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Last Talk of The Day
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Here’s a riddle for you:

What does this song have to do with my talk?

Answer on my last slide

http://www.youtube.com/watch?v=HKGjCPBSG38&t=27


The World is Full of Periodic and Quasi-Periodic Systems
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Simple Harmonic Oscillator

Keplerian Motion

Simple Harmonic Oscillator + 
slow damping

Electromagnetic Inspiral

Periodic

Quasi- Periodic

Tperiod ≪  Tloss



Extreme-Mass-Ratio Black-Hole Inspirals
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http://www.youtube.com/watch?v=AH2nk0Iy_lw&t=20


Observables in Periodic Systems: Examples

All variables are Fourier Series e.g.
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define angle variable

1. Position in the SHO:                                     ,                   

2. Radius in Keplerian motion:                                             ,                    known analytically

Periodic system with single period
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can be Fourier-expanded in the angle variable of Keplerian motion

3. The EM field generated by a classical electron in Keplerian motion,

EM Green’s function current from orbiting electron

The                are all-order expressions in α/L , known only numerically

Observables in Periodic Systems: Examples



Main Question
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Is there a universal way to calculate all observables in periodic and 
quasi-periodic systems analytically?

● Periodic and quasi-periodic trajectories

● Emitted EM and gravitational radiation

● …

Answer:  yes!   With the help of Quantum Mechanics

● EM and gravitational Self-Force (backreaction)

We saw two examples with known analytical Fourier series, 
and one where the coefficients are only known numerically



The Quantum Spectral Method
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Consider the Hamiltonian for a periodic system with one angle variable, and its quantum eigenstates:

Khalaf, OT ‘23

principal quantum 
number

other quantum 
numbers

we proved the “Master Equation”:

“The Δn Fourier coefficient of the classical observable O is the classical 
limit of the Δn transition mediated by the quantum operator O”



The Master Equation
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Khalaf, OT ‘23

Master equation

● Simple proof using generalized coherent states (next slide)

● Correspondence principle: quantum numbers go to infinity, their products with ħ are the finite, 
conserved action variables of the classical system (functions of E, L, etc…)

● Δn does not go to infinity and remains the integer index of the classical Fourier series



The Master Equation - Outline of Proof
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Khalaf, OT ‘23

Generalized coherent states:

● Time evolution:

● Classical limit:

has classical saddle point at



The Master Equation - Outline of Proof
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Khalaf, OT ‘23

saddle point at

we also checked the saddle point explicitly for the case of a 1/r potential

the finite, dimensionful action variables 
of the classical system

(the f factors drop out - can check for O=1)



Applications of the QSM so Far
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Khalaf, OT ‘23

1. Proof-of-principle: time-dependent Keplerian motion

2. First all-multipole analytical result for Aμ from a Keplerian electron

3. First all-multipole analytical result for EM self-force on an

 inspiralling classical electron +

inspiralling adiabatic trajectory and EM waveform
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First Application: Time-Dependent Keplerian Motion

EOM:

Conserved quantities: E - Energy (negative)

L - angular momentum

eccentricity semi-latus 
rectum

b

a

p

φ

r

sum of action 
variables
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Time-Dependent Keplerian Motion

known classical result:

Let’s reproduce it with the QSM!

Quantum version:     the hydrogen-like atom

First, the period

Keplerian period

Kepler’s 3rd law
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Time-Dependent Keplerian Motion

Master equation:

Hydrogen-like 
atom calculation:

(Gordon’s integral)

and take the ħ→0 limit

we set    
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Time-Dependent Keplerian Motion

Time - dependent Keplerian motion

result:
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A classical electron in Keplerian motion (no backreaction)

Second Application: All-Multipole EM Emission

What is the generated electric field at all orders in the multipole expansion?

Current density:

EM Field:

Retarded EM Green’s function
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Second Application: All-Multipole EM Emission

angular 
harmonic

radial EM 
wavefunction

Fourier time 
dependence

source multipoles

where the QSM enters where

By the delta-function 
support on the orbit:
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Second Application: All-Multipole EM Emission

The QSM gives:

I’ll skip the (many) details of the quantum calculation and its classical limit - they appear 
in the detailed appendices of our 2310.03798, and you’re welcome to ask me later

where we dropped the “Kep” labels to avoid confusion, and (r,Ө,φ,pμ) are quantum operators
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Second Application: All-Multipole EM Emission

A taste of our analytical calculation:

Laguerre polynomials
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All-Multipole EM Emission: Results

At  radiated over one period by an 
electron undergoing Keplerian 

The observation point is on the x-axis, 
far away from the electron's orbit

The horizontal and vertical axes are 
normalized by T and the maximum 
of the waveform, respectively

circular, fast
circular, slow
eccentric, fast
eccentric, slow

The asymmetry in the fast orbits is due 
to the doppler effect

The sinusoidal shape of the circular orbits is 
due to Δn=mɣ selection rule
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All-Multipole EM Emission: Results

