been computed at two loops in [32]. Biased tracers, such as halos and galaxies, have been studied in

the context of the EFTofLSS in [20, 33–38] (see also [39]), the halo and matter power spectra and bispectra

(including all cross correlations) in [20, 34]. Redshift space distortions have been developed in [21, 36, 40].

Neutrinos have been included in the EFTofLSS in [41, 42], clustering dark energy in [14, 43–45], and primordial

non-Gaussianities in [34, 40, 46–49]. Faster evaluation schemes for the calculation of some of the loop integrals

have been developed in [50]. Comparison with high-quality N -body simulations to show that the EFTofLSS

can accurately recover the cosmological parameters have been performed in [51–54].
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• Two difficulties:

• integrals are complicated due to fractional, complex exponents

• many functions needed, the matrix                   for bispectrum is about 50Gb, so, 
~impossible to load on CPT for data analysis 

• In order to ameliorate (solve) these issues, we use a different basis of functions.

Computational Challenge

Mn1n2n3 (1.2)

With the results of [36] the EFTofLSS became ready to be applied to data, in particular to the

power spectrum of galaxies in redshfit space. Ref. [51, 52, 55] provided the first application

of the EFTofLSS to data, by being able to extract the cosmological parameters from the

analysis of the full shape of the galaxy bispectrum of BOSS observations [56]. Since then,

many applications to data have followed. We summarize some of the main results concerning

the application to data in this footnote 2.

One application to data that is very relevant for this paper is the one were the one-loop

EFTofLSS prediction for the bispectrum was compared to BOSS to measure the ⇤CDM pa-

rameters [1] or to set limits on some parameters related to primordial non-Gaussianities [2]

(see also [73, 74] for a contemporary and a subsequent paper which constrain the same pa-

rameters but using the EFTofLSS tree-level prediction) 3. Ref. [1, 2] are important for this

paper because the computational tool to evaluate the one-loop bispectrum in the analysis is

the one we originally present here.

Let us first explain the challenge in performing a data analysis using the EFTofLSS.

In practice, one needs to evaluate the model predictions as a function of the cosmological

and EFT parameters, and determine what are the parameter regions allowed by the data.

Since the EFTofLSS equations are typically solved perturbatively, evaluating the prediction

requires the computation of loop integrals. In principle, these depend on the cosmology

and on the EFTofLSS parameters, which are being scanned over as we compare theory and

data. Certainly, evaluating the loop integrals in the EFTofLSS takes computational time, and

therefore it might be challenging to analyze the data scanning over thousands of combinations

of cosmological parameters and EFTofLSS parameters. The problem of scanning over the

EFTofLSS parameters has been solved in [51, 52] by defining them as prefactors of the loop

expressions that they multiply. So, at the cost of increasing the number of the loop integrals to

2The EFTofLSS prediction at one-loop order has been used to analyze the BOSS galaxy Power Spec-

trum [51, 52, 55], and Correlation Function [57, 58]. This was extended to eBOSS in [59]. The BOSS

galaxy-clustering bispectrum monopole was analyzed in [51, 60] using the EFTofLSS prediction at tree-level.

All ⇤CDM cosmological parameters have been measured from these data by only imposing a prior from Big

Bang Nucleosynthesis (BBN), reaching quite a remarkable precision. For example, the present amount of

matter, ⌦m, and the Hubble constant (see also [61, 62] for subsequent refinements) have error bars that are

similar to the ones obtained from the Cosmic Microwave Background (CMB) [63]. For clustering and smooth

quintessence models, limits on the equation of state w of dark energy of . 5% have been set using only late-

time measurements [59, 62, 64], similar to the ones from CMB [63]. These measurements establish a new,

CMB-independent, method for determining the Hubble constant [51], with precision comparable to one from

the cosmic ladder [65, 66] and CMB. Some models that were proposed to alleviate the tension in the Hubble

measurements between the CMB and cosmic ladder (see e.g. [67]) have also been compared to data [68–72].
3The non-Gaussianity parameters that were constrained are f equil.

NL , forth.
NL , and f loc.

NL , which are predicted

to be produced by some single-clock [75, 76] or multiple fields [77–81] inflationary models.
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• Use as basis:

• With just 16 functions:

Complex-Masses Propagators

has been already used to set the first and strong limits on primordial non-Gaussianities from

Large-Scale Structure by using BOSS data [2] as well as to perform the first analysis of the

⇤CDM model using the one-loop bispectrum on the same data [1].

The paper is organized as follows. In Sec. 2, we present the expansion of the power

spectrum in the basis of functions similar to massive propagators. In Sec. 3 we present the

comparison of our analytical integrations against numerical integration, validating in this

way the formalism. In Sec. [[[[no label for sec. 4, I am waiting for your feedback there]]]] we

present the recursion relation to reduce the loop integrals to the master integrals. In Sec. 5

we finally present the integration of the master integrals.

This paper is organized in two large parts. The first part explains the main application

of the formalism to evaluate the EFTofLSS loop integrals and the comparison with numerical

integration, and the second part details the actual analytical calculations of the same loop

integrals. The first part starts with Sec. 2, where we go through the new power spectrum de-

composition, then, in Sec. 3 we explain the formalism and show the agreement with numerical

integration for the one-loop power spectrum and one-loop bispectrum (in real and redshift

space). In the second part, Secs. 4.2, 4.2.2, and 4.2.3 describe the recursion relations to reduce

to master integrals, Sec. 4.2.4 describes the tensor reduction of some so-called triangle loop

integrals, and in Sec. 5, we explicitly calculate expression for the master integrals.

2 Decomposition of the power spectrum

We approximate the linear power spectrum Plin by a fitting function Pfit(k) given by

Pfit(k) =
NX

n=1

↵nf(k
2
, k

2
peak,n, k

2
UV,n, in, jn) =

NX

n=1

↵nfn(k
2) . (2.1)

The function f is given by
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2
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2
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�i
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1 +

(k2�k2peak)
2

k4UV

◆j , (2.2)

where k0, k2peak and k
2
UV are predetermined cosmology independent parameters, and i and

j are positive integers, with i  j. We define fn(k2) ⌘ f(k2, k2peak,n, k
2
UV,n, in, jn) and use

k0 =
1
20h/Mpc. The cosmology dependence is encoded in the fitting coe�cients ↵n. N is the

number of fitting functions used (throughout this paper, we use N = 16). We also denote ↵

and f as vectors whose n-th entry is given, respectively, by the elements ↵n and fn. Note

that ↵n has the same dimensions as 1/k3.

We can select a number of points Np of Plin and determine ↵ using a least squares

regression:

↵ = (XT
X)�1

X
TP lin , (2.3)
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Figure 1: Comparison of Plin with Pfit, from k = 10�3
hMpc�1 to k = 1hMpc�1 . Note that

even if the fit is only performed up to 0.6hMpc�1 , the error is within 5% up to 1hMpc�1 .

Each one of our fitting functions f in Eq. (2.2) can itself be expressed as a sum of QFT

propagator-like functions by decomposing the denominator in the following way
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The last term is indeed a sum of two propagators with complex masses. We can then proceed

iteratively to decompose the right hand side (r.h.s.) of Eq. (2.6). Therefore each f gets

schematically decomposed in
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where each n is a complex constant, and M ⌘ �k
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UV, which is k-independent. Note

that M has the same dimensions as k2. We do not write M
2 to avoid clutter. For example,
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• This basis is equivalent to massive propagators to integer powers

• So, each basis function:
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• This basis is equivalent to massive propagators to integer powers

• So, each basis function:
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even if the fit is only performed up to 0.6hMpc�1 , the error is within 5% up to 1hMpc�1 .

Each one of our fitting functions f in Eq. (2.2) can itself be expressed as a sum of QFT

propagator-like functions by decomposing the denominator in the following way
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The last term is indeed a sum of two propagators with complex masses. We can then proceed

iteratively to decompose the right hand side (r.h.s.) of Eq. (2.6). Therefore each f gets

schematically decomposed in
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that M has the same dimensions as k2. We do not write M
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• We end up with integral like this:

• with integer exponents.

• First we manipulate the numerator to reduce to:

• Then, by integration by parts, we find (i.e. QCD teaches us how to) recursion relations

• relating same integrals with raised or lowered the exponents (easy terminate due to 
integer exponents).

Figure 11: Left: Comparison of B̄1�loop,r using Pfit evaluated with our code (B1�loop,r

analytical) and numerical integration using exact Plin (B1�loop,r numerical), both obtained by

summing the contributions in Fig. 10. Right: 1-loop error relative to the tree level redshift

space bispectrum including the linear contribution at redshifts z = 0 and z = 1, whose ratio

is just the ratio of the growth factors at the two redshifts squared.

These results validate this formalism to quickly calculate loop integrals in the EFTofLSS.

In the remaining part of the paper, we will present a detailed calculation of the function L

introduced in Eq. (3.30).

4 L-function evaluation

With our power spectrum decomposition given in Eq. (2.1), we remind readers that the

evaluation of the 1-loop bispectrum involves integrals of the type shown in Eq. (3.30). For

clarity, we rewrite the expression here with some arguments dropped, which is a notation that

we will use in this section.

