Axion Mass in a Composite Accidental Axion Model

Takafumi Aoki

ICRR, the University of Tokyo

Work in progress with Masahiro Ibe, Satoshi Shirai and Keiichi Watanabe.

What is **axion**?

• Axion appears in Peccei-Quinn mechanism, which solves the strong CP problem. Axion is also a <u>dark matter</u> candidate.

Energy scale of Pecci-Quinn mechanism

- Observational constrainton decay constant: $f_{PQ} \gtrsim 10^9 GeV$
- Even larger f_{PQ} is preferred to exlain all of the dark matter

"Axion Quality Problem"

• Higher dimensional $U(1)_{PQ}$ -breaking operators can contribute to the effective θ -angle and θ can easily exceed the experimental upper bound.

We need some suppression mechanism for $U(1)_{PQ}$ -breaking higher-dimensional operators. This issue is called "axion quality problem".

- 1. Suppresions for $U(1)_{PQ}$ -breaking operators in UV can be achieved with some gauge interactions in UV.
- 2. In such models, instantons not in QCD ("small instantons") can affect the axion potential in general. [Agrawl & Howe (2018), Csáki et al (2020)].
- Such small instanton contributions might possibly vanish, due to <u>fermion zero modes</u>. Case-by-case studies appear to be needed. ← My Talk

Why "fermion zero modes"?

Instanton contribution to the axion mass may vanish, if fermion zero modes exist.

An example of vanishing physical quantity

 $\mathcal{L} = \xi^+ i \sigma^\mu D_\mu \xi + \eta^\dagger i \sigma^\mu D_\mu \eta$

Situation: $\sigma^{\mu}D_{\mu}$ has zero modes ξ_0, η_0 .

Decomposing ξ and η as

 $\xi = \lambda \xi_0 + (\text{non-zero modes}), \quad \eta = \rho \eta_0 + (\text{non-zero modes}),$

Path integral is

$$\int d\xi^{\dagger} d\xi d\eta^{\dagger} d\eta \, \exp[-S]O \, \propto \, \int d\lambda d\rho \, \exp[-0]O$$
$$= \int d\lambda d\rho \, O.$$

This is vanishing, if *O* does not include ξ_0 or η_0 .

Why "fermion zero modes"?

We also need to look carefully at interactions of fermions.

An example of non-vanishing physical quantity

 $L = \xi^{+} i \sigma^{\mu} D_{\mu} \xi + \eta^{\dagger} i \sigma^{\mu} D_{\mu} \eta + m(\eta \xi + \xi^{\dagger} \eta^{\dagger})$

<u>Situation</u>: $\sigma^{\mu}D_{\mu}$ has zero modes ξ_0, η_0 .

Decomposing ξ and η as,

 $\xi = \lambda \xi_0 + (\text{non-zero modes}), \quad \eta = \rho \eta_0 + (\text{non-zero modes}),$

Path integral is

$$\int d\xi^{\dagger} d\xi d\eta^{\dagger} d\eta \, \exp[-S] O \, \propto \, \int d\lambda d\rho \, \exp[-m\rho\lambda\eta_0\xi_0] O \neq \, 0.$$

This is non-vanishing, due to the interactions of Weyl fermions.

Be careful about fermion zero modes and their interactions.

(A simple version of) composite accidental axion models [Redi & Sato (2016)].

- $[SU(3)_{ST}]^N \times [SU(3)_W]^N$ gauge theory with fermions. (My talk: N = 2)
- Dynamical scales: $\Lambda_{\text{STRONGER}} \gg \Lambda_{\text{WEAKER}}$.

Indices	А	а	В	b
	$SU(3)_{ST}$	$SU(3)_W$	$SU(3)_{ST}^{\prime}$	$SU(3)_{W}^{\prime}$
ψ^a_A	3	$\overline{3}$		
ψ_A	3	1		
ψ^B_a		3	$\overline{3}$	
ψ^B		1	$\overline{3}$	
ψ^b_B			3	3
ψ_B			3	1
ψ^A_b	3			3
ψ^A	3			1

Features of the dynamics (N=2)

Energy scale

$$\begin{array}{c} \stackrel{\leftarrow}{\leftarrow} \Lambda_{ST} \\ \stackrel{\leftarrow}{\leftarrow} \Lambda_{ST}' : & SU(3)_{ST} \text{ and } SU(3)'_{ST} \text{ confine.} \\ & \bullet U(1)_{PQ} \text{ is spontaneously broken.} \\ & \bullet QCD \text{ appears in the diagonal subgroup of } SU(3)_W \times SU(3)'_W \\ \stackrel{\leftarrow}{\leftarrow} \Lambda_W'_{\leftarrow} \\ & \leftarrow \Lambda'_W \end{array}$$