Top: Multipole contributions (without spherical hankel factor)

Bottom: Relative error with respect to the (numerical) classical  integrals

e=0.5e=0.5

(slow)(fast)
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Third Application: EM Self-Force

The EM field generated by the classical electron carries energy and angular momentum

This leads to a slow time dependence E(t) L(t) so that

The method of osculating orbits parametrizes 
the inspiral as keplerian motion with slowly 
varying “constants of motion”  E(t), L(t)

The result is an electromagnetic inspiral 

The task is to calculate the loss E(t) , L(t)

from the generated EM field Aμ(t)

This is a (dissipative) self-force calculation
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Third Application: EM Self-Force

With the Aμ calculated with the QSM, we get the energy and angular momentum loss:

where

is the rate for quantum spontaneous emission

In this way we recover the self-force (equivalent to the ALD force) as the classical limit of spontaneous emission
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Adiabatic EM Inspiral
Using our energy and angular momentum loss, we calculate an adiabatic EM inspiral

Here we took a very fast inspiral q~Q 
just for the visual effect

Our results are 
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Adiabatic EM Inspiral
In the far field approximation, we also calculate the EM waveform as:
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Adiabatic EM Inspiral
In the far field approximation, we also calculate the EM waveform:

After many cycles, the electron in 
the full calculation is close to the 
origin than the one in the dipole

An amplitude difference in 
addition to phase
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Towards Gravitational Self-Force with the QSM

First order gravitational self-force

The circular line means integrating the Green’s function along the worldline of the osculating BH geodesic 

Currently this is done numerically, but we are working towards an analytical result with the QSM

We already have the eigenstates                   in Schwarzschild/Kerr and can reproduce geodesics



29

“Wait, Didn’t People Use Amplitudes for Inspirals?”

Scattering Amplitudes 
/ NREFT

Perturbative in G or α

All orders in m/M or q/Q

Good for LIGO

Goldberger, Rothstein, Porto, 
Bern, Cheung, Kosower, 

O’Connell, Huang, Shen……

Post Adiabatic / Self-Force

All-orders in G or α

Perturbative in m/M or q/Q

Good for LISA

Poisson, Pound, Barack, 
Wardell, Warburton, Miller, 

van de Meent……

Resum in G or α

Resum in m/M or q/Q

We are here - 
analytically!

Expand in m/M or q/Q

Expand in G or α
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The QSM in the Landscape of Quantum-to-Classical Methods
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Conclusions and Generalizations

The QSM is a method to obtain the Fourier coefficients of classical observables: 

“The Δn Fourier coefficient of the classical observable O is the classical 
limit of the Δn transition mediated by the quantum operator O”

We applied it for the analytical calculation of:

● Time-dependent Keplerian motion

● All-multipole EM radiation from a Keplerian orbit

● EM self-force and an adiabatic EM inspiral 
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Conclusions and Generalizations

Near future applications:

● Gravitational 1SF

● Gravitational 2SF

● All Schwarzschild and Kerr geodesics



Thank You!
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Backup
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Self-Force
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Conclusions and Generalizations

Generalizations:

multiple angle variables unbound motion

bound, single angle variable
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Derivation of All-Multipole EM Emission

Multipole expansion of retarded Green’s function (see Jackson E&M):

Substituting Jμ:

(we take the observation point r > r’)
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Substituting multipole expansion:

independent of source

source-dependent

Derivation of All-Multipole EM Emission



38

With the QSM we have:

A classical limit of a hydrogen atom transition, which we calculate analytically

where:

(rKep,θKep,φKep,pμ
Kep) are quantum operators

Derivation of All-Multipole EM Emission
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Derivation of EM Self-Force
We work at the adiabatic (0PA) order*. At this order, we can calculate the field Aμ(t) sourced by an electron

on the osculating keplerian orbit defined by E(t) L(t), and averaged over the action-angle α

* Higher post-adiabatic (PA) corrections require the partial derivatives of the field with respect to E , L

Van de Meent, Warburton ‘18

Ereg and Breg are calculated from Aμ
reg . The reg label means the field regular at the source, 

namely

Dirac 1938
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The 1st-order gravitational field generated by a point mass on a Schwarzschild geodesic,

Linearized gravitational Green’s 
function in Schwarzschild

Energy-Momentum from 
mass on geodesic

can be Fourier-expanded in the two angle variables of Schwarzschild geodesics

The                      are all-order expressions in GMm/L , known only numerically

Gravitational 1SF
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Towards 2nd Order Gravitational Self-Force with the QSM

Future application: second order gravitational self-force

Using the QSM, we would be able to calculate it analytically

This could open new paths for resummation, with a potential for significant improvements in 2SF efficiency