L(n1, d1, n2, d2, n3, d3) =

Z

q

(k1 � q)2n1q2n2(k2 + q)2n3

((k1 � q)2 +M1)d1(q2 +M2)d2((k2 + q)2 +M3)d3
(4.1)

where n1, n2, n3 can be positive or negative integers and d1, d2, d3 � 0. We call the expression

in Eq. (4.1) the general triangle integral named after the shape of the corresponding Feynman

diagram (see Fig. 5). The procedure for calculating a given L will be to perform several

recursion steps to reduce the powers of ni and di. The recursions eventually terminate

resulting in L being a sum of master integrals, which we call Tadpole, Bubble, and Triangle

master integrals, given by:

1. Tadpole:

Tad(Mj , n, d) =

Z
d
3q

⇡3/2

(p2
i )

n

(p2
i +Mj)d

(4.2)

where pi = {k1 � q, q,k2 + q} and Mj = {M1,M2,M3}.

– 26 –

We can use Eqs. (4.9) and (4.12) to decrease the absolute value of ni (or the corresponding

di) for both ni > 0 and ni < 0.

There are four possibilities to end the recursion for a specific i:

• If ni = 0 but di � 0, we can also redo this recursion for a di↵erent i for which ni 6= 0. If

there are no more ni 6= 0 and all di > 0, we can continue simplifying using integration

by parts, with what we call T -recursion, as described in Sec. 4.2.2. In the case of all

n1 = n2 = n3 = 0 and one di = 0, then we proceed to B-recursion as described in

Sec. 4.2.3.

• If di = 0 and ni > 0, we redefine di = �ni < 0 and use a tensor reduction method to

simplify the expression, as detailed in Sec. 4.2.4.

• If di = 0 and ni < 0, we are left with a simpler L function with Mi = 0, di = �ni, and

ni = 0. We can then redo this recursion for a di↵erent i provided that ni 6= 0.

4.2.2 T -recursion

In the previous subsection, we were able to reduce L in Eq. (4.1) to a form where there are

no ni’s. If one has di = 0 for some i, then we go to the B-recursion in Sec. 4.2.3. In this

section we outline the recursion relation used to reduce L when all ni = 0 and all di > 0. We

define the following integral

T (d1, d2, d3) =

Z

q

1

((k1 � q)2 +M1)d1(q2 +M2)d2((k2 + q)2 +M3)d3
, , (4.13)

which is just L with all ni = 0. We can define

t(d1, d2, d3) ⌘
1

((k1 � q)2 +M1)d1(q2 +M2)d2((k2 + q)2 +M3)d3
, (4.14)

and from the divergence theorem, we have
Z

q

@

@qµ
· (qµt(d1, d2, d3)) = 0 , (4.15)

Z

q

@

@qµ
· (k1µt(d1, d2, d3)) = 0 , (4.16)

Z

q

@

@qµ
· (k2µt(d1, d2, d3)) = 0 . (4.17)

Noticing that

@

@qµ
· qµ = 3 + qµ

@

@qµ
, (4.18)

@

@qµ
· kiµ = kiµ ·

@

@qµ
, (4.19)
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and calculating the derivative, we get

) (3� d1223)0̂ + d1k1s
c1+ + d3(k2s)c3+ + 2M2d2

c2+ � d1
c1+c2� � d3

c2�c3+ = 0 , (4.20)

(d1 � d2)0̂ + d1(k1s � 2M1)c1+ � c2�(d1c1+ + d3
c3+)� d2(k1s � 2M2)c2++

c1�(d2c2+ + d3
c3+)� d3(k3s � k2s)c3+ = 0 , (4.21)

(d2 � d3)0̂ + d1(k3s � k1s)c1+ � c3�(d1c1+ + d2
c2+) + c2�(d3c3+ + d1

c1+)+

d2(k2s � 2M2)c2+ � d3(k2s � 2M3)c3+ = 0 , (4.22)

where

k1s = k
2
1 +M2 +M1 , (4.23)

k2s = k
2
2 +M2 +M3 , (4.24)

k3s = k
2
3 +M3 +M1 , (4.25)

d1223 = d1 + 2d2 + d3 , (4.26)

and we also defined ladder operators 0̂, c1±, c2±, and c3±, that act on T as

b0T (d1, d2, d3) = T (d1, d2, d3) , (4.27)

c1± T (d1, d2, d3) = T (d1 ± 1, d2, d3) , (4.28)

c2± T (d1, d2, d3) = T (d1, d2 ± 1, d3) , (4.29)

c3± T (d1, d2, d3) = T (d1, d2, d3 ± 1) . (4.30)

The action of two ladder operators on T is for example

c1+c2�[T (d1, d2, d3)] = T (d1 + 1, d2 � 1, d3) . (4.31)

Solving for terms only involving c1+,c2+,c3+, we obtain,

c1+ = �ks,23
c1+c2� +

ks,22d2

d1

c2+c1� � ks,12
c1+c3� +

ks,22d3

d1

c3+c1� �
ks,12d2

d1

c2+c3�

�
ks,23d3

d1

c3+c2� +

✓
ks,12

3� d1233

d1
� ks,22

3� d1123

d1
+ ks,23

3� d1223

d1

◆
0̂ , (4.32)

c2+ =
ks,33d1

d2

c1+c2� � ks,23
c2+c1� �

ks,31d1

d2

c1+c3� �
ks,23d3

d2
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c2+c3�

+
ks,33d3

d2
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3� d1123

d2
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d2

◆
0̂ , (4.33)

c3+ = �
ks,31d1

d3

c1+c2� �
ks,12d2

d3

c2+c1� � ks,12
c1+c3� +

ks,11d1

d3

c3+c1� +
ks,11d2

d3

c2+c3�

� ks,31
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✓
�ks,11

3� d1233

d3
+ ks,12
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d3
+ ks,31

3� d1223

d3

◆
0̂ , (4.34)
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• We end up to three master integrals:

• Tadpole:

• Bubble:

• Triangle:

Figure 11: Left: Comparison of B̄1�loop,r using Pfit evaluated with our code (B1�loop,r

analytical) and numerical integration using exact Plin (B1�loop,r numerical), both obtained by

summing the contributions in Fig. 10. Right: 1-loop error relative to the tree level redshift

space bispectrum including the linear contribution at redshifts z = 0 and z = 1, whose ratio

is just the ratio of the growth factors at the two redshifts squared.

These results validate this formalism to quickly calculate loop integrals in the EFTofLSS.

In the remaining part of the paper, we will present a detailed calculation of the function L

introduced in Eq. (3.30).

4 L-function evaluation

With our power spectrum decomposition given in Eq. (2.1), we remind readers that the

evaluation of the 1-loop bispectrum involves integrals of the type shown in Eq. (3.30). For

clarity, we rewrite the expression here with some arguments dropped, which is a notation that

we will use in this section.

L(n1, d1, n2, d2, n3, d3) =

Z

q

(k1 � q)2n1q2n2(k2 + q)2n3

((k1 � q)2 +M1)d1(q2 +M2)d2((k2 + q)2 +M3)d3
(4.1)

where n1, n2, n3 can be positive or negative integers and d1, d2, d3 � 0. We call the expression

in Eq. (4.1) the general triangle integral named after the shape of the corresponding Feynman

diagram (see Fig. 5). The procedure for calculating a given L will be to perform several

recursion steps to reduce the powers of ni and di. The recursions eventually terminate

resulting in L being a sum of master integrals, which we call Tadpole, Bubble, and Triangle

master integrals, given by:

1. Tadpole:

Tad(Mj , n, d) =

Z
d
3q

⇡3/2

(p2
i )

n

(p2
i +Mj)d

(4.2)

where pi = {k1 � q, q,k2 + q} and Mj = {M1,M2,M3}.
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Figure 12: Tadpole, bubble, and triangle master integrals represented by Feynman diagrams.

2. Bubble:

Bmaster(k
2
,M1,M2) =

Z
d
3q

⇡3/2

1

(q2 +M1)(|k � q|2 +M2)
(4.3)

3. Triangle:

Tmaster(k
2
1, k

2
2, k

2
3,M1,M2,M3) =

Z
d
3q

⇡3/2

1

(q2 +M1)(|k1 � q|2 +M2)(|k2 + q|2 +M3)
,

(4.4)

where k1 + k2 + k3 = 0.

These master integrals are evaluated in closed form, as explained in Sec. 5. The name of

the master integrals come from the number of propagators of the associated Feynman diagram

as shown in Fig. 12.

While the integrals that we actually evaluate analytically are the master integrals defined

just above, we point out that, in intermediate steps, we may find that one of the ni and di

are 0 or two of the ni and di are 0. We call these intermediate integrals the general bubble

integrals, also named after the shape of the corresponding Feynman diagrams. Note that the

general integrals are di↵erent from the master integrals. The general bubble integral has the

form,

LB(n1, d1, n2, d2) =

Z

q

p2n1
i p2n2

j

(p2
i +Mi)d1(p2

j +Mj)d2
, (4.5)

where pi = {k1�q, q,k2+q} and i 6= j. These general integrals will be also themselves then

further reduced to master integrals as defined above, as will later be explained.

