Bootstrapping BSMs

Alex Pomarol, IFAE \& UAB (Barcelona)

based on 22II. 12488 [hep-th] with C. Fernandez, F. Riva and F. Sciotti 2307.04729 [hep-th] with T. Ma and F. Sciotti

Motivation

E $\begin{aligned} & \text { UV completion? } \\ & \text { Effective Field Theory (EFT) }\end{aligned}$
good tool to describe exp. data!

Motivation

good tool to describe exp. data!

Usual BSM approach: model by model...
e.g., SM hierarchy problem: MSSM, composite Higgs,...

Motivation

E $\begin{aligned} & \text { UV completion? } \\ & \text { Effective Field Theory (EFT) }\end{aligned}$
good tool to describe exp. data!
More general approach:
tackle by just demanding "good" properties to the BSM: Lorentz, Positivity, locality (analyticity), crossing, ...

Motivation

E $\begin{aligned} & \text { Ef completion? } \\ & \text { Effective Field Theory (EFT) }\end{aligned}$

good tool to describe exp. data!
More general approach:
tackle by just demanding "good" properties to the BSM:
Lorentz, Positivity, locality (analyticity), crossing, ...
It has been shown in many recent examples that they can provide very powerful constraints

Motivation

More general approach:
tackle by just demanding "good" properties to the BSM:
Lorentz, Positivity, locality (analyticity), crossing, ...
It has been shown in many recent examples that they can provide very powerful constraints

UV completion for a theory of Goldstones

E UV completion? π^{a}

interesting for

- QCD,
- axions,
- composite Higgs

UV completion for a theory of Goldstones

weakly-coupled theories (tree-level) π^{a} but with infinite higher-spin states
interesting for

- QCD,
- axions,
- composite Higgs

UV completion for a theory of Goldstones

E \uparrow UV completion? $\prod_{\text {simplifying assumption: }}^{\downarrow}$

π^{a}

as weakly-coupled theories (tree-level) but with infinite higher-spin states

Also aiming strongly-coupled gauge theories (QCD) in the large- $\mathbf{N}_{\mathbf{c}}$ limit:
G. 't Hooft, Nucl. Phys. B 72, 461 (1974)
E. Witten, Nucl. Phys. B 160, 57 (1979)
quarks, gluons $\mathbf{S U}\left(\mathbf{N}_{\mathrm{c}}\right)$
 mesons ($q \bar{q}$ states), glueballs

Positivity bounds on (tree-level mediated) amplitudes

Analytical structure of $\mathbf{2 \rightarrow 2}$ amplitudes:
$\mathcal{M}(s, t)$

simple poles due to states in the s-channel:

Positivity bounds on (tree-level mediated) amplitudes

Analytical structure of $2 \rightarrow 2$ amplitudes:

Positivity bounds On (tree-level mediated) amplitudes

This simple structure allows to get dispersion relations:

Positivity bounds on (tree-level mediated) amplitudes

This simple structure allows to get dispersion relations:

$$
\oint \frac{\mathcal{M}(s, t)}{s^{k+1}}=0
$$

Positivity bounds on (tree-level mediated) amplitudes

This simple structure allows to get dispersion relations:

Cauchy at work:

residue at the origin + sum of residues at the mass poles $=0$
(low-energy EFT parameters related to masses and couplings of mesons)

Goldstone-Goldstone scattering

J. Albert and L. Rastelli, arXiv: 2203.11950

Lets assume an $\mathbf{S U (2)}$ (isospin) global symmetry

$$
\pi^{a} \in \mathbf{3} \text { massless }
$$

Goldstones from
$S U(2) \otimes S U(2) \rightarrow S U(2)$

Extra condition from large- N_{c} QCD:

Mesons =

Isospin $=\mathrm{I}=\mathbf{1 / 2} \otimes \mathbf{1 / 2} \mathbf{= 0 , 1}$
no I =2 states

Extra condition from large- N_{c} QCD:

Isospin = I = $\mathbf{1 / 2} \otimes \mathbf{1 / 2} \mathbf{= 0 , 1}$
no I =2 states

$\mathcal{M}_{s}^{I=2}$
cannot have poles in s

Extra condition from large- N_{c} QCD:

Isospin = I = $\mathbf{1 / 2} \otimes \mathbf{1 / 2} \mathbf{= 0 , 1}$
no I =2 states

$\mathcal{M}_{t}^{I=2}$
cannot have poles in t

Working with $\mathcal{M}_{t}^{I=2}(s, u)$
(that cannot have poles in the t-channel)

Working with $\mathcal{M}_{t}^{I=2}(s, u)$
(that cannot have poles in the t-channel)