Next Steps

- 1. Dynamics of $SU(3)_{ST} \times SU(3)'_{ST}$
- 2. $U(1)_{PQ}$ in this model

Dynamics of $SU(3)_{ST} \times SU(3)'_{ST}$

Indices	А	а	В	b
	$SU(3)_{ST}$	$SU(3)_{W}$	$SU(3)_{ST}^{\prime}$	$SU(3)_{W}^{\prime}$
ψ^a_A	3	$\overline{3}$		
ψ_A	3	1		
ψ^B_a		3	$\overline{3}$	
ψ^B		1	3	
ψ^b_B			3	$\overline{3}$
ψ_B			3	1
ψ_h^A	3			3
ψ^A	3			1

QCD appears in the diagonal subgroup of $[SU(3)_W]^2,$ which is unbroken by condensations at scale $\Lambda_{ST}.$

$U(1)_{PQ} \mbox{ in this model }$

	U(1) _{PQ}	SU(3) _{ST}	SU(3) _W	SU(3)' _{ST}	$SU(3)'_{W}$
ψ^a_A	1	3	$\overline{3}$		
ψ_A	-3	3	1		
ψ^B_a	1		3	$\overline{3}$	
ψ^B	-3		1	$\overline{3}$	
ψ^b_B	1			3	$\overline{3}$
ψ_B	-3			3	1
ψ_b^A	1	$\overline{3}$			3
ψ^A	-3	$\overline{3}$			1

• $U(1)_{PQ} - SU(3)_{ST} - SU(3)_{ST}$: Non-anomalous

•
$$U(1)_{PQ} - SU(3)_W - SU(3)_W$$
:
Anomalous

• $U(1)_{PQ}$ is spontaneously broken by condensations at the scale Λ_{ST} . Axion quality in this model:

- U(1)_{PQ} breaking operators are restricted by gauge symmetries.
- The lowest dimensional, U(1)_{PQ} breaking operator (which is singlet under all the symmetries) is $\psi_A^a \psi_B^A \psi_B^B \psi_a^B$ which has <u>a mass dimension 6</u>.
- With larger *N* (*N* > 2), U(1)_{PQ}-breaking operators become more higher dimensional, and better axion quality is achieved.

Axion mass in this model:

• Only a part of instantons in $SU(3)_W \times SU(3)'_W$ is in QCD, although they could potentially contribute to the axion mass.

Next Steps

We examine such small instanton contributions in a toy model.

A model, effectively describing the dynamics below Λ_{ST} , Λ'_{ST}

- $[SU(3)]^2$ gauge theory with fermions and scalars.
- Yukawa interactions: $y_1 \Phi_1^{\ b}_a q_R^{\ \dagger}_b \overline{Q}_L^{\ a} + y_2 \Phi_2^{\ a}_b Q_R^{\ \dagger}_a \overline{q}_L^{\ b} + \text{h.c.}$.

	SU(3) _a	SU(3) _b	U(1) _{PQ}
Scalars			
Φ_1	3	$\overline{3}$	-2
Φ_2	3	3	-2
Fermions			
$Q_{ m R}{}^c$	3		1
$\overline{Q}_{ m L}$	3		1
$q_{\rm R}^{c}$		3	1
$\overline{q}_{ m L}$		3	1

- $SU(3)_a \times SU(3)_b$ corresponds to $SU(3)_W \times SU(3)'_W$.
- A QCD instanton is a pair of simultaneous instantons in SU(3)_a and SU(3)_b

Yukawa interactions:

$$y_1 \Phi_{1a}^{\ b} q_{\mathrm{R}_b^{\dagger}} \overline{Q}_{\mathrm{L}}^{\ a} + y_2 \Phi_{2b}^{\ a} Q_{\mathrm{R}_a^{\dagger}} \overline{q}_{\mathrm{L}}^{\ b} + \mathrm{h.c.}$$

- $SU(3)_a$ instanton is an example of small instantons.
- All the fermions become massive by VEV of Φ_1 and Φ_2 .

Question:

Are there fermion zero modes?

Next Steps

we discuss fermion zero modes around instantons in a simpler SM-like model.

SM-like SU(2) model, instead of axion models:

$$\mathcal{L} = -\frac{1}{4g^2} F^{\mu\nu} F_{\mu\nu} + |D_{\mu}H|^2 + \frac{\lambda}{4} (H^{\dagger}H - \nu^2)^2 + \left(e_{\mathrm{R}}^{\dagger}\ell_{\mathrm{L}}^{\dagger}\right) \begin{pmatrix} yH & i\sigma^{\mu}\partial_{\mu} \\ i\bar{\sigma}^{\mu}D_{\mu} & yH^{\dagger} \end{pmatrix} \begin{pmatrix} \ell_{\mathrm{L}} \\ e_{\mathrm{R}} \end{pmatrix}$$

•
$$D = \partial - iA$$
, $F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu - \epsilon^{abc} A^a_\mu A^b_\nu$.