4.1 L-function calculation flowchart

In this section we outline the procedure used to compute the function L in Eq. (4.1).
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• The master integrals are evaluated with Feynman parameters, but with great care of 
branch cut crossing, which happens because of complex masses.

• Bubble Master:

• Triangle Master:

• Very simple expressions with simple rule for branch cut crossing.

For x�  0 and x� � 1, the branch cut crossing is in the integration region, so we need to

take the crossing into account. In these two cases, it amounts to subtracting 2⇡ from the

expression inside the square brackets in Eq. (5.57). Therefore, since Re(�(m1,m2)) <

0 ) ✓(i�(m1,m2)) = 0, Eq. (5.57) for x�  0 and x� � 1 is simply given by

Bmaster(k
2
,M1,M2) =

p
⇡

k
[G(1)�G(0)] . (5.62)

For 0 < x� < 1, there is no branch cut crossing in the integration region, so Eq. (5.55)

becomes

Bmaster(k
2
,M1,M2) =

p
⇡

k
[G(1)�G(0) + 2⇡] . (5.63)

Notice that in this particular case we have Im (A (0,m1,m2)) < 0 and Im (A (1,m1,m2)) > 0.

Combining all these results, we find the remarkable result that we have the same expres-

sions as in Eq. (5.35), which is therefore valid regardless of the relative signs of Im(m1) and

Im(m2):

Bmaster(k
2
,M1,M2) =

p
⇡

k
i[log (A(1,m1,m2))� log (A(0,m1,m2))

� 2⇡iH(ImA(1,m1,m2))H(� ImA(0,m1,m2))] ,
(5.64)

A(x,m1,m2) ⌘ 2
p
x(1� x) +m1x+m2(1� x) + i(m1 �m2 � 2x+ 1) , (5.65)

where

A(0,m1,m2) = 2
p
m2 + i(m1 �m2 + 1) , (5.66)

A(1,m1,m2) = 2
p
m1 + i(m1 �m2 � 1) , (5.67)

provided that the condition �(Re(m1),Re(m2))> 0 is satisfied. This interesting observation

makes Bmaster(k2,M1,M2) extremely e�cient to evaluate numerically. This last expression

Eq. (5.64) hints, by its simplicity, at some closer relation between the case where the masses

have the same sign of the imaginary part and where they have opposite signs. Indeed, it can

be proven using contour integration that the two cases are closely related. This proof is given

in the Appendix C.

5.4 Calculation of the triangle master integral

Let us compute the triangle master integral,

Tmaster(k
2
1, k

2
2, k

2
3,M1,M2,M3) =

Z
d
3q

⇡3/2

1

((k1 � q)2 +M1)(q2 +M2)((k2 + q)2 +M3)
.

(5.68)

The procedure will be similar to the bubble integral.
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with a = S+, and in particular Im(a) = ✏ > 0.

Now, doing the change of variables described before: s1 = ⌧x, s2 = ⌧(1� x), and noting

that the Jacobian of the transformation is ⌧ , we get

Bmaster(k
2
,M1,M2) =

�
1

(�i)3/2

Z 1

0
dx

Z 1

0
d⌧ ⌧(⌧ + i✏)�3/2 exp

⇢
i

⌧
2

⌧ + i✏
x(1� x)k2 + i⌧(M1x+M2(1� x))

�
,

(5.20)

and since the integral is convergent when ✏ ! 0, we can set ✏ = 0 and get:

Bmaster(k
2
,M1,M2) =

�
1

(�i)3/2

Z 1

0
dx

Z 1

0
d⌧ ⌧

�1/2 exp
�
i⌧x(1� x)k2 + i⌧(M1x+M2(1� x))

 
,

(5.21)

and finally performing the ⌧ integral yields the integral:

Bmaster(k
2
,M1,M2) =

�(1/2)

(�i)3/2

Z 1

0
dx

(�i)3/2p
x(1� x)k2 +M1x+M2(1� x)

=
p
⇡

Z 1

0
dx

1p
x(1� x)k2 +M1x+M2(1� x)

,

(5.22)

which is a standard Feynman integral. Note that in this case the square root does not have any

branch cut, because its argument always has a positive imaginary part, from our assumption

on the masses M1 and M2. We were thus able to find the Feynman parameter integral using

Schwinger parameters for this case. For two masses with negative imaginary parts, the exact

same steps apply, and we obtain the same result.

Solving this integral yields:

Bmaster(k
2
,M1,M2) =

p
⇡

k

h
i log

⇣
2
p
x(1� x) +m1x+m2(1� x) + i(m1 �m2 � 2x+ 1)

⌘ix=1

x=0
,

(5.23)

where m1 = M1/k
2 and m2 = M2/k

2. To use this expression, we need to check if the

argument of the log as a function of x crosses its branch cut (the negative real axis). If it

does, we need to add/subtract 2⇡i, depending on the direction of the crossing.

Branch cut crossings. We can analyze under what conditions a log branch cut crossing

happens. Let us define the argument of the log as

A(x,m1,m2) ⌘ 2
p
x(1� x) +m1x+m2(1� x) + i(m1 �m2 � 2x+ 1) , (5.24)

then, we have a branch cut crossing when A(x,m1,m2) = �t, where t > 0, for some x 2]0, 1[.

We now want to prove two statements: first, that there can be at most one branch cut

– 42 –

This integral only makes sense if the square root in the integrand does not cross any

branch cut. Thus, we will separate the square root using our formula.

Fint(R2, z+, z�, x0) =

p
⇡

2

Z 1

0
dx

s(z+ � x, x� z�)p
|R2|

p
(z+ � x)

p
(x� z�)(x� x0)

. (5.84)

Under our parametrization of the masses, s(z+ � x, x� z�) is constant which means we can

take s(z+�x, x�z�) = s(z+,�z�). This can be seen the following way: on the one hand, since

ReMi > 0, we have Re(R2(x� z+)(x� z�)) > 0 if 0 < x < 1 both for y = 0 and y = 1. This

means that
p
R2(x� z+)(x� z�) cannot cross any branch cut. On the other hand, for fixed

y (and so fixed z±), both (z+�x) and (x�z�) have a constant imaginary part sign and so do

not cross any branch cut. Since
p
(z+ � x)(x� z�) = s(z+�x, x�z�)

p
(z+ � x)

p
(x� z�),

these observations imply that s(z+ � x, x� z�) is constant 17. Integrating yields:

Fint(R2, z+, z�, x0) = s(z+,�z�)

p
⇡p
|R2|

arctan
⇣p

z+�x
p
x0�z�p

x0�z+
p
x�z�

⌘

p
x0 � z+

p
x0 � z�

������

x=1

x=0

. (5.88)

This would be the final result if arctan did not have any branch cuts, and if Fint had no

indeterminacies. We now outline how to incorporate possible branch cut crossings, and later

how to incorporate possible indeterminate results in Eq. (5.87).

5.4.3 Branch cut crossings

Let us start by analyzing the branch cuts of arctan. There are two of them, both in the

imaginary axis. The first goes from i to +i1 and the second goes from �i to �i1. The

discontinuity works as follows:

lim
✏!0

arctan(x i)� arctan(x i� ✏) = ⇡ , |x| > 1 ,

lim
✏!0

arctan(x i+ ✏)� arctan(x i� ✏) =
⇡

2
, |x| = 1 ,

(5.89)

17 Explicitly:

Re(R2(x� z�)(x� z+)) = x2 Re(R2)� xRe(R2(z+ + z�)) + Re(R2(z�z+)) (5.85)

= x2 Re(R2) + xReR1 +ReR0 (5.86)

= Re(M1x+M3(1� y)(1� x) + k2
3(1� x)(1� y)x

+M2y(1� x) + (1� x)y(k2
1x+ k2

2(1� x)(1� y))) > 0 , (5.87)

where in the second passage, we used that R1 = R2(z+ + z�) and R0 = R2z+z�, and in the third we used

the definitions of z+, z�, R2, R1 and R0 (the ones without putting to zero the terms that vanish at y = 0

and y = 1, because here we are interested in the analyticity the the integration region both in x and y).

Each term in the equation above is positive for 0 < x < 1 and 0 < y < 1. Thus, ‘Re(R2(x � z�)(x �
x+))’!‘

p
R2(x� z�)(x� z+)’ cannot cross any branch cut in the region 0 < x < 1 and 0 < y < 1. Sincep

R2(x� z�)(x� z+) =
p

|R2|
p

(z+ � x)(x� z�), also
p

(z+ � x)(x� z�) has no branch cut crossing. Now,

since there are no branch cut crossing for any 0 < y < 1, for the purpose of evaluating the function s(, ),

[[[[right?]]] we can fix y such that z± is fixed. If z± is fixed, the imaginary part of z+ �x and x� z� [[right?]]]

are also fixed. Hence, since s(, ) only depends on the imaginary parts of the arguments, s(z+ � x, x � z�) is

also constant.
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• All automatically coded up.