Working with $\mathcal{M}_{t}^{I=2}(s, u)$
(that cannot have poles in the t-channel)

Wilson coefficients

$$
\mathcal{M}_{t}^{I=2}(s, u) \rightarrow g_{1,0}^{s, u \rightarrow 0}(s+u)+g_{2,0}\left(s^{2}+u^{2}\right)+g_{2,1} s u+\cdots
$$

Legendre pol. and derivatives (all positive!)

small u expansion:

$k=1: \quad g_{1,0}+g_{2,1} u+g_{3,1} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{2}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{4}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{6}} u^{2}+\ldots\right)$,
$k=2: \quad g_{2,0}+g_{3,1} u+g_{4,2} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{4}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{6}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{8}} u^{2}+\ldots\right)$,
$k=3: \quad g_{3,0}+g_{4,1} u+g_{5,2} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{6}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{8}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{10}} u^{2}+\ldots\right)$,

Legendre pol. and derivatives (all positive!)

small u expansion:

$$
\begin{array}{lll}
k=1: & g_{1,0}+g_{2,1} u+g_{3,1} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{2}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{4}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{6}} u^{2}+\ldots\right), \\
k=2: & & g_{2,0}+g_{3,1} u+g_{4,2} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{4}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{6}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{8}} u^{2}+\ldots\right), \\
k=3: & & g_{3,0}+g_{4,1} u+g_{5,2} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{6}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{8}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{10}} u^{2}+\ldots\right),
\end{array}
$$

$$
\begin{aligned}
& g_{n, 0}= \sum_{i} \frac{g_{i \pi \pi}^{2}}{m_{i}^{2 n}} \begin{array}{c}
\text { all states } \\
\text { contribute } \\
\text { positively! }
\end{array} \\
& g_{n+1,1}=\sum_{i} \frac{g_{i \pi \pi}^{2} J_{i}\left(J_{i}+1\right)}{m_{i}^{2(n+1)}} \\
& \Rightarrow \text { the larger the } J, \\
& \text { the smaller } g_{i m \pi} / m_{i}
\end{aligned}
$$

small u expansion:

$$
\begin{array}{cc}
k=1: & g_{1,0}+g_{2,1} u+g_{3,1} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{2}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{4}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{6}} u^{2}+\ldots\right), \\
k=2: & g_{2,0}+g_{3,1} u+g_{4} 42 u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{4}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{6}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{8}} u^{2}+\ldots\right), \\
k=3: & g_{3,0}+g_{4,4} u+g_{5} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{6}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{8}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{10}} u^{2}+\ldots\right), \\
\vdots &
\end{array}
$$

due to crossing, overconstrained system!
infinite constraints in the spectrum and couplings

small u expansion:

$$
\begin{array}{ll}
k=1: & g_{1,0}+g_{2,1} u+g_{3,1} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{2}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{4}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{6}} u^{2}+\ldots\right), \\
k=2: & g_{2,0}+g_{3,1} u+g_{4}{ }_{2} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{4}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{6}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{8}} u^{2}+\ldots\right), \\
k=3: & g_{3,0}+g_{4,4} u+g_{5}{ }_{2}^{2} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{6}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{8}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{10}} u^{2}+\ldots\right),
\end{array}
$$

due to crossing, overconstrained system!
infinite constraints in the spectrum and couplings

$$
\text { e.g. } \quad \sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{6}} J_{i}\left(J_{i}+1\right)\left(J_{i}-2\right)\left(J_{i}+3\right)=0
$$

small u expansion:

$$
\begin{array}{ll}
k=1: & g_{1,0}+g_{2,1} u+g_{3,1} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{2}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{4}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{6}} u^{2}+\ldots\right), \\
k=2: & g_{2,0}+g_{3,1} u+g_{4}{ }_{2} u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{4}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{6}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{8}} u^{2}+\ldots\right), \\
k=3: & g_{3,0}+g_{4,} u+g_{5}, 2 u^{2}+\ldots=\sum_{i}\left|g_{\pi \pi i}\right|^{2}\left(\frac{P_{J_{i}}(1)}{m_{i}^{6}}+2 \frac{P_{J_{i}}^{\prime}(1)}{m_{i}^{8}} u+2 \frac{P_{J_{i}}^{\prime \prime}(1)}{m_{i}^{10}} u^{2}+\ldots\right),
\end{array}
$$

due to crossing, overconstrained system!
infinite constraints in the spectrum and couplings

$$
\text { e.g. } \quad \sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{6}} J_{i}\left(J_{i}+1\right)\left(J_{i}-2\right)\left(J_{i}+3\right)=0
$$

also from dispersion relations at fixed t

Implications of Positivity bounds

Lets assume at $|s| \rightarrow \infty$ \& either t or u fixed:

$$
\frac{\mathcal{M}_{t}^{I=2}(s, u)}{s \quad k_{\min }=1} \rightarrow 0
$$

expected from Regge theory

Infinite set of Sum Rules:

$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{6}} J_{i}\left(J_{i}+1\right)\left(J_{i}-2\right)\left(J_{i}+3\right)=0$
$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{10}} J_{i}\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}^{2}+J_{i}-15\right)=0$
$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{14}} J_{i}\left(J_{i}-2\right)\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}+3\right)\left(J_{i}^{2}+J_{i}-28\right)=0$

Infinite set of Sum Rules:

$$
\begin{aligned}
& \left.\left.\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{6}} J_{i} \right\rvert\, J_{i}+1\right)\left(J_{i}-2\right)\left(J_{i}+3\right)=0 \\
& \left.\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{10}} J_{i}\right\}\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}^{2}+J_{i}-15\right)=0 \\
& \sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{14}} \underbrace{}_{J_{i}\left(J J_{i}-2\right)\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}+3\right)\left(J_{i}^{2}+J_{i}-28\right)=0}
\end{aligned}
$$

$J_{i}=0$ states satisfy all constraints
possible UV completion:
Theory of Scalars (Higgs mechanism)

Infinite set of Sum Rules:

$$
\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{6}} J_{i}\left(J_{i}+1\right)\left(J_{i}-2\right)\left(J_{i}+3\right)=0
$$

$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{10}} J_{i}\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}^{2}+J_{i}-15\right)=0$
$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{14}} J_{i}\left(J_{i}-2\right)\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}+3\right)\left(J_{i}^{2}+J_{i}-28\right)=0$

$$
\frac{\left|g_{\pi \pi 1}\right|^{2}}{m_{J=1}^{6}}=9 \frac{\left|g_{\pi \pi 3}\right|^{2}}{m_{J=3}^{6}}+35 \frac{\left|g_{\pi \pi 4}\right|^{2}}{m_{J=4}^{6}}+\cdots
$$

spin-1 must be in the spectrum with the largest coupling

Infinite set of Sum Rules:

$$
\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{6}} J_{i}\left(J_{i}+1\right)\left(J_{i}-2\right)\left(J_{i}+3\right)=0
$$

$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{10}} J_{i}\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}^{2}+J_{i}-15\right)=0$
$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{14}} J_{i}\left(J_{i}-2\right)\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}+3\right)\left(J_{i}^{2}+J_{i}-28\right)=0$

$$
\frac{\left|g_{\pi \pi 1}\right|^{2}}{m_{J=1}^{6}}=9 \frac{\left|g_{\pi \pi 3}\right|^{2}}{m_{J=3}^{6}}+35 \frac{\left|g_{\pi \pi 4}\right|^{2}}{m_{J=4}^{6}}+\cdots
$$

spin-1 must be in the spectrum with the largest coupling
Vector Meson Dominance (VMD),
assumed in the past to explain QCD experimental data

Infinite set of Sum Rules:

$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{6}} J_{i}\left(J_{i}+1\right)\left(J_{i}-2\right)\left(J_{i}+3\right)=0$

$$
\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{10}} J_{i}\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}^{2}+J_{i}-15\right)=0
$$

$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{14}} J_{i}\left(J_{i}-2\right)\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}+3\right)\left(J_{i}^{2}+J_{i}-28\right)=0$

Infinite set of Sum Rules:

$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{6}} J_{i}\left(J_{i}+1\right)\left(J_{i}-2\right)\left(J_{i}+3\right)=0$
$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{10}} J_{i}\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}^{2}+J_{i}-15\right)=0$
$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{14}} J_{i}\left(J_{i}-2\right)\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}+3\right)\left(J_{i}^{2}+J_{i}-28\right)=0$
spin- $\mathbf{3}$ must be in the spectrum

Infinite set of Sum Rules:

$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{6}} J_{i}\left(J_{i}+1\right)\left(J_{i}-2\right)\left(J_{i}+3\right)=0$
$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{10}} J_{i}\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}^{2}+J_{i}-15\right)=0$
$\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{14}} J_{i}\left(J_{i}-2\right)\left(J_{i}-1\right)\left(J_{i}+1\right)\left(J_{i}+2\right)\left(J_{i}+3\right)\left(J_{i}^{2}+J_{i}-28\right)=0$
non-scalar UV completions require all spin states with couplings to pions decreasing with J

