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Last Talk of The Day

Here’s a riddle for you:

What does this song have to do with my talk?

Answer on my last slide



http://www.youtube.com/watch?v=HKGjCPBSG38&t=27

The World is Full of Periodic and Quasi-Periodic Systems
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http://www.youtube.com/watch?v=AH2nk0Iy_lw&t=20

1.

2.

Observables in Periodic Systems: Examples

(t — o)

Periodic system with single period 7' —— define angle variable a =27 T

All variables are Fourier Series O(a) = Z Onn €72 eg.

An=—o0

I

|
Position in the SHO:  z(a) = z1e ™ +cc. , 2, = % <xo +z%) i"ﬁmﬂ

; pd

Radius in Keplerian motion: r(a)= Y rane ™™, ra.(E,L) known analytically @
An=—o00




Observables in Periodic Systems: Examples

3. The EM field generated by a classical electron in Keplerian motion,

At (z) = /d4a: G* (z,z')J,(z)

EM Green'’s function current from orbiting electron

can be Fourier-expanded in the angle variable of Keplerian motion

AMF )= Y AR (F) e A

An=—o00

The a* () are all-order expressions in a/L, known only numericall
An




Main Question

We saw two examples with known analytical Fourier series,
and one where the coefficients are only known numerically

Is there a universal way to calculate all observables in periodic and
quasi-periodic systems analytically?

e Periodic and quasi-periodic trajectories
e Emitted EM and gravitational radiation

e EM and gravitational Self-Force (backreaction)

Answer: yes! With the help of Quantum Mechanics
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The Quantum Spectral Method

Consider the Hamiltonian for a periodic system with one angle variable, and its quantum eigenstates:

H |n,o) = E, |n,o
v

principal quantum  other quantum
number numbers

we proved the “Master Equation”:

Nclassical

n= — — 00
Oan =lim » (n—An,o0 — Ac|O |n,o)
h—0 Eclassical
o o= — — 00

“The An Fourier coefficient of the classical observable O is the classical
limit of the An transition mediated by the quantum operator O"
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The Master Equation

N classical
n=-——(/——>0
Oan =lim » (n—An,oc — Ac|O |n,o) A
h—0 ,
Ao yclassical
Master equation o= "3 7

Correspondence principle: quantum numbers go to infinity, their products with h are the finite,
conserved action variables of the classical system (functions of E, L, etc...)

An does not go to infinity and remains the integer index of the classical Fourier series

Simple proof using generalized coherent states (next slide)



The Master Equation - Outline of Proof
Generalized coherent states: |¢, N, X) = Ze_i%utfn,a(N, Y) |n,o)
e Timeevolution: e %%t N, ) = |t + 6t, N, %)

e (Classical limit:  O(t) = ’liin%] (t, N,X|O|t,N,X)
ﬁ

———>  fno(IV,X) has classical saddle pointat (n,s) = A~'(N, %)

Khalaf, OT ‘23
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The Master Equation - Outline of Proof

. En—En_An n

— 1 - —An,o—A —i
O(t) hlE)IZ(l) AHZ;(’ ; fn—An,a—Aofn,U <n n,o 0'| O |'I'L, 0) X e h

E, —E, A orAn | Saddle pointat (n,0) =hr"(N,X)

n n—Aan

=7 the finite, dimensionful action variables
of the classical system

: — — — — —j2rAn
O(t)=}1_£(1)A§U (RN — An,h7'S — Ag| O|h™IN,A7IS) e7i 7Tt

Jim K

(the f factors drop out - can check for O=1)

we also checked the saddle point explicitly for the case of a 1/r potential

Khalaf, OT ‘23
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Applications of the QSM so Far

Proof-of-principle: time-dependent Keplerian motion

o e

ANV
First all-multipole analytical result for A* from a Keplerian electron VWi,

First all-multipole analytical result for EM self-force on an M A5 (g)
. . . . ,\/\/\N\/\/\/\/\/\l
inspiralling classical electron + MV,
inspiralling adiabatic trajectory and EM waveform
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First Application: Time-Dependent Keplerian Motion

-, T
EOM:  ur=—-K—
r b r\ P
0
Conserved quantities:  E - Energy (negative) a
L - angular momentum

[ 1 / 2 L?
N=K T = I:,- I — I = —

sum of action eccentricity semi-latus
variables rectum

K=-"—= Q=2q
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Time-Dependent Keplerian Motion

P e? > 1  dJan(Ane)
1—e2 2 Ane1 (An)2 de

known classical result: (o) =

Let's reproduce it with the QSM!