• For BOSS analysis, evaluation of matrix is 2.5CPU hours and 800 Mb storage, very fast 
matrix contractions.

• Accuracy with 16 functions:

Result of Evaluation

●

●

●

●

●
●

●
●

● ● ●
●

●

●

●

●
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●
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Btree

B1-loop analytical

● B1-loop numerical
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Figure 7: Left: Comparison between analytical result B̄1�loop and exact numerical result

B1�loop, obtained by summing the contributions in Fig. 6. Right: 1-loop error relative to the

full bispectrum including the linear contribution at redshifts z = 0 and z = 1.

Calculation for scalene triangles. We have so far calculated the diagrams for equilateral

triangles. We also compare for general scalene triangle, and verify that a similar precision is

achieved, as can be seen in Figs. 8 and 9.
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Back to data-analysis:
Pipeline Validation



• We consider synthetic data, i.e. data made out of the model, and analyze them:

• Green: biased.

• Why?

–Priors centered on zero?

• Grey: biased

–Bug in pipeline?

• Test by reducing covar.

• Red: non-biased

• It must be phase space projection

• But the grey line offers 

–an honest measurement of it.

Measuring and fixing phase space
with D’Amico, Donath, Lewandowski, Zhang 2206



• We add:

• no more proj. effect.

Measuring and fixing phase space
with D’Amico, Donath, Lewandowski, Zhang 2206



• We can estimate the                   without the use of simulations, by adding NNLO terms, 
and seeing when they make a difference on the posteriors. 

• For our                 , we find the following shifts, which are ok: 

Scale cut from NNLO with D’Amico, Donath, Lewandowski, Zhang 2206



• N-series

• Volume ~80 BOSS

• safely within

• After phase-space correction

Scale-cut from simulations with D’Amico, Donath, Lewandowski, Zhang 2206
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• Patchy:

• Volume ~2000 BOSS

• safely within 

• After phase-space correction

Scale-cut from simulations with D’Amico, Donath, Lewandowski, Zhang 2206
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BOSS data



• Main result:

• Improvements:

• 30% on 

• 18% on

• 13% on 

• Compatible with Planck

–no tensions

• Remarkable consistency

–of observables

Data Analysis
with D’Amico, Donath, Lewandowski, Zhang 2206
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• .

Data Analysis Non-Gaussianities
with D’Amico, Lewandowski, Zhang 2201
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Direct Measurement of 
formation time of galaxies

with Donath and Lewandowski 2307



• all terms allowed by symmetries

• all physical effects included

–e.g. assembly bias

• .

Galaxies in the EFTofLSS
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• This means that one does not get the same terms as in the local-in-time expansion

• If we could measure one of these terms, we could measure that Galaxies take an 
Hubble time to form. We have never measured this: we take pictures of different 
galaxies at different stages of their evolution. But we have never seen a galaxy form 
in an Hubble time.

–This would be the first direct evidence that the universe lasted an Hubble time.

• So, detecting a non-local-in-time bias would allow us to measure that, and from the 
size, the formation time. Unfortunately, so far, not yet.

Consequences of non-locality in time



• Mathematics again:

• non-local in time:

• local in time: 

• more non local in time:

Consequences of non-locality in time

2

Galilean invariance), is on second spatial derivatives of
the gravitational potential, gradients of the dark-matter
velocity, and their spatial gradients, integrated over all
past times. This makes the EFT of LSS generally local
in space, but non-local in time.

However, until now, the most advanced perturbative
calculations [15] have shown that the non-local-in-time
bias expansion up to fourth order is mathematically
equivalent to the local-in-time expansion. As we show in
this Letter, though, this is no longer true at fifth order,
and thus it is possible to see distinctly non-local-in-time
e↵ects in the galaxy clustering signal. Measuring the size
of these e↵ects would then give us a direct indication of
the formation time scale of galaxies.

Notes We work in the Newtonian approxima-

tion. a(t) is the scale factor of the universe, the

Hubble parameter is defined by H(t) ⌘ ȧ(t)/a(t), the
overdot ‘˙’ stands for a derivative with respect to t, and
�(~x, t) is the gravitational potential. The dark-matter
fluid is described by the overdensity �(~x, t) and fluid ve-
locity ~v(~x, t). The growth factor D(t) is defined as the
growing mode solution to the linear equation of motion
for �, i.e. satisfies

D̈ + 2HḊ �
3⌦mH

2

2
D = 0 , (1)

where ⌦m(t) is the time-dependent matter fraction.
The building blocks of Galilean scalars are the dimen-

sionless tensors

rij ⌘
2@i@j�

3⌦ma
2H2

, and pij ⌘ �
D

aḊ
@iv

j
. (2)

For brevity, we will always denote the traces �
ij
rij = �

(which is true because of the Poisson equation) and
�
ij
pij ⌘ ✓ (which is our definition of ✓). Then, for

other contractions, we write the matrix products as sim-
ple multiplication, i.e. r

2 = rijrji, r
2
p = rijrjkpki,

rprp = rijpjkrklpli, and so on (repeated indices are al-
ways summed over). We work in the so-called Einstein-de
Sitter (EdS) approximation, where the time dependence
of perturbations is given by

�
(n)(~x, t) =

✓
D(t)

D(t0)

◆n

�
(n)(~x, t0) ,

✓
(n)(~x, t) =

✓
D(t)

D(t0)

◆n

✓
(n)(~x, t0) .

(3)

In this Letter, we focus on the lowest-derivative bias
terms that are su�cient to establish our claims, and leave
a discussion of higher-derivative bias (and counterterms)
for future work. Finally, we focus on the real space (as
opposed to redshift space) prediction, which in any case
is the leading signal if one were to restrict observa-

tions to directions near the line of sight. We leave
extending our results to redshift space to future work as
well. For a much more detailed explanation of the nota-
tion used here, see [15].

II. COMPLETE BIAS EXPANSION AND

RECURSION

We now construct the most general bias expansion for
the galaxy overdensity �g(~x, t) ⌘ (ng(~x, t)� n̄g(t))/n̄g(t),
where n̄g(t) is the average number density of galaxies,
that is consistent with the equivalence principle, di↵eo-
morphism invariance, and is non-local-in-time. Up to
N -th order in perturbations, we have

�g(~x, t)
��
N

=
NX

n=1

�
(n)
g (~x, t) , (4)

where the expression at n-th order is given by the non-
local-in-time integral over the sum of all possible local-
in-time functions Om up to order n [14]

�
(n)
g (~x, t) =

X

Om

Z t

dt
0
H(t0)cOm(t, t0)

⇥ [Om(~xfl(~x, t, t
0), t0)](n) ,

(5)

evaluated along the fluid element

~xfl(~x, t, t
0) = ~x+

Z t0

t

dt
00

a(t00)
~v (~xfl(~x, t, t

00), t00) , (6)

and we use the square brackets and superscript nota-
tion [·](n) to mean that we perturbatively expand the
expression inside of the brackets and take the n-th order
piece. Neglecting baryons, as they are a small ef-

fect [][[[put Matt]]], in Eq. (5), since �g is a Galilean
scalar, the equivalence principle implies that the set of
functions Om is given by all possible rotationally invari-
ant contractions of the dark-matter fields rij and pij , and
integrating the Om along the fluid element is the most
general way to write a non-local-in-time expression for
�g. All of the complicated details of galaxy-formation
physics is then encoded in the functions cOm , which are
a priori unknown (from the EFT point of view) time-
dependent kernels, which physically can be thought

of as the response of the galaxy overdensity to a

given field at a given time. The local-in-time expan-
sion (as laid out in, for example, [13]) is given by setting
cOm(t, t0) = cOm(t)�D(t � t

0)/H(t). From now on, in

the list of operators {Om}, we identify the subscript
m on Om to denote that the function starts at order m,
i.e. m = 3 for �2✓, �3, . . ..
In this way, the bias expansion at order n is reduced to

an algorithmic procedure. To create the list of seed func-
tionsOm, we list all contractions up to n factors of rij and
pij . We then iteratively Taylor expand Om(~xfl(~x, t, t0), t0)
around ~x using the recursive definition Eq. (6), and take
the n-th order piece. After performing this expansion, we
end up with an expression can be cast with the following
notation [15]

[Om(~xfl(~x, t, t
0), t0)](n) =

n�m+1X

↵=1

✓
D(t0)

D(t)

◆↵+m�1

C(n)
Om,↵(~x, t) .