From the constraints, we find numerically $\left(-50\right.$ constraint, $\left.J_{\text {max }}-1000\right)$:

Upper bound on couplings

(normalized to m_{i}^{2} / F_{π}^{2})

J	$\left\|g_{\pi \pi i}\right\|^{2}$
1	0.78
2	0.18
3	0.03

From the constraints, we find numerically $\left(\sim 50\right.$ constraint, $\left.J_{\text {max }} \sim 1000\right)$:

Upper bound on couplings

(normalized to m_{i}^{2} / F_{π}^{2})

\mathbf{J}	$\left\|g_{\pi \pi i}\right\|^{2}$		
1	0.78	\longrightarrow	0.5
2	0.18	\longrightarrow	0.18
3	0.03		

Constraints on Wilson coefficients

$\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{1} \operatorname{Tr}^{2}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{2} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial_{\nu} U\right) \operatorname{Tr}\left(\partial^{\mu} U^{\dagger} \partial^{\nu} U\right)+L_{3} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \partial_{\nu} U^{\dagger} \partial^{\nu} U\right)$

$$
\mathbf{e}^{\mathbf{i} \sigma^{\mathbf{a}} \pi^{\mathbf{a}} / \mathbf{F}_{\pi}}
$$

Constraints on Wilson coefficients

$$
\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{1} \operatorname{Tr}^{2}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{2} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial_{\nu} U\right) \operatorname{Tr}\left(\partial^{\mu} U^{\dagger} \partial^{\nu} U\right)+L_{3} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \partial_{\nu} U^{\dagger} \partial^{\nu} U\right)
$$

(S) $\left.\mathbf{S}^{2}\right): \quad \tilde{g}_{2,0}=4\left(2 L_{1}+3 L_{2}+L_{3}\right) \frac{M^{2}}{F_{\pi}^{2}}, \quad \tilde{g}_{2,1}=16 L_{2} \frac{M^{2}}{F_{\pi}^{2}}$

Constraints on Wilson coefficients

$$
\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{1} \operatorname{Tr}^{2}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{2} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial_{\nu} U\right) \operatorname{Tr}\left(\partial^{\mu} U^{\dagger} \partial^{\nu} U\right)+L_{3} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \partial_{\nu} U^{\dagger} \partial^{\nu} U\right)
$$

$$
\left(\boldsymbol{S}^{2}\right) \bullet \quad \tilde{g}_{2,0}=4\left(2 L_{1}+3 L_{2}+L_{3}\right) \frac{M^{2}}{F_{\pi}^{2}}, \quad \tilde{g}_{2,1}=16 L_{2} \frac{M^{2}}{F_{\pi}^{2}}
$$

"Polyhedronal"
bounds

EFTs are
"EFT-hedron"

Constraints on Wilson coefficients

$$
\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{1} \operatorname{Tr}^{2}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{2} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial_{\nu} U\right) \operatorname{Tr}\left(\partial^{\mu} U^{\dagger} \partial^{\nu} U\right)+L_{3} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \partial_{\nu} U^{\dagger} \partial^{\nu} U\right)
$$

$$
\left(\boldsymbol{s}^{2}\right): \quad \tilde{g}_{2,0}=4\left(2 L_{1}+3 L_{2}+L_{3}\right) \frac{M^{2}}{F_{\pi}^{2}}, \quad \tilde{g}_{2,1}=16 L_{2} \frac{M^{2}}{F_{\pi}^{2}}
$$

Constraints on Wilson coefficients

$$
\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{1} \operatorname{Tr}^{2}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{2} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial_{\nu} U\right) \operatorname{Tr}\left(\partial^{\mu} U^{\dagger} \partial^{\nu} U\right)+L_{3} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \partial_{\nu} U^{\dagger} \partial^{\nu} U\right)
$$

$$
\left(\boldsymbol{s}^{2}\right): \quad \tilde{g}_{2,0}=4\left(2 L_{1}+3 L_{2}+L_{3}\right) \frac{M^{2}}{F_{\pi}^{2}}, \quad \tilde{g}_{2,1}=16 L_{2} \frac{M^{2}}{F_{\pi}^{2}}
$$

Constraints on Wilson coefficients

$$
\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{1} \operatorname{Tr}^{2}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{2} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial_{\nu} U\right) \operatorname{Tr}\left(\partial^{\mu} U^{\dagger} \partial^{\nu} U\right)+L_{3} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \partial_{\nu} U^{\dagger} \partial^{\nu} U\right)
$$