Quantum version: the hydrogen-like atom  H |n,l,m) = E,, |n,l,m) E, =

First, th d I — —
irs e perio ’lil_% ™ T n==
TN , : Am2p
T = —  Keplerian period —> T2 = 3
E| P P K

Kepler's 3rd law
14



Time-Dependent Keplerian Motion

Master equation: =lim (n—An,Lilr|n L) (1) =h7 (VL)
_)
OAnzflii_r’r(l)Z(n—An,a—AﬂOm,a)
Ao
. 2 (_1\"' —lo21+2 NnI+2 . , n—n'—2 |
Hydrogen-like 1 [, ) = h* (=1)" 277 (nn) gl+4l 1) , (n+0)! (n,+l)
atom calculation: pK 2L+ 1) (n +n) n+ n n—l-1l—1-1)"

(Gordon'’s integral)

(n_l_n/) n l—]. n+nl)

4 !/ I 2 !’
oy (l—n'+1;n+l;2l+2; n 2) n+l+1< ) zFl(l n+ln+l+22l+2(4n 2)]

we set (n,l,n',l') = h_l(N7L7N7 L) —(0,0,An,0)

and take the h—0 limit
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Time-Dependent Keplerian Motion

result: lim (n',1| 7 |n,1) p d

= A
h—0 ’ 1—e2 An2 de de/an(eAn) An#0

2
- _p ¢
%E)I%)(n,l|r|n,l)— o2 <1+ 2)

2 00
P e 1  dJan(Ane)
r(a) = -2 [1 + 5 2e En=1 ( )2 I cos (Ana)
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Second Application: All-Multipole EM Emission
N

AV
RARUUVAVV.V.V Y

A classical electron in Keplerian motion (no backreaction)

What is the generated electric field at all orders in the multipole expansion?
Current denSity: J¥ (ZB,) = %pﬁep (tl) 5@ [fl - FKep (t,)] péep(tl) = (:U’, 2 aif"f:Kep)

EM Field: AT () = / d'z Gi% (2, 2')J” ()

|

Retarded EM Green's function
17



Second Application: All-Multipole EM Emission

ret =, 4! = /
By the delta-function AM G 1 B8, Ticep (£)]

support on the orbit: et

l‘Y
zq
A= Z Do Do wanh)(@anr) expl=ilnal Y[ (0,0) D0 My (@an, N, L)
l—Om,Y— Iy An Al,Am
radial EM Fourier time angular source multipoles
wavefunction dependence  harmonic
2w A
where wan = ﬂTn where the QSM enters
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Second Application: All-Multipole EM Emission

The QSM gives:

MR (w,N,L) = lim (n'U'm'| i (wr) Y, (0, ¢) p* |nlm)
T — Yy

where we dropped the “Kep” labels to avoid confusion, and (r,©,¢,p") are quantum operators

I'll skip the (many) details of the quantum calculation and its classical limit - they appear
in the detailed appendices of our 2310.03798, and you're welcome to ask me later
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Second Application: All-Multipole EM Emission

A taste of our analytical calculation:

m(ly—m~) ly+my+1 ly—my+1
hm (ll ml| Y'm..y ('I":) |l l) _ Jl, m,&_Al - COos [ 2 ] (2l’)’ + 1) P ( 2 ) F ( 2 )
B O =i e e ()

1) (4 ! , .
'( VUL e, lim (0, U| 2% |n, 1)
.—)

. r o — 9l
fim (', ] 1, (wan ) I 1) = 217 3 5oy @i

h—0 !
0 Wi

1—e2

J ; 00
: ; p —An—al (N1 j+1—m— neAn\ i1 m— neAn _
19y = (125 o ()77 52 g (20 gyt (140 o

N s
Laguerre polynomials _ /IN-L 1-
T=VN+L™

V1—e?

e
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All-Multipole EM Emission: Results