(7)
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3⌦mH

2

2
D = 0 , (1)

where ⌦m(t) is the time-dependent matter fraction.
The building blocks of Galilean scalars are the dimen-

sionless tensors

rij ⌘
2@i@j�

3⌦ma
2H2

, and pij ⌘ �
D

aḊ
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general way to write a non-local-in-time expression for
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a priori unknown (from the EFT point of view) time-
dependent kernels, which physically can be thought
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sion (as laid out in, for example, [13]) is given by setting
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0)/H(t). From now on, in

the list of operators {Om}, we identify the subscript
m on Om to denote that the function starts at order m,
i.e. m = 3 for �2✓, �3, . . ..
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2
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3
, . . . (7)

In this way, the bias expansion at order n is reduced to
an algorithmic procedure. To create the list of seed func-
tionsOm, we list all contractions up to n factors of rij and
pij . We then iteratively Taylor expand Om(~xfl(~x, t, t0), t0)
around ~x using the recursive definition Eq. (6), and take
the n-th order piece. After performing this expansion, we
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end up with an expression can be cast with the following
notation [15]

[Om(~xfl(~x, t, t
0), t0)](n) =

n�m+1X

↵=1
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D(t0)

D(t)

◆↵+m�1

C(n)
Om,↵(~x, t) .

(8)

The resulting bias functions C(n)
Om,↵, which we say are in

the fluid expansion of the seed function Om and will use
throughout this Letter, are defined by the expansion in
Eq. (8), whose form is guaranteed by assuming the scaling
time dependence of the dark-matter fields Eq. (3), which
also implies that

C(n)
Om,↵(~x, t) =

✓
D(t)

D(t0)

◆n

C(n)
Om,↵(~x, t

0) . (9)

Plugging (8) into (5), and defining the expansion co-
e�cients

cOm,↵(t) ⌘

Z t

dt
0
H(t0)cOm(t, t0)

✓
D(t0)

D(t)

◆↵+m�1

, (10)

we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:

�
(n)
g (~x, t) =

X

Om

n�m+1X

↵=1

cOm,↵(t)C(n)
Om,↵(~x, t) . (11)

We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation

O
(n)
m (~x, t) =

n�m+1X

↵=1

C(n)
Om,↵(~x, t) , (12)

which is trivially obtained by setting t = t
0 in Eq. (8),

and where O
(n)
m is the standard expansion of Om at n-

th order in perturbations. The second, which captures
the consequences of expanding ~xfl in Eq. (8), is the fluid
recursion

C(n)
Om,↵(~x, t) =

=
n�1X

q=m

1

n� ↵�m+ 1
@iC(q)

Om,↵(x̃, t)
@i

@2
✓(x̃, t)(n�q)

,

(13)

which is valid for n�↵�m+1 > 0. To derive Eq. (13),
one can simply take d/dt of both sides of Eq. (8), use
the scaling time dependence in Eq. (9), use the fact that
(@t+a(t)�1

v
i(~x, t)@i)~xfl(~x, t, t0) = 0, and then, since both
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FIG. 1. Diagrammatic representation of how to use the recursion

relations Eq. (12) and Eq. (13) to determine the full set of bias

functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (13),

while the blue arrows indicate the use of the completeness relation

Eq. (12).

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (13) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (12). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (13). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
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m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.

III. BASES FOR BIAS FUNCTIONS

Since we have formally done the integral over t
0 in

Eq. (10), one might wonder where in Eq. (11) the non-
local-in-time e↵ect has gone. Comparing Eq. (11) to the
local-in-time expression
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with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
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It is worth stressing that, unlike other treatments of bi-
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do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (13) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
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are just the standard perturbative expressions in terms
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bias expansion. One then starts at n = m and ↵ = 1
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recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.
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Plugging (8) into (5), and defining the expansion co-
e�cients
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we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:
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We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation

O
(n)
m (~x, t) =

n�m+1X

↵=1

C(n)
Om,↵(~x, t) , (12)

which is trivially obtained by setting t = t
0 in Eq. (8),

and where O
(n)
m is the standard expansion of Om at n-

th order in perturbations. The second, which captures
the consequences of expanding ~xfl in Eq. (8), is the fluid
recursion
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which is valid for n�↵�m+1 > 0. To derive Eq. (13),
one can simply take d/dt of both sides of Eq. (8), use
the scaling time dependence in Eq. (9), use the fact that
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v
i(~x, t)@i)~xfl(~x, t, t0) = 0, and then, since both
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FIG. 1. Diagrammatic representation of how to use the recursion

relations Eq. (12) and Eq. (13) to determine the full set of bias

functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (13),

while the blue arrows indicate the use of the completeness relation

Eq. (12).

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (13) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (12). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (13). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
(m+1)
m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.

III. BASES FOR BIAS FUNCTIONS

Since we have formally done the integral over t
0 in

Eq. (10), one might wonder where in Eq. (11) the non-
local-in-time e↵ect has gone. Comparing Eq. (11) to the
local-in-time expression
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sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (13) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
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of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1
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m , which is evident from the equal-
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ued to determine all of the C(n)
Om,↵: given n, the fluid
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the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.

III. BASES FOR BIAS FUNCTIONS

Since we have formally done the integral over t
0 in

Eq. (10), one might wonder where in Eq. (11) the non-
local-in-time e↵ect has gone. Comparing Eq. (11) to the
local-in-time expression
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(n)
g,loc(~x, t) =

X

Om

cOm(t)O(n)
m (~x, t) , (14)
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We choose the basis such that the elements with j =
1, . . . , 26 are a basis of the local expansion Eq. (16). Ex-

plicitly, we take L(5)
j = O

(5)
m with the corresponding Om

given by
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(21)

for j = 1, . . . , 26. Thus, the non-locality-in-time is con-
tained in the final three basis elements, which we take to
be

L(5)
27 = C(5)

�,5 , L(5)
28 = C(5)

r2,4 , L(5)
29 = C(5)

p3,3 . (22)

Non-zero b̃27, b̃28, and b̃29 can only come from non-local-
in-time physics, so we call them the non-local-in-time
bias parameters.

Another, perhaps more natural, choice of basis func-
tions is the so-called basis of descendants [19], where if

C(n)
Om,↵ is used at order n, then C(n+1)

Om,↵+1 is used at order

n+1.2 We write the fifth-order expansion in the basis of
descendants as

�
(5)
g (~x, t) =

29X

j=1

bj(t)B(5)
j (~x, t) . (23)

As shown in App. A [[check]]], the first 15 terms in
Eq. (23) are determined by the fourth order terms, i.e.,

for j = 1, . . . , 15, the bj and B(5)
j in Eq. (23) are the same

as those in [15], and those B(5)
j are given explicitly in [15].

For the new elements derived here, i.e. j = 16, . . . , 29,

we have B(5)
j = C(5)

Om,↵, where Om,↵ takes the following
values for the given j
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We also note that fifth order is the first time that the @ivj

has to be used in the initial expansion to form a basis, for

example through C(5)
p3,3 in the basis of descendants. This

is contrasted with the case at fourth order [15] where
@i@j� is enough.

Converting between the starting-from-time-

locality basis and the basis of descendants, we find
the following expression for the non-local-in-time bias
parameters and the basis of descendants bias parameters

b̃27 = b1 � 4b2 + 6b3 � 4b4 + 90b8 � 76b9 + b16 ,

b̃28 = b18 � b9 ,

b̃29 = �
4b8
3

+
4b9
3

�
10b11
3

+
7b20
3

+ b29 .

(25)

2
For n = 4, for example, this is the basis used in [15].

To see more quantitatively how the non-local-in-time
bias parameters measure the time scale of galaxy forma-
tion, consider the expression Eq. (11) for the bias param-
eters. Assuming that the kernel cOm(t, t0) has support
over a time scale of order 1/! and expanding around the
local-in-time limit, we have

cOm,↵(t) ⇡ cOm(t)

✓
1 + gOm,↵(t)

H

!
+ . . .

◆
, (26)

where the . . . represents terms higher order in H/!, and

gOm,↵(t) ⇠ O(1). Since the non-local-in-time bias pa-
rameters b̃27, b̃28 and b̃29 all vanish in the local-in-time
limit, they are proportional to (at least) H/!. The size
of the deviation from the first term, i.e. the local-in-time
piece, is controlled by H/!: if there is a sizable deviation
from the local-in-time limit, then ! ⇠ H, and thus the
time scale of the kernel cOm(t, t0) is of the order 1/H.3 In
our case, this happens if b̃27, b̃28, or b̃29 are order unity.
This in turn would mean that the formation of the ob-
served population of galaxies has been a↵ected by the
state of the Universe up to a Hubble time ago, and thus
that it has formed on a time scale of the order of the age
of the Universe.