($\left.\mathbf{S}^{\mathbf{2}}\right): \quad \tilde{g}_{2,0}=4\left(2 L_{1}+3 L_{2}+L_{3}\right) \frac{M^{2}}{F_{\pi}^{2}}, \quad \tilde{g}_{2,1}=16 L_{2} \frac{M^{2}}{F_{\pi}^{2}}$

Constraints on Wilson coefficients

$$
\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{1} \operatorname{Tr}^{2}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{2} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial_{\nu} U\right) \operatorname{Tr}\left(\partial^{\mu} U^{\dagger} \partial^{\nu} U\right)+L_{3} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \partial_{\nu} U^{\dagger} \partial^{\nu} U\right)
$$

($\left.\mathbf{S}^{\mathbf{2}}\right): \quad \tilde{g}_{2,0}=4\left(2 L_{1}+3 L_{2}+L_{3}\right) \frac{M^{2}}{F_{\pi}^{2}}, \quad \tilde{g}_{2,1}=16 L_{2} \frac{M^{2}}{F_{\pi}^{2}}$
mass of the 1st meson

Constraints on Wilson coefficients

$$
\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{1} \operatorname{Tr}^{2}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{2} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial_{\nu} U\right) \operatorname{Tr}\left(\partial^{\mu} U^{\dagger} \partial^{\nu} U\right)+L_{3} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \partial_{\nu} U^{\dagger} \partial^{\nu} U\right)
$$

(s) $\left.\mathbf{S}^{2}\right): \quad \tilde{g}_{2,0}=4\left(2 L_{1}+3 L_{2}+L_{3}\right) \frac{M^{2}}{F_{\pi}^{2}}, \quad \tilde{g}_{2,1}=16 L_{2} \frac{M^{2}}{F_{\pi}^{2}}$
mass of the 1st meson

Constraints on Wilson coefficients

$$
\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{1} \operatorname{Tr}^{2}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{2} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial_{\nu} U\right) \operatorname{Tr}\left(\partial^{\mu} U^{\dagger} \partial^{\nu} U\right)+L_{3} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \partial_{\nu} U^{\dagger} \partial^{\nu} U\right)
$$

(s) $\mathbf{(2)}: \quad \tilde{g}_{2,0}=4\left(2 L_{1}+3 L_{2}+L_{3}\right) \frac{M^{2}}{F_{\pi}^{2}}, \quad \tilde{g}_{2,1}=16 L_{2} \frac{M^{2}}{F_{\pi}^{2}}$

Constraints on Wilson coefficients

$$
\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{1} \operatorname{Tr}^{2}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{2} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial_{\nu} U\right) \operatorname{Tr}\left(\partial^{\mu} U^{\dagger} \partial^{\nu} U\right)+L_{3} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \partial_{\nu} U^{\dagger} \partial^{\nu} U\right)
$$

$$
\left(\mathbf{S}^{\mathbf{2}}\right): \quad \tilde{g}_{2,0}=4\left(2 L_{1}+3 L_{2}\right.
$$

Amazingly, related to the fact that

Constraints on Wilson coefficients

$$
\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{1} \operatorname{Tr}^{2}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U\right)+L_{2} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial_{\nu} U\right) \operatorname{Tr}\left(\partial^{\mu} U^{\dagger} \partial^{\nu} U\right)+L_{3} \operatorname{Tr}\left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \partial_{\nu} U^{\dagger} \partial^{\nu} U\right)
$$

(s) $\boldsymbol{(2)}: \quad \tilde{g}_{2,0}=4\left(2 L_{1}+3 L_{2}+L_{3}\right) \frac{M^{2}}{F_{\pi}^{2}}, \quad \tilde{g}_{2,1}=16 L_{2} \frac{M^{2}}{F_{\pi}^{2}}$
mass of the 1st meson

stronger bounds if we assume that, as in QCD, J>I mesons are heavier

stronger bounds if we assume that, as in QCD, J>I mesons are heavier

+ the spin-I meson, the ρ,

has a non-zero coupling to mm

stronger bounds if we assume that, as in QCD, J> I mesons are heavier

+ the spin-I meson, the ρ,

has a non-zero coupling to mm

$\tilde{g}_{\rho}^{2} \equiv \frac{g_{\rho \pi \pi}^{2} F_{\pi}^{2}}{m_{\rho}^{2}}$

stronger bounds if we assume that, as in QCD, J> I mesons are heavier

+ the spin-I meson, the ρ,

has a non-zero coupling to mm

Experimental
QCD data

Explaining the success of holography

AdS/QCD: 5D model for QCD mesons

$S U(2)_{L} \times S U(2)_{R} \quad$ model with only $\mathbf{s}=0,1$ fields:
Erlich+Katz+Son+Stephanov 05
Da Rold+Pomarol 05

$$
\mathcal{L}_{5}=\frac{M_{5}}{2} \operatorname{Tr}\left[-L_{M N} L^{M N}-R_{M N} R^{M N}+\left|D_{M} \Phi\right|^{2}+3|\Phi|^{2}\right]
$$