• H, ℓ_L, e_R are SU(2)-doublet, doublet, singlet, respectively.

Our interests:

- 1. An instanton with a size sufficiently smaller than v^{-1}
- 2. Fermion zero modes around such an instanton

Small Instantons

An instanton with a size $\rho \ll v^{-1}$ has following profiles of *H*:

$$H = \begin{pmatrix} 0 & \mathcal{H}v \end{pmatrix}^T$$

Fermion zero modes

Zero mode equation for
$$\Psi \stackrel{\text{def}}{=} \begin{pmatrix} \ell_L \\ e_R \end{pmatrix}$$
 :

$$\hat{D}\Psi \stackrel{\text{def}}{=} \begin{pmatrix} yH & i\sigma^{\mu}\partial_{\mu} \\ i\bar{\sigma}^{\mu}D_{\mu} & yH^{\dagger} \end{pmatrix} \begin{pmatrix} \ell_{\rm L} \\ e_{\rm R} \end{pmatrix} = 0$$

There exist fermion zero modes of \hat{D} . [Espinosa (1989)]

• With an anti-instanton background, Ψ has a zero mode for \hat{D} :

(zero mode) =
$$\begin{pmatrix} \ell_{\rm L} \\ e_{\rm R} \end{pmatrix} \propto \begin{pmatrix} O(1) \\ O(yv) \end{pmatrix}$$

• With an instanton background, not Ψ but Ψ^{\dagger} has a zero mode (for $\hat{D}^{\dagger})$.

Fermion Zero Modes in the Axion Toy Model

$$\begin{pmatrix} \boldsymbol{q}_{\mathsf{R}}^{\dagger} & \boldsymbol{\overline{Q}}_{\mathsf{L}}^{\dagger} & \boldsymbol{\overline{q}}_{\mathsf{L}}^{\dagger} & \boldsymbol{\mathcal{Q}}_{\mathsf{R}}^{\dagger} \end{pmatrix} \begin{pmatrix} -y_{1}\Phi_{1} & i\sigma^{\mu}\boldsymbol{D}_{\mu}^{(2)} & & \\ i\bar{\sigma}^{\mu}\boldsymbol{D}_{\mu}^{(1)} & -y_{1}\Phi_{1}^{\dagger} & & \\ & & -y_{2}\Phi_{2}^{\dagger} & i\bar{\sigma}^{\mu}\boldsymbol{D}_{\mu}^{(2)} \\ & & i\sigma^{\mu}\boldsymbol{D}_{\mu}^{(1)} & -y_{2}\Phi_{2} \end{pmatrix} \begin{pmatrix} \boldsymbol{\overline{Q}}_{\mathsf{L}} \\ \boldsymbol{q}_{\mathsf{R}} \\ \boldsymbol{Q}_{\mathsf{R}} \\ \boldsymbol{\overline{q}}_{\mathsf{L}} \end{pmatrix}$$

• Zero modes in $SU(3)_a$ (anti-)instanton background:

• Zero modes in $SU(3)_b$ (anti-)instanton background:

$$\begin{array}{c} \mathcal{Q}_{\mathsf{R}}^{\dagger}, \ \overline{q}_{\mathsf{L}}^{\dagger} \end{array} \right) \& \left(\overline{\mathcal{Q}}_{\mathsf{L}}, \ q_{\mathsf{R}} \right) \\ \overline{q}_{\mathsf{R}}^{\dagger}, \ \overline{\mathcal{Q}}_{\mathsf{L}}^{\dagger} \end{array} \right) \& \left(\overline{q}_{\mathsf{L}}, \ \mathcal{Q}_{\mathsf{R}} \right)$$

Fermion Zero Modes in the Axion Toy Model

$$\begin{pmatrix} \boldsymbol{q}_{\mathsf{R}}^{\dagger} & \boldsymbol{\overline{Q}}_{\mathsf{L}}^{\dagger} & \boldsymbol{\overline{q}}_{\mathsf{L}}^{\dagger} & \boldsymbol{\mathcal{Q}}_{\mathsf{R}}^{\dagger} \end{pmatrix} \begin{pmatrix} -y_{1}\Phi_{1} & i\sigma^{\mu}\boldsymbol{D}_{\mu}^{(2)} & & \\ i\bar{\sigma}^{\mu}\boldsymbol{D}_{\mu}^{(1)} & -y_{1}\Phi_{1}^{\dagger} & & \\ & & -y_{2}\Phi_{2}^{\dagger} & i\bar{\sigma}^{\mu}\boldsymbol{D}_{\mu}^{(2)} \\ & & i\sigma^{\mu}\boldsymbol{D}_{\mu}^{(1)} & -y_{2}\Phi_{2} \end{pmatrix} \begin{pmatrix} \boldsymbol{\overline{Q}}_{\mathsf{L}} \\ \boldsymbol{q}_{\mathsf{R}} \\ \boldsymbol{Q}_{\mathsf{R}} \\ \boldsymbol{\overline{q}}_{\mathsf{L}} \end{pmatrix}$$