V. OBSERVABLE SIGNATURES

Until now, we have focused on the perturbative galaxy
overdensity field itself. In large-scale structure analyses,
we typically compare to data using correlation functions
(or n-point functions if they contain n fields) of the over-
density fields of various tracers. Thus, one way to mea-
sure the non-local-in-time e↵ect that we have discovered
in this Letter is in correlation functions. Since we found
that this e↵ect arises at fifth order in perturbations, the
lowest order observables sensitive to it are the two-loop
two-point function through

h�
(5)
g1 (~x1)�

(1)
g2 (~x2)i , (27)

the two-loop three-point function through

h�
(5)
g1 (~x1)�

(2)
g2 (~x2)�

(1)
g3 (~x3)i , (28)

the one-loop four-point function through

h�
(5)
g1 (~x1)�

(1)
g2 (~x2)�

(1)
g3 (~x3)�

(1)
g4 (~x4)i , (29)

and the tree-level five-point function through

h�
(5)
g1 (~x1)�

(1)
g2 (~x2)�

(1)
g3 (~x3)�

(1)
g4 (~x4)�

(1)
g5 (~x5)�

(1)
g6 (~x6)i , (30)

where we have used the subscript gi to denote possibly
di↵erent tracer samples (each of which can have a di↵er-
ent set of bias parameters), and we have taken all fields

3
Of course, the measurement of a smaller deviation from the local-

in-time limit means that the formation time scale could be cor-

respondingly smaller.
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• After validating our technique against the MCMC’s on BOSS data, we Fisher 
forecast for DESI and Megamapper

• Prediction of one-loop Power Spectrum and Bispectrum

• Here, and in the NG analysis, introduce a `perturbativity prior’: impose expected 
size and scaling of loop

• Also a `galaxy formation prior’ , 0.3 in each EFT-parameter

Next Decade
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Figure 9: Plot showing various two-loop monopole power spectra, P 0

2L against the CMASS data error,

�data,CMASS (grey). As an example of a typical MCMC, the BOSS CMASS P 0

2L was estimated using the rela-

tion P2L ⇠ P2
1L

PTree , and is shown in blue. The expected P 0

2L size is shown in red and an example of a P 0

2L that would

be favoured by the perturbative prior is shown in green.

this threshold for the two-loop contribution into a prior on the size of the one-loop contribution.

5.1 Contribution to the Fisher matrix

We impose a perturbative prior for the power spectrum and bispectrum respectively, and the

procedure is the same in both cases. We therefore keep the derivation generic, for the loop of some

observable, X1L, where X 2 {P,B}. In a later step, we will derive an estimate for the correct size

of the loop, denoted by X
C

1L
. As mentioned in the previous section, this estimate will come from a

threshold for the signal-to-noise of two-loop contributions, through which we can infer properties

about the correct one-loop contributions. The quantity we want to constrain is X1L, whereas XC

1L

we assume to be estimated before the data analysis. We then impose that on average, X1L is close

to X
C

1L
, therefore, we impose a Gaussian prior

1

NX

X

ki

Z
1

�1

Z
2⇡

0

dµi

2

d�

2⇡

X1L(ki; ẑ)

X
C

1L
(ki; ẑ)

⇠ N (1, 1), (5.1)

where ki 2 {k, (k1, k2, k3)}, µi 2 {µ, µ1} and NX 2 {Nbins, N�} for the power spectrum and

bispectrum respectively. We here implement the real space part of the perturbative prior29. For

the remainder of this section, we, therefore, always refer to real space quantities, indicated by

29We note that the real space perturbative prior is on its own only restricting the size of the real space correlators.

However, given that the size of the full redshift space observables is highly dependent on the real space EFT-parameter

values, there is little room left for the full redshift space contribution to be large, if the real space contribution is

restricted enough. We therefore expect that the full redshift space prior is highly correlated with the real space one,

and, therefore, only do the real space version here. Adding the redshift space part is straightforward.
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• Just using perturbativity prior, potentially a factor of 20, 3, 6 over Planck!!

Results: Non-Gaussianities

BOSS DESI

MegaMapper

BOSS: �(·) f
loc.
NL f

eq.
NL f

orth.
NL log(b1) c2 c4

P+BTree 37 357 142 0.006 0.081 0.88

P+B 23 253 67 0.005 0.021 0.36

P+B+p.p. 17 228 62 0.003 0.020 0.28

P+B+p.p.+g.p. 15 163 49 0.003 0.011 0.15

DESI: �(·) f
loc.
NL f

eq.
NL f

orth.
NL log(b1) c2 c4

P+BTree 3.61 142 71.5 0.003 0.04 0.4

P+B 3.46 114 30.2 0.003 0.02 0.2

P+B+p.p. 3.26 91.5 27.0 0.001 0.01 0.1

P+B+p.p.+g.p. 3.19 77.0 21.8 0.002 0.008 0.08

MMo: �(·) f
loc.
NL f

eq.
NL f

orth.
NL log(b1) c2 c4

P+BTree 0.29 23.4 8.7 0.0005 0.01 0.14

P+B 0.27 17.7 4.6 0.0003 0.01 0.05

P +B+p.p. 0.26 16.0 4.2 0.0002 0.005 0.04

P+B+p.p.+g.p. 0.26 12.6 3.4 0.0002 0.003 0.03

Figure 10: Triangle plots and errors from Fisher forecasts for BOSS (top left), DESI (top right), and
MegaMapper (bottom left), for the equilateral type of non-Gaussianity, and leading bias parameters. We also
show errors on other non-Gaussianity parameters in the tables. Each analysis was done with cosmological
parameters fixed and each non-Gaussianity parameter was analyzed separately. We always include the
power spectrum at one loop order with the addition of either the tree-level bispectrum the loop bispectrum
or the loop bispectrum with a perturbative prior (p.p.) also in combination with the “galaxy-formation
prior” (g.p.). We use all power spectrum and bispectrum multipoles in each case and use the analytical
covariance without cross-correlations.
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• Just using perturbativity prior, potentially factor of 5 over Planck!

• Important for the landscape of string theory.

• Neutrinos: guaranteed evidence/detection:

Results: Curvature and Neutrinos

BOSS DESI

MegaMapper

BOSS:�(·) h ln(10
10
As) ⌦m ns ⌦k

P+B 0.007 0.130 0.006 0.025 0.050

P +B+p.p. 0.006 0.110 0.004 0.013 0.041

P+B+p.p.+g.p. 0.006 0.069 0.004 0.011 0.025

DESI: �(·) h ln(10
10
As) ⌦m ns ⌦k

P+B 0.004 0.035 0.002 0.011 0.013

P +B+p.p. 0.004 0.032 0.002 0.008 0.012

P+B+p.p.+g.p. 0.004 0.025 0.002 0.007 0.009

MMo: �(·) h ln(10
10
As) ⌦m ns ⌦k

P+B 0.002 0.0052 0.0003 0.002 0.0015

P +B+p.p. 0.002 0.0046 0.0003 0.002 0.0012

P+B+p.p.+g.p. 0.002 0.0044 0.0003 0.001 0.0011

Figure 12: Triangle plots and errors from Fisher forecasts for BOSS (top left), DESI (top right), and
MegaMapper (bottom left), for base cosmological parameters including the spectral tilt and spatial cur-
vature. We always include the power spectrum at one loop order with the addition of either the loop
bispectrum or the loop bispectrum with a perturbative prior (p.p.) or also in combination with the “galaxy-
formation prior” (g.p.). We use all power spectrum and bispectrum multipoles in each case and use the
analytical covariance without cross-correlations.
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The resulting bias functions C(n)
Om,↵, which we say are

in the fluid expansion of the seed function Om and will
use throughout this Letter, are defined by the expansion
in Eq. (9), whose form is guaranteed by assuming the
scaling time dependence of the dark-matter fields Eq. (3),
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we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:
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We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation

O
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m (~x, t) =
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which is trivially obtained by setting t = t
0 in Eq. (9),

and where O
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m is the standard expansion of Om at n-th
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FIG. 1. Diagrammatic representation of how to use the recursion

relations Eq. (13) and Eq. (14) to determine the full set of bias

functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (14),

while the blue arrows indicate the use of the completeness relation

Eq. (13).

which is valid for n�↵�m+1 > 0. To derive Eq. (14),
one can simply take d/dt of both sides of Eq. (9), use the
scaling time dependence in Eq. (10), use the fact that
(@t+a(t)�1

v
i(~x, t)@i)~xfl(~x, t, t0) = 0, and then, since both

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
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It is worth stressing that, unlike other treatments of bi-
ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (14) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.

One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (13). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (14). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
(m+1)
m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.

We give a diagrammatic representation of this recur-
sion relation in Fig. 1.



• Shot noise and EFT-parameters:
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Figure 6: Triangle plots and errors from several di↵erent Fisher forecasts for DESI. We compare base results to

results obtained without shot noise (left) and with biases fixed or with a “galaxy-formation prior” (g.p.) (right). In

the table, we also show the impact of including higher multipoles on the power spectrum and bispectrum and also

see the impact on fNL. For the constraints on fNL, we fix the other cosmological parameters.

scenario in App. B.1. Thus, the numerical values that we will use in this section were derived from

Tab. 1 of [116] and methods from Sec. 2. They are given in Tab. 3.

As in the DESI forecast, we shift the rest of the biases parameters according to the method

described in Sec. 2.3. Furthermore, we again use kmin = 0.001hMpc�1 for the power spectrum and

kmin = 0.02hMpc�1 for the bispectrum, as well as �k = 0.005hMpc�1 for the power spectrum

and �k = 0.02hMpc�1 for the bispectrum. Again, to reduce binning e↵ects, we evaluate on ke↵.