A, radiated over one period by an
electron undergoing Keplerian

The observation point is on the x-axis,
far away from the electron's orbit

The horizontal and vertical axes are
normalized by T and the maximum
of the waveform, respectively

The asymmetry in the fast orbits is due
to the doppler effect

The sinusoidal shape of the circular
due to An=m_selection rule

A; (Normalized)
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All-Multipole EM Emission: Results
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Top: Multipole contributions (without spherical hankel factor)

Bottom: Relative error with respect to the (humerical) classical integrals
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Third Application: EM Self-Force

The EM field generated by the classical electron carries energy and angular momentum

This leads to a slow time dependence E(t) L(t) so that % , % < T1

The result is an electromagnetic inspiral

The method of osculating orbits parametrizes ,\/\/\/\/\/\N\/\/\/
the inspiral as keplerian motion with slowly

varying “constants of motion” E(t), L(t) ,\/VV\/\/\/\/\/\/\,
The task is to calculate the loss E(t), L(t)

from the generated EM field Ap(t)

This is a (dissipative) self-force calculation

23




Third Application: EM Self-Force

With the Ap calculated with the QSM, we get the energy and angular momentum loss:

P lim Y (Ba-Eu)Ta.
An>0,Al,Am

L m Y RE-I)T..
An>0,Al,Am

l

2q2WAn - . * 0
where T, = — 2 Z Z MIM* + O(RY)

Iy=0m,=-1,

is the rate for quantum spontaneous emission

In this way we recover the self-force (equivalent to the ALD force) as the classical limit of spontaneous emission

24




Adiabatic EM Inspiral

Using our energy and angular momentum loss, we calculate an adiabatic EM inspiral

a\' (m\°
Our results are 0{(5) (M)

Full

r(t) = r[a(t)] |E=p@),L=L()

¢(t) = ¢ a®)] | p=E(),L=L()

Here we took a very fast inspiral g~Q
just for the visual effect

25




A¢ (Normalized)

Adiabatic EM Inspiral

In the far field approximation, we also calculate the EM waveform as:

o) Iy
AL, = {;% DD DY O0,0) Y MAy o (@an, N, L)}
ret

ly=0m,=—-1, An Al,Am

SARVARVARWARWA I B TV AP 0 PR
ATV ARV

0 1 2 3 4 5 Fi00 1101 1102 1103 1104 1105
(t=r)/ Tinit (t=r)Tinit

A; (Normalized)

Full

Z=Q[q=4r

Dipole

26




A; (Normalized)

Adiabatic EM Inspiral

In the far field approximation, we also calculate the EM waveform:

115M w ﬂ ” M M M/M ﬂ w M | M/N " IMM il m After many cycles, the electron in
T An am Iitudl diff i
B LLELLETCERR UL D 1| ——
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Towards Gravitational Self-Force with the QSM

First order gravitational self-force

The circular line means integrating the Green's function along the worldline of the osculating BH geodesic
Currently this is done numerically, but we are working towards an analytical result with the QSM

We already have the eigenstates |n,l,m) in Schwarzschild/Kerr and can reproduce geodesics

28



“Wait, Didn’t People Use Amplitudes for Inspirals?”

Scattering Amplitudes
/ NREFT

Perturbative in G or a

All orders in m/M or g/Q

Expand in m/M or q/Q
Resum in G or a

Y

A

Good for LIGO

- J

Goldberger, Rothstein, Porto,
Bern, Cheung, Kosower,
O’Connell, Huang, Shen......

Expand in G or a
Resum in m/M or q/Q

Post Adiabatic / Self-Force

All-orders in G or a

Perturbative in m/M or q/Q

Good for LISA

Poisson, Pound, Barack,
Wardell, Warburton, Miller,
van de Meent......

We are here -
analytically!