	Experiment	AdS_{5}	Deviation
m_{ρ}	775	824	$+6 \%$
$m_{a_{1}}$	1230	1347	$+10 \%$
m_{ω}	782	824	$+5 \%$
F_{ρ}	153	169	$+11 \%$
F_{ω} / F_{ρ}	0.88	0.94	$+7 \%$
F_{π}	87	88	$+1 \%$
$g_{\rho \pi \pi}$	6.0	5.4	-10%
L_{9}	$6.9 \cdot 10^{-3}$	$6.2 \cdot 10^{-3}$	-10%
L_{10}	$-5.2 \cdot 10^{-3}$	$-6.2 \cdot 10^{-3}$	-12%
$\Gamma(\omega \rightarrow \pi \gamma)$	0.75	0.81	$+8 \%$
$\Gamma(\omega \rightarrow 3 \pi)$	7.5	6.7	-11%
$\Gamma(\rho \rightarrow \pi \gamma)$	0.068	0.077	$+13 \%$
$\Gamma(\omega \rightarrow \pi \mu \mu)$	$8.2 \cdot 10^{-4}$	$7.3 \cdot 10^{-4}$	-10%
$\Gamma(\omega \rightarrow \pi e e)$	$6.5 \cdot 10^{-3}$	$7.3 \cdot 10^{-3}$	$+12 \%$

Explaining the success of holography

AdS/QCD: 5D model for QCD mesons

$S U(2)_{L} \times S U(2)_{R} \quad$ model with only $\mathbf{s}=0,1$ fields:

Erlich+Katz+Son+Stephanov 05
Da Rold+Pomarol 05

$$
\mathcal{L}_{5}=\frac{M_{5}}{2} \operatorname{Tr}\left[-L_{M N} L^{M N}-R_{M N} R^{M N}+\left|D_{M} \Phi\right|^{2}+3|\Phi|^{2}\right]
$$

	Experiment	AdS_{5}	Deviation
m_{ρ}	775	824	$+6 \%$
$m_{a_{1}}$	1230	1347	$+10 \%$
m_{ω}	782	824	$+5 \%$
F_{ρ}	153	169	$+11 \%$
F_{ω} / F_{ρ}	0.88	0.94	$+7 \%$
F_{π}	87	88	$+1 \%$
$g_{\rho \pi \pi}$	6.0	5.4	-10%
L_{9}	$6.9 \cdot 10^{-3}$	$6.2 \cdot 10^{-3}$	-10%
L_{10}	$-5.2 \cdot 10^{-3}$	$-6.2 \cdot 10^{-3}$	-12%
$\Gamma(\omega \rightarrow \pi \gamma)$	0.75	0.81	$+8 \%$
$\Gamma(\omega \rightarrow 3 \pi)$	7.5	6.7	-11%
$\Gamma(\rho \rightarrow \pi \gamma)$	0.068	0.077	$+13 \%$
$\Gamma(\omega \rightarrow \pi \mu \mu)$	$8.2 \cdot 10^{-4}$	$7.3 \cdot 10^{-4}$	-10%
$\Gamma(\omega \rightarrow \pi e e)$	$6.5 \cdot 10^{-3}$	$7.3 \cdot 10^{-3}$	$+12 \%$

Success understood from the above analysis: J>I mesons contribute little to low-energy observables

Similar structure for higher-order Wilson coeff.

$O\left(s^{3}\right):$

UV completions for models of Goldstones

UV completions for models of Goldstones

U(I)A axial anomaly

Introducing the η^{\prime} (Goldstone of an anomalous symmetry):

$$
\begin{aligned}
& U(2) \otimes U(2) \rightarrow U(2) \\
& \quad \longrightarrow S U(2) \otimes S U(2) \otimes U(I)_{A} \otimes U(I)
\end{aligned}
$$

U(I)A axial anomaly

Introducing the η ' (Goldstone of an anomalous symmetry):

$$
\begin{aligned}
& U(2) \otimes U(2) \rightarrow U(2) \\
& \quad \longrightarrow S U(2) \otimes S U(2) \otimes U(I)_{A} \otimes U(I)
\end{aligned}
$$

-WZW term: 5-goldstone int.