The results for fNL were again obtained with fixed cosmological parameters. Analyzing fNL in

combination with cosmological parameters changes the fNL constraints by less than 3%. Finally,

just like for the DESI forecasts, we use the analytical covariance from Eq. (2.16) and Eq. (2.17),

following the discussion in Sec. 2.3 and its precision discussed in Sec. 3.

Results We present base results for MegaMapper in a similar format to the previous sections

in Fig. 7. We see that the bispectrum contains significant constraining power. As mentioned in

Sec. 3.2, we expect that the constraints presented here will be an overestimate as we are neglecting
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Sec. 3.2, we expect that the constraints presented here will be an overestimate as we are neglecting
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Impact of shot noise and biases Given the long timeline until results will be available for

MegaMapper, and target selection is yet to happen, we will discuss some aspects that might

improve results as was discussed for DESI in Sec. 4.2. In particular, while the perturbative reach

is far greater at higher redshifts, as can be seen from Tab. 8, the shot noise, especially for the

higher redshift bin, is extremely large28. We, therefore, present the limiting case of zero shot noise

to better understand the possible gain achievable by reducing the currently estimated shot noise.

Equally motivated by the long timeline of MegaMapper, we present results with stronger bias

priors, anticipating the better understanding of galaxy formation until the data release. Along

with the zero shot noise and “galaxy-formation prior” results, we also present the impact of fixing

biases in Fig. 8.
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Figure 8: Triangle plots and errors from several di↵erent Fisher forecasts for MegaMapper. We compare base results

to results obtained without shot noise (left) and with biases fixed or with a “galaxy-formation prior” (g.p.) (right).

In the table, we also show the impact of including higher multipoles on the power spectrum and bispectrum and

also see the impact on fNL. For the constraints on fNL, we fix the other cosmological parameters.

We see that stronger bias priors mostly have an e↵ect on f
eq.

NL
and f

orth.

NL
. Going further and

fixing the biases we would again, roughly, reduce the error bar by a factor 2, with again the

28This also means that the 2-loop analysis for MegaMapper just marginally improves on this results at < 20%

error bar reduction, which we verified with the same method as mentioned in footnote 25.
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• After the initial, successful, application to BOSS data:

–measurement of cosmological parameters

–new method to measure Hubble

–perhaps fixing tensions

• the EFTofLSS is starting to look ahead to

–higher-order and higher-n point functions

–enlightening what next surveys could do, and how to design them

• an eye to BSM: primordial non-Gaussianities, neutrinos, curvature, etc..

–learning about some astrophysics, qualitative facts on the universe

Summary



• Nice recursion relations for these operators:

• .

• .

• Easy higher order:

Consequences of non-locality in time
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end up with an expression can be cast with the following
notation [15]

[Om(~xfl(~x, t, t
0), t0)](n) =
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C(n)
Om,↵(~x, t) .

(9)

The resulting bias functions C(n)
Om,↵, which we say are

in the fluid expansion of the seed function Om and will
use throughout this Letter, are defined by the expansion
in Eq. (8), whose form is guaranteed by assuming the
scaling time dependence of the dark-matter fields Eq. (3),
which also implies that

C(n)
Om,↵(~x, t) =

✓
D(t)

D(t0)

◆n

C(n)
Om,↵(~x, t
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Plugging (8) into (5), and defining the expansion co-
e�cients

cOm,↵(t) ⌘
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dt
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H(t0)cOm(t, t0)

✓
D(t0)
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, (11)

we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:

) �
(n)
g (~x, t) =

X

Om

n�m+1X

↵=1

cOm,↵(t)C(n)
Om,↵(~x, t) . (12)

We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation

O
(n)
m (~x, t) =

n�m+1X

↵=1

C(n)
Om,↵(~x, t) , (13)

which is trivially obtained by setting t = t
0 in Eq. (8),

and where O
(n)
m is the standard expansion of Om at n-

th order in perturbations. The second, which captures
the consequences of expanding ~xfl in Eq. (8), is the fluid
recursion
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FIG. 1. Diagrammatic representation of how to use the recursion

relations Eq. (12) and Eq. (13) to determine the full set of bias

functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (13),

while the blue arrows indicate the use of the completeness relation

Eq. (12).

which is valid for n�↵�m+1 > 0. To derive Eq. (13),
one can simply take d/dt of both sides of Eq. (8), use
the scaling time dependence in Eq. (9), use the fact that
(@t+a(t)�1

v
i(~x, t)@i)~xfl(~x, t, t0) = 0, and then, since both

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (13) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (12). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (13). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
(m+1)
m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.

III. BASES FOR BIAS FUNCTIONS

Since we have formally done the integral over t
0 in

Eq. (10), one might wonder where in Eq. (11) the non-
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functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (13),

while the blue arrows indicate the use of the completeness relation

Eq. (12).

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-
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Indeed, Eq. (13) is a consequence of Galilean invariance
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the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-
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the scaling time dependence in Eq. (9), use the fact that
(@t+a(t)�1

v
i(~x, t)@i)~xfl(~x, t, t0) = 0, and then, since both

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (13) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (12). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (13). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
(m+1)
m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.

III. BASES FOR BIAS FUNCTIONS

Since we have formally done the integral over t
0 in

Eq. (10), one might wonder where in Eq. (11) the non-

3

end up with an expression can be cast with the following
notation [15]

[Om(~xfl(~x, t, t
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(9)

The resulting bias functions C(n)
Om,↵, which we say are

in the fluid expansion of the seed function Om and will
use throughout this Letter, are defined by the expansion
in Eq. (8), whose form is guaranteed by assuming the
scaling time dependence of the dark-matter fields Eq. (3),
which also implies that
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Plugging (8) into (5), and defining the expansion co-
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we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:
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cOm,↵(t)C(n)
Om,↵(~x, t) . (12)

We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation

O
(n)
m (~x, t) =

n�m+1X

↵=1

C(n)
Om,↵(~x, t) , (13)

which is trivially obtained by setting t = t
0 in Eq. (8),

and where O
(n)
m is the standard expansion of Om at n-

th order in perturbations. The second, which captures
the consequences of expanding ~xfl in Eq. (8), is the fluid
recursion
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FIG. 1. Diagrammatic representation of how to use the recursion

relations Eq. (12) and Eq. (13) to determine the full set of bias

functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (13),

while the blue arrows indicate the use of the completeness relation

Eq. (12).

which is valid for n�↵�m+1 > 0. To derive Eq. (13),
one can simply take d/dt of both sides of Eq. (8), use
the scaling time dependence in Eq. (9), use the fact that
(@t+a(t)�1

v
i(~x, t)@i)~xfl(~x, t, t0) = 0, and then, since both

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (13) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (12). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (13). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
(m+1)
m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.
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Since we have formally done the integral over t
0 in

Eq. (10), one might wonder where in Eq. (11) the non-
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end up with an expression can be cast with the following
notation [15]

[Om(~xfl(~x, t, t
0), t0)](n) =

n�m+1X

↵=1

✓
D(t0)

D(t)

◆↵+m�1

C(n)
Om,↵(~x, t) .

(8)

[Om(~xfl(~x, t, t
0), t0)](n) =

n�m+1X

↵=1

✓
D(t0)

D(t)

◆↵+m�1

C(n)
Om,↵(~x, t) .

(9)

The resulting bias functions C(n)
Om,↵, which we say are

in the fluid expansion of the seed function Om and will
use throughout this Letter, are defined by the expansion
in Eq. (9), whose form is guaranteed by assuming the
scaling time dependence of the dark-matter fields Eq. (3),
which also implies that
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Plugging (9) into (5), and defining the expansion co-
e�cients
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dt
0
H(t0)cOm(t, t0)
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we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:
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Om

n�m+1X

↵=1

cOm,↵(t)C(n)
Om,↵(~x, t) . (12)

We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation

O
(n)
m (~x, t) =

n�m+1X

↵=1

C(n)
Om,↵(~x, t) , (13)

which is trivially obtained by setting t = t
0 in Eq. (9),

and where O
(n)
m is the standard expansion of Om at n-th

order in perturbations. The second, which captures the
consequences of expanding ~xfl in Eq. (9), is the
fluid recursion
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FIG. 1. Diagrammatic representation of how to use the recursion

relations Eq. (13) and Eq. (14) to determine the full set of bias

functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (14),

while the blue arrows indicate the use of the completeness relation

Eq. (13).

which is valid for n�↵�m+1 > 0. To derive Eq. (14),
one can simply take d/dt of both sides of Eq. (9), use the
scaling time dependence in Eq. (10), use the fact that
(@t+a(t)�1

v
i(~x, t)@i)~xfl(~x, t, t0) = 0, and then, since both

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (14) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (13). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (14). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
(m+1)
m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.