 The existence of zero modes does <u>NOT</u> necessarily imply the absence of small instanton contributions.

This is due to interactions between zero modes and other dynamical modes (especially Φ_1 and Φ_2).

Fermion Zero Modes in the Axion Toy Model

$$\begin{pmatrix} q_{\mathsf{R}}^{\dagger} & \overline{Q}_{\mathsf{L}}^{\dagger} & \overline{q}_{\mathsf{L}}^{\dagger} & Q_{\mathsf{R}}^{\dagger} \end{pmatrix} \begin{pmatrix} -y_{1}\Phi_{1} & i\sigma^{\mu}D_{\mu}^{(2)} & & \\ i\overline{\sigma}^{\mu}D_{\mu}^{(1)} & -y_{1}\Phi_{1}^{\dagger} & & \\ & -y_{2}\Phi_{2}^{\dagger} & i\overline{\sigma}^{\mu}D_{\mu}^{(2)} & \\ & i\sigma^{\mu}D_{\mu}^{(1)} & -y_{2}\Phi_{2} \end{pmatrix} \begin{pmatrix} \overline{Q}_{\mathsf{L}} & & \\ & Q_{\mathsf{R}} & \\ & \overline{q}_{\mathsf{L}} & \end{pmatrix}$$
SU(3)_a (anti-)instanton SU(3)_b (anti-)instanton
$$\begin{pmatrix} \overline{q}_{\mathsf{L}}^{\dagger} & Q_{\mathsf{R}}^{\dagger} & \\ & \overline{Q}_{\mathsf{L}} & \end{pmatrix} \begin{pmatrix} q_{\mathsf{R}}^{\dagger} & \overline{Q}_{\mathsf{L}}^{\dagger} \end{pmatrix} \begin{pmatrix} Q_{\mathsf{R}} & \overline{q}_{\mathsf{L}} \end{pmatrix}$$
QCD (anti-)instanton
$$\begin{pmatrix} q_{\mathsf{R}}^{\dagger} & \overline{Q}_{\mathsf{L}} & \\ & q_{\mathsf{R}} & \overline{Q}_{\mathsf{L}} & \end{pmatrix} \begin{pmatrix} Q_{\mathsf{R}} & \overline{q}_{\mathsf{L}} \end{pmatrix} = 0$$

$$\begin{pmatrix} \overline{q}_{\mathsf{L}}^{\dagger} & Q_{\mathsf{R}}^{\dagger} & \\ & \overline{q}_{\mathsf{L}} & Q_{\mathsf{R}}^{\dagger} & \\ & q_{\mathsf{L}} & \end{pmatrix} \begin{pmatrix} Q_{\mathsf{R}} & \overline{q}_{\mathsf{L}} \end{pmatrix}$$
Non-vanishing effects are only from QCD.

• Axion quality problem gives a restriction to UV completion of the axion model.

• Dynamics at UV, especially small instanton effects may enhance the axion mass in general.

★ I have exhibited that small instanton effects can vanish due to fermion zero modes, in a model-dependent way.

Appendix: A Bit More about Global Symnmetries

 $U(1)_{PQ}$ in this model: $U(1)_{PQ} \subset SU(4)_{Axial} \subset [U(4)]^2$ (Flavor symmetry in UV)

	U(1) _{PQ}	SU(3) _{ST}	SU(3) _W	SU(3)' _{ST}	$SU(3)'_{W}$
ψ^a_A	1	3	$\overline{3}$		
ψ_A	-3	3	1		
ψ^B_a	1		3	$\overline{3}$	
ψ^B	-3		1	$\overline{3}$	
ψ^b_B	1			3	$\overline{3}$
ψ_B	-3			3	1
ψ^A_b	1	$\overline{3}$			3
ψ^A	-3	$\overline{3}$			1

• $U(1)_{PQ} - SU(3)_{ST} - SU(3)_{ST}$: Non-anomalous

•
$$U(1)_{PQ} - SU(3)_W - SU(3)_W$$
:
Anomalous

• $U(1)_{PQ}$ is spontaneously broken by condensations at the scale Λ_{ST} .