- J
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The QSM in the Landscape of Quantum-to-Classical Methods

Classical Limit

QFT Classical
Amplitudes _ Scattering
KMOC, Relativistic EFT Scattering Beundians
Data to-Bound

From
Scattering to

Bound states | Bethe-

Salpeter

Bound
eigenfunction

Quantum

NREFT L Effective PN
Hamiltonian

On-Shell Effective PM
-~ Hamiltonian

“Classical”
Bethe-Salpeter Classical

EOM

Self-Force EFT

Bound states

Classical
Bound states
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Conclusions and Generalizations

The QSM is a method to obtain the Fourier coefficients of classical observables:

“The An Fourier coefficient of the classical observable O is the classical
limit of the An transition mediated by the quantum operator O"
We applied it for the analytical calculation of:

e Time-dependent Keplerian motion
e All-multipole EM radiation from a Keplerian orbit

e EM self-force and an adiabatic EM inspiral

31




Conclusions and Generalizations

Near future applications:

All Schwarzschild and Kerr geodesics

Gravitational 1SF W (; 0, N;) = / i’

Gravitational 2SF  #2@au N = / da!

32



Thank You!

e
and over again.
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Backup

Self-Force

34



Conclusions and Generalizations

oo
Generalizations: O(a) = Z O, e~ tAna

An=—o00

bound, single angle variable

PN

oo o0
J— —’iZAniai 0 .
0(a1, ce ,ak) = Z e Z OAnl...Ank € O(t) — / dw Ow e—zwt
Ani=—o00 Ang=—00 —00
multiple angle variables unbound motion

35




Derivation of All-Multipole EM Emission

foj [t, Tt Tkep(t')]

Substituting J*: ATt (L, &) = % / dt' G5 [t, Tt Picep (t)] Piep (')

Multipole expansion of retarded Green'’s function (see Jackson E&M):

ot — t')

G, Tt &) = gu AR

5(t—t' —R)

@t_tl > 4 4 . = . : m* m
e T {szJz(wr<)hz(1)(wr>) S V@Y, (e,m}

=0 m=—I1

(we take the observation point r > r) .




Derivation of All-Multipole EM Emission

Substituting multipole expansion:

independent of source

A

(

q et—-t) [ wo(t—t/ (1) :
Aifet(t7 f) = ; / dt’ or / dwe™ ) Siw Z hl (wr) Z Y'lm(eﬂp)
o 1=0

m=-—I

Ji [WTKep(t,)] Y™ [Okep (t’)7 ‘PKep(t,)] pIV(ep (t,)

Y

source-dependent

A Y

}x
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Derivation of All-Multipole EM Emission

With the QSM we have:

ALt (1, T) = “ Z Z Z Ym" 0, )/ @(t dt' /_o:o dwwhﬁ)(wr)

~+=0m,=—1, An,Al,Am

x exp [—iAno/(t') —iw(t —t')] My, . (w,N,L)

where: MA@, N, L) = i (n0m] i, (9 icep) Y, (Bicops Picen) Pl )

A classical limit of a hydrogen atom transition, which we calculate analytically

(re...0

]
kepOkep PrepPVkep) Ar€ qUaNtum operators
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Derivation of EM Self-Force

We work at the adiabatic (OPA) order™. At this order, we can calculate the field A“(t) sourced by an electron

on the osculating keplerian orbit defined by E(t) L(t), and averaged over the action-angle a

Van de Meent, Warburton ‘18

% —1 <6 Ereg>a 2m
(O(a)), = 21_7r/0 O do
U (o x [Bos 5 5))

6

E'€ and B"¢ are calculated from Ap“ag . The reg label means the field regular at the source,

namely
Ak = ! AL v Dirac 1938
reg — § ( ret adv) Irac
* Higher post-adiabatic (PA) corrections require the partial derivatives of the field with respectto E, L 39



Gravitational 1SF

The 1st-order gravitational field generated by a point mass on a Schwarzschild geodesic,

B (z) = / d'z /g™ (2,2') T (')

\

Linearized gravitational Green'’s Energy-Momentum from
function in Schwarzschild mass on geodesic

can be Fourier-expanded in the two angle variables of Schwarzschild geodesics

oo
h,U'V — § : hZV A (f) e—i(Anlal-}-Anzag)
n1,AN2

Ani,Ang=—00

The b, ., (& are all-order expressions in GMm/L, known only numerically
40




Towards 2nd Order Gravitational Self-Force with the QSM

Future application: second order gravitational self-force

4 N

2) (- _ 4,/
Moy = | [dta

o _/

Using the QSM, we would be able to calculate it analytically

This could open new paths for resummation, with a potential for significant improvements in 2SF efficiency