III. BASES FOR BIAS FUNCTIONS

Since we have formally done the integral over t
0 in

Eq. (11), one might wonder where in Eq. (12) the non-

3

end up with an expression can be cast with the following
notation [15]

[Om(~xfl(~x, t, t
0), t0)](n) =
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(9)

The resulting bias functions C(n)
Om,↵, which we say are

in the fluid expansion of the seed function Om and will
use throughout this Letter, are defined by the expansion
in Eq. (9), whose form is guaranteed by assuming the
scaling time dependence of the dark-matter fields Eq. (3),
which also implies that

C(n)
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D(t)
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Plugging (9) into (5), and defining the expansion co-
e�cients

cOm,↵(t) ⌘
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dt
0
H(t0)cOm(t, t0)
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we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:
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(n)
g (~x, t) =

X

Om

n�m+1X

↵=1

cOm,↵(t)C(n)
Om,↵(~x, t) . (12)

We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation

O
(n)
m (~x, t) =

n�m+1X

↵=1

C(n)
Om,↵(~x, t) , (13)

which is trivially obtained by setting t = t
0 in Eq. (9),

and where O
(n)
m is the standard expansion of Om at n-th

order in perturbations. The second, which captures the
consequences of expanding ~xfl in Eq. (9), is the
fluid recursion
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FIG. 1. Diagrammatic representation of how to use the recursion

relations Eq. (13) and Eq. (14) to determine the full set of bias

functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (14),

while the blue arrows indicate the use of the completeness relation

Eq. (13).

which is valid for n�↵�m+1 > 0. To derive Eq. (14),
one can simply take d/dt of both sides of Eq. (9), use the
scaling time dependence in Eq. (10), use the fact that
(@t+a(t)�1

v
i(~x, t)@i)~xfl(~x, t, t0) = 0, and then, since both

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (14) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (13). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (14). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
(m+1)
m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.

III. BASES FOR BIAS FUNCTIONS

Since we have formally done the integral over t
0 in

Eq. (11), one might wonder where in Eq. (12) the non-

3

end up with an expression can be cast with the following
notation [15]

[Om(~xfl(~x, t, t
0), t0)](n) =
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D(t0)
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(8)

The resulting bias functions C(n)
Om,↵, which we say are in

the fluid expansion of the seed function Om and will use
throughout this Letter, are defined by the expansion in
Eq. (8), whose form is guaranteed by assuming the scaling
time dependence of the dark-matter fields Eq. (3), which
also implies that
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Plugging (8) into (5), and defining the expansion co-
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we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:
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Om
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↵=1

cOm,↵(t)C(n)
Om,↵(~x, t) . (11)

We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation

O
(n)
m (~x, t) =

n�m+1X

↵=1

C(n)
Om,↵(~x, t) , (12)

which is trivially obtained by setting t = t
0 in Eq. (8),

and where O
(n)
m is the standard expansion of Om at n-

th order in perturbations. The second, which captures
the consequences of expanding ~xfl in Eq. (8), is the fluid
recursion
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which is valid for n�↵�m+1 > 0. To derive Eq. (13),
one can simply take d/dt of both sides of Eq. (8), use
the scaling time dependence in Eq. (9), use the fact that
(@t+a(t)�1
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FIG. 1. Diagrammatic representation of how to use the recursion

relations Eq. (12) and Eq. (13) to determine the full set of bias

functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (13),

while the blue arrows indicate the use of the completeness relation

Eq. (12).

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (13) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (12). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (13). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
(m+1)
m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.
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Since we have formally done the integral over t
0 in

Eq. (10), one might wonder where in Eq. (11) the non-
local-in-time e↵ect has gone. Comparing Eq. (11) to the
local-in-time expression
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end up with an expression can be cast with the following
notation [15]
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The resulting bias functions C(n)
Om,↵, which we say are in

the fluid expansion of the seed function Om and will use
throughout this Letter, are defined by the expansion in
Eq. (8), whose form is guaranteed by assuming the scaling
time dependence of the dark-matter fields Eq. (3), which
also implies that
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Plugging (8) into (5), and defining the expansion co-
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we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:
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We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation
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which is trivially obtained by setting t = t
0 in Eq. (8),

and where O
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the consequences of expanding ~xfl in Eq. (8), is the fluid
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which is valid for n�↵�m+1 > 0. To derive Eq. (13),
one can simply take d/dt of both sides of Eq. (8), use
the scaling time dependence in Eq. (9), use the fact that
(@t+a(t)�1

v
i(~x, t)@i)~xfl(~x, t, t0) = 0, and then, since both
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FIG. 1. Diagrammatic representation of how to use the recursion

relations Eq. (12) and Eq. (13) to determine the full set of bias

functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (13),

while the blue arrows indicate the use of the completeness relation

Eq. (12).

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (13) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (12). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (13). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
(m+1)
m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.

III. BASES FOR BIAS FUNCTIONS

Since we have formally done the integral over t
0 in

Eq. (10), one might wonder where in Eq. (11) the non-
local-in-time e↵ect has gone. Comparing Eq. (11) to the
local-in-time expression

�
(n)
g,loc(~x, t) =

X

Om

cOm(t)O(n)
m (~x, t) , (14)

3

end up with an expression can be cast with the following
notation [15]

[Om(~xfl(~x, t, t
0), t0)](n) =

n�m+1X

↵=1

✓
D(t0)

D(t)

◆↵+m�1

C(n)
Om,↵(~x, t) .

(8)

[Om(~xfl(~x, t, t
0), t0)](n) =

n�m+1X

↵=1

✓
D(t0)

D(t)

◆↵+m�1

C(n)
Om,↵(~x, t) .

(9)

The resulting bias functions C(n)
Om,↵, which we say are

in the fluid expansion of the seed function Om and will
use throughout this Letter, are defined by the expansion
in Eq. (9), whose form is guaranteed by assuming the
scaling time dependence of the dark-matter fields Eq. (3),
which also implies that

C(n)
Om,↵(~x, t) =

✓
D(t)

D(t0)

◆n

C(n)
Om,↵(~x, t

0) . (10)

Plugging (9) into (5), and defining the expansion co-
e�cients

cOm,↵(t) ⌘

Z t

dt
0
H(t0)cOm(t, t0)

✓
D(t0)

D(t)

◆↵+m�1

, (11)

we finally have the most general expansion of the over-
density at order n in terms of fields at the same time:

) �
(n)
g (~x, t) =

X

Om

n�m+1X

↵=1

cOm,↵(t)C(n)
Om,↵(~x, t) . (12)

We close this section by providing a much simpler way

to obtain the bias functions C(n)
Om,↵, using recursion rela-

tions, which is an additional key technical results of this
Letter. While the procedure described above is concep-
tually straightforward, it can be practically quite cum-
bersome (see the derivation at fourth order in [15], for
example). The recursion relations come in two parts.
The first is the equal-time completeness relation

O
(n)
m (~x, t) =

n�m+1X

↵=1

C(n)
Om,↵(~x, t) , (13)

which is trivially obtained by setting t = t
0 in Eq. (9),

and where O
(n)
m is the standard expansion of Om at n-th

order in perturbations. The second, which captures the
consequences of expanding ~xfl in Eq. (9), is the
fluid recursion

C(n)
Om,↵(~x, t) =
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FIG. 1. Diagrammatic representation of how to use the recursion

relations Eq. (13) and Eq. (14) to determine the full set of bias

functions COm,↵ in the fluid expansion of a seed function Om.

The red arrows indicate the use of the fluid recursion Eq. (14),

while the blue arrows indicate the use of the completeness relation

Eq. (13).

which is valid for n�↵�m+1 > 0. To derive Eq. (14),
one can simply take d/dt of both sides of Eq. (9), use the
scaling time dependence in Eq. (10), use the fact that
(@t+a(t)�1

v
i(~x, t)@i)~xfl(~x, t, t0) = 0, and then, since both

sides must be equal for all values of t0, set equal the terms
with the same powers of D(t0). This recursion is reminis-
cent of the famous dark-matter recursion relations [16],
and provides, for the first time, a full generalization to
generic biased tracers.
It is worth stressing that, unlike other treatments of bi-

ased tracers (such as [17, 18] and subsequent works), we
do not assume an instantaneous formation time of galax-
ies, nor do we assume a continuity equation for galaxies.
Indeed, Eq. (14) is a consequence of Galilean invariance
(i.e. expanding ~xfl), not of the conservation of galaxies.
One way to use the above recursion relations is the

following. The O
(n)
m are easily computable, since these

are just the standard perturbative expressions in terms
of the dark-matter fields familiar from the local-in-time
bias expansion. One then starts at n = m and ↵ = 1

with C(m)
Om,1 = O

(m)
m , which is evident from the equal-

time completeness relation Eq. (13). Next, one obtains

C(m+1)
Om,1 from the fluid recursion Eq. (14). Then, one can

finish determining the functions at order m+ 1 by again

using the equal-time completeness relation C(m+1)
Om,2 =

O
(m+1)
m � C(m+1)

Om,1 . This procedure can then be contin-

ued to determine all of the C(n)
Om,↵: given n, the fluid

recursion is used for n � ↵ � m + 1 > 0, and then

the completeness relation is used to determined

the remaining case n� ↵�m+ 1 = 0.
We give a diagrammatic representation of this recur-

sion relation in Fig. 1.

III. BASES FOR BIAS FUNCTIONS

Since we have formally done the integral over t
0 in

Eq. (11), one might wonder where in Eq. (12) the non-