- Adding external gauge-bosons: $\pi \rightarrow \gamma \gamma$

two qL, QR model

U(I)A axial anomaly

Introducing the η ' (Goldstone of an anomalous symmetry):

$$
\begin{aligned}
& U(2) \otimes U(2) \rightarrow U(2) \\
& \quad \longrightarrow S U(2) \otimes S U(2) \otimes U(I)_{A} \otimes U(I)
\end{aligned}
$$

-WZW term: 5-goldstone int.

- Adding external gauge-bosons:

$$
\pi \rightarrow \gamma \gamma
$$

two qL, QR model

a) It cannot be mediated by scalars

> axial anomaly discards theories with only scalar resonances
b) Bounded

How a bound on the anomaly arises:

How a bound on the anomaly arises:

Amazingly, a bound can be extended in general (from positivity):

$$
\kappa \sqrt{\frac{2 F_{\pi}^{2}}{\mathcal{P}}}
$$

spin-I coupling to pions

Weak gravity conjecture (WGC)-like bound

$$
G \leq 10.6618 e^{2}+0.0367 g_{0,1}
$$

Bounds on the anomaly in susy models:

$$
\begin{aligned}
& \begin{array}{l}
\left\langle\hat{\jmath}_{\mu}(x) \hat{\jmath}_{\nu}(y) \hat{\jmath}_{\rho}(z)\right\rangle \xlongequal{\hat{\jmath}_{\mu}=\frac{2 \pi^{2}}{\sqrt{3 \tau}} j_{\mu}}{ }_{\text {bounds }} D_{\mu \nu \rho}(x, y, z)
\end{array} \\
& 1909.11676
\end{aligned}
$$

Conclusions

- Crossing + Analyticity + Unitarity allow to get information on possible UV completions of theories of Goldstones:

- Predicts a "EFT-hedron" structure

Conclusions

- Crossing + Analyticity + Unitarity allow to get information on possible UV completions of theories of Goldstones:

- Axial anomaly can discriminate between the two possibilities

Bounded from above:

$$
\frac{\kappa}{\sqrt{\mathcal{P} / F_{\pi}^{2}}} \leq \frac{1}{\sqrt{2}}
$$

\Rightarrow potential interest to constrain DM scenarios (e.g. SIMPs)

- Gravitational anomaly?

RESTRICTED AREA

MONITORED BY VIDEO CAMERA

$$
0=\sum_{i} \frac{\left|g_{\pi \pi i}\right|^{2}}{m_{i}^{2 n}}(\underbrace{\left.\frac{2^{n-1}}{(n-1)!} P_{J_{i}}^{(n-1)}(1)-\mathcal{J}_{i}^{2}\right)}_{\mathcal{X}_{n, 1}} \quad \begin{array}{ll}
& n=2,3,4, \ldots \\
J^{2} \equiv J(J+1)
\end{array}
$$

Lets assume at $s \rightarrow \infty$ and either t or u fixed:

$$
\frac{\mathcal{M}_{t}^{I=2}(s, u)}{s^{2}} \rightarrow 0
$$

C The su-models

Let us consider the most general theory of a degenerate spectrum that contributes to the fourpion amplitude $\mathcal{M}(s, u)[7,8]$. This means that all states have equal mass m, and therefore the denominator of this amplitude is fixed to be $\mathcal{M}(s, u) \propto 1 /\left(\left(s-m^{2}\right)\left(u-m^{2}\right)\right)$. If we further demand that Eq. (6a) and Eq. (6b) are satisfied for $k_{\min }=1$, we are led to

$$
\begin{equation*}
\mathcal{M}(s, u)=\frac{a_{1} m^{4}+a_{2} m^{2}(s+u)+a_{3} s u}{\left(s-m^{2}\right)\left(u-m^{2}\right)} \tag{91}
\end{equation*}
$$

where a_{i} are constants. The Adler's zero condition fixes $a_{1}=0$. Then, aside from a global multiplicative factor, the amplitude has only one free parameter. We can write it as

$$
\begin{equation*}
\mathcal{M}_{1}^{(s u)}(s, u)=\frac{m^{2}(s+u)+\lambda s u}{\left(s-m^{2}\right)\left(u-m^{2}\right)} \tag{92}
\end{equation*}
$$

where the possible values of λ are determined by unitarity. Indeed, imposing the positivity of the residues of Eq. (92), we obtain

$$
\begin{equation*}
-2 \leq \lambda \leq \frac{2 \ln 2-1}{1-\ln 2} \tag{93}
\end{equation*}
$$

In the limiting case $\lambda=-2$, the residues of all $J>0$ states are zero, and we are left with the scalar amplitude Eq. (22). In the other limit,

$$
\begin{equation*}
\lambda=\frac{2 \ln 2-1}{1-\ln 2} \simeq 1.26 \tag{94}
\end{equation*}
$$

D The Lovelace-Shapiro amplitude

The Lovelace-Shapiro (LS) amplitude for the scattering of four pions is defined as [26, 27]

$$
\begin{equation*}
\mathcal{M}^{(\mathrm{LS})}(s, u)=\frac{\Gamma(1-\alpha(s)) \Gamma(1-\alpha(u))}{\Gamma(1-\alpha(s)-\alpha(u))} \tag{105}
\end{equation*}
$$

where $\alpha(s)=\alpha_{0}+\alpha^{\prime} s$ is referred as the Regge trajectory. We will fix the values of α_{0} and α^{\prime} by requiring that Eq. (106) satisfies the Adler zero condition, $\mathcal{M}^{(\mathrm{LS})}(s, u) \rightarrow 0$ for $s, u \rightarrow 0$, and that the first pole of Eq. (106) occurs for $s=m_{\rho}^{2}$. These two conditions lead to $\alpha_{0}=1 / 2$ and $\alpha^{\prime}=1 /\left(2 m_{\rho}^{2}\right)[66]$ and then we can write

$$
\begin{equation*}
\mathcal{M}^{(\mathrm{LS})}(s, u)=\frac{\Gamma\left(\frac{1}{2}-\frac{s}{2 m_{\rho}^{2}}\right) \Gamma\left(\frac{1}{2}-\frac{u}{2 m_{\rho}^{2}}\right)}{\Gamma\left(\frac{t}{2 m_{\rho}^{2}}\right)} . \tag{106}
\end{equation*}
$$

By looking at the poles of Eq. (106), one can see that the LS amplitude corresponds to a theory of higher-spin states with masses

$$
\begin{equation*}
m_{n}^{2}=m_{\rho}^{2}(2 n+1), \quad n=0,1,2, \ldots \tag{107}
\end{equation*}
$$

For a given n, there are at most $n+1$ states with $\operatorname{spin} J=0,1, \ldots, n+1$. Furthermore, Eq. (106) satisfies the condition Eq. (6a) and Eq. (6b) with $k_{\min }=1$.

E The Coon amplitude

The Lovelace-Shapiro amplitude presented in Appendix D can be generalized to a larger class of amplitudes depending on an additional parameter q. This is the so-called Coon amplitude, which was first proposed in $[28]^{11}$:

$$
\begin{equation*}
\mathcal{M}_{q}(s, u)=C(\sigma, \tau, q) \prod_{n=0}^{\infty} \frac{\left(1-q^{n+1}\right)\left(\sigma \tau-q^{n+1}\right)}{\left(\sigma-q^{n+1}\right)\left(\tau-q^{n+1}\right)} \tag{118}
\end{equation*}
$$

where $\sigma=1+(q-1)\left(\alpha_{0}+\alpha^{\prime} s\right)$ and $\tau=1+(q-1)\left(\alpha_{0}+\alpha^{\prime} u\right)$. As explained in Appendix D, we take $\alpha_{0}=1 / 2$ and $\alpha^{\prime}=1 /\left(2 m_{\rho}^{2}\right)$. The parameter q takes values between 0 and 1 , and in the limit $q \rightarrow 1$ we recover the LS amplitude Eq. (106). There is some freedom in the choice of the prefactor C, as long as it satisfies $\lim _{q \rightarrow 1} C(\sigma, \tau, q)=1$.

The Coon amplitude has an infinite number of simple poles at

$$
\begin{equation*}
s_{n}=m_{\rho}^{2} \frac{1+q-2 q^{n+1}}{1-q}, \quad n=0,1,2, \ldots \tag{119}
\end{equation*}
$$

Impact on BSM searches at the LHC

Higgs as a Pseudo-Goldtone boson:

Indirect probes:

deviations in Higgs coupling

Direct probes:

Impact on BSM searches at the LHC

Higgs as a Pseudo-Goldtone boson:

Indirect probes:

deviations in Higgs coupling

Direct probes:

$$
\overbrace{\bar{q}}^{q^{\prime}} \sim_{g_{*}^{\prime}}^{w^{\prime}}{ }_{\substack{\prime}}^{w^{\prime}}
$$

e.g. I502.0I70I [hep-th]

Impact on BSM searches at the LHC

Higgs as a Pseudo-Goldtone boson:

Indirect probes:

deviations in Higgs coupling

Direct probes:

