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        More general approach:
tackle by just demanding “good” properties to the BSM:
Lorentz, Positivity, locality (analyticity), crossing, …

Motivation

UV completion?
E

Effective Field Theory (EFT)
good tool to describe exp. data!

☞ It has been shown in many recent examples that
        they can provide very powerful constraints

this work will be able to do so in the near future. More generally, the results of this work
give us hope that the same techniques can be used to to solve other interesting strongly-
coupled CFTs, such as the 3d Gross-Neveu models, 3d Chern-Simons and gauge theories
coupled to matter, 4d QCD in the conformal window, N = 4 supersymmetric Yang-Mills
theory, and more.

The structure of this paper is as follows. In section 2, we summarize the crossing
symmetry conditions arising from systems of correlators in 3d CFTs with O(N) symmetry,
and discuss how to study them with semidefinite programming. In section 3, we describe
our results and in section 4 we discuss several directions for future work. Details of our
implementation are given in appendix A. An exploration of the role of the leading symmetric
tensor is given in appendix B.
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Figure 1: Allowed regions for operator dimensions in 3d CFTs with an O(N) global symmetry
and exactly one relevant scalar φi in the vector representation and one relevant scalar s in
the singlet representation of O(N), for N = 1, 2, 3, 4, 20. The case N = 1, corresponding to
the 3d Ising model, is from [51]. The allowed regions for N = 2, 3, 4, 20 were computed with
Λ = 35, where Λ (defined in appendix A) is related to the number of derivatives of the crossing
equation used. Each region is roughly triangular, with an upper-left vertex that corresponds
to the kinks in previous bounds [15]. Further allowed regions may exist outside the range of
this plot; we leave their exploration to future work.
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UV completion for a theory of Goldstones
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 Also aiming strongly-coupled gauge theories (QCD) 
in the large-Nc limit:

 

quark

gluon

quarks, gluons mesons (qq states), glueballs-
SU(Nc) Nc →∞

mesons + other
 channels

g ~1/√Nc

• •

simplifying assumption: 
☞ weakly-coupled theories (tree-level)

but with infinite higher-spin states

G. ’t Hooft, Nucl. Phys. B 72, 461 (1974)
E. Witten, Nucl. Phys. B 160, 57 (1979)
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Positivity bounds 
on (tree-level mediated) amplitudes

Analytical structure of 2→2 amplitudes:

complex s-plane

• • • • • •• • • • • •

simple poles due to states in the s-channel:
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u fixed

This simple structure allows to get dispersion relations:
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M(s, t)

sk+1

<latexit sha1_base64="8Q9hODD78n3YKu2Gve+V8hqdVVE=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgooSkPjdC0Y3LCvYBaSiT6aQdOsmEmYlQQj/DjQtF3Po17vwbp20W2nrgwuGce7n3niDhTGnH+bYKK6tr6xvFzdLW9s7uXnn/oKVEKgltEsGF7ARYUc5i2tRMc9pJJMVRwGk7GN1N/fYTlYqJ+FGPE+pHeBCzkBGsjeSNbtxqrXpWtW27V644tjMDWiZuTiqQo9Erf3X7gqQRjTXhWCnPdRLtZ1hqRjidlLqpogkmIzygnqExjqjys9nJE3RilD4KhTQVazRTf09kOFJqHAWmM8J6qBa9qfif56U6vPYzFieppjGZLwpTjrRA0/9Rn0lKNB8bgolk5lZEhlhiok1KJROCu/jyMmnVbPfSvng4r9Rv8ziKcATHcAouXEEd7qEBTSAg4Ble4c3S1ov1bn3MWwtWPnMIf2B9/gAtR48+</latexit>

k = 1, 2, 3, ...

s-plane

Positivity bounds 
on (tree-level mediated) amplitudes



• • • • • •• • • • • • •

u fixed

This simple structure allows to get dispersion relations:

|s| → ∞

<latexit sha1_base64="7/I1JscAmfCDxMqhB1bH2C9KSfk=">AAACB3icbVDLSsNAFL2pr1pfUZeCDBahgpREfC2LbtwIFewDmlgm00k7dPJgZiKUkJ0bf8WNC0Xc+gvu/BunbRZaPTBwOOde7pzjxZxJZVlfRmFufmFxqbhcWlldW98wN7eaMkoEoQ0S8Ui0PSwpZyFtKKY4bceC4sDjtOUNL8d+654KyaLwVo1i6ga4HzKfEay01DV3HV9gkqYOwRxdZxV5qA6yVN4NM0dFyOqaZatqTYD+EjsnZchR75qfTi8iSUBDRTiWsmNbsXJTLBQjnGYlJ5E0xmSI+7SjaYgDKt10kiND+1rpIT8S+oUKTdSfGykOpBwFnp4MsBrIWW8s/ud1EuWfuykL40TRkEwP+QlHOuK4FNRjghLFR5pgIpj+KyIDrItRurqSLsGejfyXNI+q9mn15Oa4XLvI6yjCDuxBBWw4gxpcQR0aQOABnuAFXo1H49l4M96nowUj39mGXzA+vgE8Npjp</latexit>

M(s, t)

sk
! 0

contour

<latexit sha1_base64="2xxxjvRu/u1SpitA8YHCtUJhL08=">AAACDnicbVDLSgMxFM3UV62vUZdugqVQUcqM+NoIRTduhAr2AZ2xZNJMG5qZDElGKGG+wI2/4saFIm5du/NvTB8LrR64cDjnXu69J0gYlcpxvqzc3PzC4lJ+ubCyura+YW9uNSRPBSZ1zBkXrQBJwmhM6ooqRlqJICgKGGkGg8uR37wnQlIe36phQvwI9WIaUoyUkTp2yeM0VtALBcJaexgxeJ2V5YHay7S804N9N8vOnY5ddCrOGPAvcaekCKaodexPr8txGpFYYYakbLtOonyNhKKYkazgpZIkCA9Qj7QNjVFEpK/H72SwZJQuDLkwZW4bqz8nNIqkHEaB6YyQ6stZbyT+57VTFZ75msZJqkiMJ4vClEHF4Sgb2KWCYMWGhiAsqLkV4j4yySiTYMGE4M6+/Jc0DivuSeX45qhYvZjGkQc7YBeUgQtOQRVcgRqoAwwewBN4Aa/Wo/VsvVnvk9acNZ3ZBr9gfXwDO4+blw==</latexit>I M(s, t)

sk+1
= 0

For large enough k,  we have:

<latexit sha1_base64="PNM/WjGR/JEeM8Nhs/bjYESNmMU=">AAAB9HicbVBNS8NAEJ34WetX1aOXYBE8lUT8Oha9eKxgP6AJZbPdtEs3m7g7KYS2v8OLB0W8+mO8+W/ctjlo64OBx3szzMwLEsE1Os63tbK6tr6xWdgqbu/s7u2XDg4bOk4VZXUai1i1AqKZ4JLVkaNgrUQxEgWCNYPB3dRvDpnSPJaPmCXMj0hP8pBTgkbyx3rsYWx7XIaYdUplp+LMYC8TNydlyFHrlL68bkzTiEmkgmjddp0E/RFRyKlgk6KXapYQOiA91jZUkohpfzQ7emKfGqVrh7EyJdGeqb8nRiTSOosC0xkR7OtFbyr+57VTDG/8EZdJikzS+aIwFbb5c5qA3eWKURSZIYQqbm61aZ8oQtHkVDQhuIsvL5PGecW9qlw+XJSrt3kcBTiGEzgDF66hCvdQgzpQeIJneIU3a2i9WO/Wx7x1xcpnjuAPrM8fHNuSVg==</latexit>

|s| ! 1

☞

Positivity bounds 
on (tree-level mediated) amplitudes



• • • • • •• • • • • •

u fixed

• --

(low-energy EFT parameters related to masses and couplings of mesons) 

residue at the origin + sum of residues at the mass poles = 0

This simple structure allows to get dispersion relations:

Cauchy at work:

contour

Positivity bounds 
on (tree-level mediated) amplitudes



Lets assume an SU(2) (isospin) global symmetry

J. Albert and L. Rastelli, arXiv: 2203.11950

Goldstone-Goldstone scattering

<latexit sha1_base64="KjgoN135W56udzQFPt+vkuRrwf0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sUy223bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqKPNpLGLVClEzwSXzDTeCtRLFMAoFa4aj26nffGJK81g+mHHCgggHkvc5RWMlv5PwR+yWK27VnYEsEy8nFchR75a/Or2YphGThgrUuu25iQkyVIZTwSalTqpZgnSEA9a2VGLEdJDNjp2QE6v0SD9WtqQhM/X3RIaR1uMotJ0RmqFe9Kbif147Nf3rIOMySQ2TdL6onwpiYjL9nPS4YtSIsSVIFbe3EjpEhdTYfEo2BG/x5WXSOKt6l9WL+/NK7SaPowhHcAyn4MEV1OAO6uADBQ7P8ApvjnRenHfnY95acPKZQ/gD5/MHwSKOqg==</latexit>

⇡a

<latexit sha1_base64="yuy7Gvf+XnhQz2x2NUo48xOu8Mw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6nfrNJ1Sax/LBjBMMIjqQvM8ZNVbyOwl/DLvlilt1ZyDLxMtJBXLUu+WvTi9maYTSMEG1bntuYoKMKsOZwEmpk2pMKBvRAbYtlTRCHWSzYyfkxCo90o+VLWnITP09kdFI63EU2s6ImqFe9Kbif147Nf3rIOMySQ1KNl/UTwUxMZl+TnpcITNibAllittbCRtSRZmx+ZRsCN7iy8ukcVb1LqsX9+eV2k0eRxGO4BhOwYMrqMEd1MEHBhye4RXeHOm8OO/Ox7y14OQzh/AHzucPwqaOqw==</latexit>

⇡b

<latexit sha1_base64="xTalfQWTx4IM+eiQgGh3kLJrh5A=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6nfrNJ1Sax/LBjBMMIjqQvM8ZNVbyOwl/ZN1yxa26M5Bl4uWkAjnq3fJXpxezNEJpmKBatz03MUFGleFM4KTUSTUmlI3oANuWShqhDrLZsRNyYpUe6cfKljRkpv6eyGik9TgKbWdEzVAvelPxP6+dmv51kHGZpAYlmy/qp4KYmEw/Jz2ukBkxtoQyxe2thA2poszYfEo2BG/x5WXSOKt6l9WL+/NK7SaPowhHcAyn4MEV1OAO6uADAw7P8ApvjnRenHfnY95acPKZQ/gD5/MHxCqOrA==</latexit>

⇡c

<latexit sha1_base64="z5JRSN73UkjMGuIRC6A/tuRULBc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sWw2m3bpZjfsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MOVMG9f9dkorq2vrG+XNytb2zu5edf+gpWWmCPWJ5FJ1QqwpZ4L6hhlOO6miOAk5bYej26nffqJKMykezDilQYIHgsWMYGMlv5eyx6hfrbl1dwa0TLyC1KBAs1/96kWSZAkVhnCsdddzUxPkWBlGOJ1UepmmKSYjPKBdSwVOqA7y2bETdGKVCMVS2RIGzdTfEzlOtB4noe1MsBnqRW8q/ud1MxNfBzkTaWaoIPNFccaRkWj6OYqYosTwsSWYKGZvRWSIFSbG5lOxIXiLLy+T1lndu6xf3J/XGjdFHGU4gmM4BQ+uoAF30AQfCDB4hld4c4Tz4rw7H/PWklPMHMIfOJ8/xa6OrQ==</latexit>

⇡d

<latexit sha1_base64="7tM5y1YgzsClWuYmGYEU61C9kA0=">AAAB9XicbVDLTsMwENyUVymvAkcuFhUSpyrhfazgwrFI9CE1aeW4TmvVcSzbAVVR/4MLBxDiyr9w429w2xygMNJKo5ld7e6EkjNtXPfLKSwtr6yuFddLG5tb2zvl3b2mTlJFaIMkPFHtEGvKmaANwwynbakojkNOW+HoZuq3HqjSLBH3ZixpEOOBYBEj2Fip60vWxT4TyA8jdNorV9yqOwP6S7ycVCBHvVf+9PsJSWMqDOFY647nShNkWBlGOJ2U/FRTickID2jHUoFjqoNsdvUEHVmlj6JE2RIGzdSfExmOtR7Hoe2MsRnqRW8q/ud1UhNdBRkTMjVUkPmiKOXIJGgaAeozRYnhY0swUczeisgQK0yMDapkQ/AWX/5LmidV76J6fndWqV3ncRThAA7hGDy4hBrcQh0aQEDBE7zAq/PoPDtvzvu8teDkM/vwC87HN2ZBkc4=</latexit>

⇡a 2 3 massless

Goldstones from
SU(2)⊗SU(2)→SU(2)



Isospin = I = 1/2⊗1/2 = 0 , 1 
                                                  ☞  no I =2 states

Extra condition from large-Nc QCD:

Mesons = 
<latexit sha1_base64="VUSYbVU5VStNFMhEW4kFzU5JTgY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20pWy2k3bpZhN3N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqBVSj4BJ9w43AVqKQRoHAZjC6nfrNJ1Sax/LBjBPsRnQgecgZNVbyO0FIHnvlilt1ZyDLxMtJBXLUe+WvTj9maYTSMEG1bntuYroZVYYzgZNSJ9WYUDaiA2xbKmmEupvNjp2QE6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7x2asLrbsZlkhqUbL4oTAUxMZl+TvpcITNibAllittbCRtSRZmx+ZRsCN7iy8ukcVb1LqsX9+eV2k0eRxGO4BhOwYMrqMEd1MEHBhye4RXeHOm8OO/Ox7y14OQzh/AHzucPYTiOaw==</latexit>q

<latexit sha1_base64="69A/cDAcR39zbYWgcnNUy7OtxeI=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68RjBPDC7hNlJbzJkdnadmRVCyF948aCIV//Gm3/jJNmDJhY0FFXddHeFqeDauO63s7S8srq2Xtgobm5t7+yW9vYbOskUwzpLRKJaIdUouMS64UZgK1VI41BgMxzcTPzmEyrNE3lvhikGMe1JHnFGjZUe/DAifkgVeeyUym7FnYIsEi8nZchR65S+/G7CshilYYJq3fbc1AQjqgxnAsdFP9OYUjagPWxbKmmMOhhNLx6TY6t0SZQoW9KQqfp7YkRjrYdxaDtjavp63puI/3ntzERXwYjLNDMo2WxRlAliEjJ5n3S5QmbE0BLKFLe3EtanijJjQyraELz5lxdJ47TiXVTO787K1es8jgIcwhGcgAeXUIVbqEEdGEh4hld4c7Tz4rw7H7PWJSefOYA/cD5/ALYokE4=</latexit>

q̄



Isospin = I = 1/2⊗1/2 = 0 , 1 
                                                  ☞  no I =2 states

Mesons = 

cannot have poles in s

<latexit sha1_base64="KjgoN135W56udzQFPt+vkuRrwf0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sUy223bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqKPNpLGLVClEzwSXzDTeCtRLFMAoFa4aj26nffGJK81g+mHHCgggHkvc5RWMlv5PwR+yWK27VnYEsEy8nFchR75a/Or2YphGThgrUuu25iQkyVIZTwSalTqpZgnSEA9a2VGLEdJDNjp2QE6v0SD9WtqQhM/X3RIaR1uMotJ0RmqFe9Kbif147Nf3rIOMySQ2TdL6onwpiYjL9nPS4YtSIsSVIFbe3EjpEhdTYfEo2BG/x5WXSOKt6l9WL+/NK7SaPowhHcAyn4MEV1OAO6uADBQ7P8ApvjnRenHfnY95acPKZQ/gD5/MHwSKOqg==</latexit>

⇡a

<latexit sha1_base64="yuy7Gvf+XnhQz2x2NUo48xOu8Mw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6nfrNJ1Sax/LBjBMMIjqQvM8ZNVbyOwl/DLvlilt1ZyDLxMtJBXLUu+WvTi9maYTSMEG1bntuYoKMKsOZwEmpk2pMKBvRAbYtlTRCHWSzYyfkxCo90o+VLWnITP09kdFI63EU2s6ImqFe9Kbif147Nf3rIOMySQ1KNl/UTwUxMZl+TnpcITNibAllittbCRtSRZmx+ZRsCN7iy8ukcVb1LqsX9+eV2k0eRxGO4BhOwYMrqMEd1MEHBhye4RXeHOm8OO/Ox7y14OQzh/AHzucPwqaOqw==</latexit>

⇡b

<latexit sha1_base64="xTalfQWTx4IM+eiQgGh3kLJrh5A=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6nfrNJ1Sax/LBjBMMIjqQvM8ZNVbyOwl/ZN1yxa26M5Bl4uWkAjnq3fJXpxezNEJpmKBatz03MUFGleFM4KTUSTUmlI3oANuWShqhDrLZsRNyYpUe6cfKljRkpv6eyGik9TgKbWdEzVAvelPxP6+dmv51kHGZpAYlmy/qp4KYmEw/Jz2ukBkxtoQyxe2thA2poszYfEo2BG/x5WXSOKt6l9WL+/NK7SaPowhHcAyn4MEV1OAO6uADAw7P8ApvjnRenHfnY95acPKZQ/gD5/MHxCqOrA==</latexit>

⇡c

<latexit sha1_base64="z5JRSN73UkjMGuIRC6A/tuRULBc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sWw2m3bpZjfsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MOVMG9f9dkorq2vrG+XNytb2zu5edf+gpWWmCPWJ5FJ1QqwpZ4L6hhlOO6miOAk5bYej26nffqJKMykezDilQYIHgsWMYGMlv5eyx6hfrbl1dwa0TLyC1KBAs1/96kWSZAkVhnCsdddzUxPkWBlGOJ1UepmmKSYjPKBdSwVOqA7y2bETdGKVCMVS2RIGzdTfEzlOtB4noe1MsBnqRW8q/ud1MxNfBzkTaWaoIPNFccaRkWj6OYqYosTwsSWYKGZvRWSIFSbG5lOxIXiLLy+T1lndu6xf3J/XGjdFHGU4gmM4BQ+uoAF30AQfCDB4hld4c4Tz4rw7H/PWklPMHMIfOJ8/xa6OrQ==</latexit>

⇡d

<latexit sha1_base64="Ltg7YyUSZdk8Vkqar9cPPf3pC7w=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaT42ghFN7oQKtgHtDFMptN26GQSZiaFEvInblwo4tY/ceffOG2z0NYDFw7n3Mu99wQxZ0o7zre1tLyyurZe2Chubm3v7Np7+w0VJZLQOol4JFsBVpQzQeuaaU5bsaQ4DDhtBsObid8cUalYJB71OKZeiPuC9RjB2ki+bacdgjm6z3z1lN5dVTLfLjllZwq0SNyclCBHzbe/Ot2IJCEVmnCsVNt1Yu2lWGpGOM2KnUTRGJMh7tO2oQKHVHnp9PIMHRuli3qRNCU0mqq/J1IcKjUOA9MZYj1Q895E/M9rJ7p36aVMxImmgswW9RKOdIQmMaAuk5RoPjYEE8nMrYgMsMREm7CKJgR3/uVF0qiU3fPy2cNpqXqdx1GAQziCE3DhAqpwCzWoA4ERPMMrvFmp9WK9Wx+z1iUrnzmAP7A+fwDT6ZMm</latexit>

MI=2
s

I =2

<latexit sha1_base64="VUSYbVU5VStNFMhEW4kFzU5JTgY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20pWy2k3bpZhN3N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqBVSj4BJ9w43AVqKQRoHAZjC6nfrNJ1Sax/LBjBPsRnQgecgZNVbyO0FIHnvlilt1ZyDLxMtJBXLUe+WvTj9maYTSMEG1bntuYroZVYYzgZNSJ9WYUDaiA2xbKmmEupvNjp2QE6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7x2asLrbsZlkhqUbL4oTAUxMZl+TvpcITNibAllittbCRtSRZmx+ZRsCN7iy8ukcVb1LqsX9+eV2k0eRxGO4BhOwYMrqMEd1MEHBhye4RXeHOm8OO/Ox7y14OQzh/AHzucPYTiOaw==</latexit>q
<latexit sha1_base64="69A/cDAcR39zbYWgcnNUy7OtxeI=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68RjBPDC7hNlJbzJkdnadmRVCyF948aCIV//Gm3/jJNmDJhY0FFXddHeFqeDauO63s7S8srq2Xtgobm5t7+yW9vYbOskUwzpLRKJaIdUouMS64UZgK1VI41BgMxzcTPzmEyrNE3lvhikGMe1JHnFGjZUe/DAifkgVeeyUym7FnYIsEi8nZchR65S+/G7CshilYYJq3fbc1AQjqgxnAsdFP9OYUjagPWxbKmmMOhhNLx6TY6t0SZQoW9KQqfp7YkRjrYdxaDtjavp63puI/3ntzERXwYjLNDMo2WxRlAliEjJ5n3S5QmbE0BLKFLe3EtanijJjQyraELz5lxdJ47TiXVTO787K1es8jgIcwhGcgAeXUIVbqEEdGEh4hld4c7Tz4rw7H7PWJSefOYA/cD5/ALYokE4=</latexit>

q̄

Extra condition from large-Nc QCD:



Isospin = I = 1/2⊗1/2 = 0 , 1 
                                                  ☞  no I =2 states

Mesons = 

cannot have poles in t

<latexit sha1_base64="KjgoN135W56udzQFPt+vkuRrwf0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sUy223bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqKPNpLGLVClEzwSXzDTeCtRLFMAoFa4aj26nffGJK81g+mHHCgggHkvc5RWMlv5PwR+yWK27VnYEsEy8nFchR75a/Or2YphGThgrUuu25iQkyVIZTwSalTqpZgnSEA9a2VGLEdJDNjp2QE6v0SD9WtqQhM/X3RIaR1uMotJ0RmqFe9Kbif147Nf3rIOMySQ2TdL6onwpiYjL9nPS4YtSIsSVIFbe3EjpEhdTYfEo2BG/x5WXSOKt6l9WL+/NK7SaPowhHcAyn4MEV1OAO6uADBQ7P8ApvjnRenHfnY95acPKZQ/gD5/MHwSKOqg==</latexit>

⇡a

<latexit sha1_base64="yuy7Gvf+XnhQz2x2NUo48xOu8Mw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6nfrNJ1Sax/LBjBMMIjqQvM8ZNVbyOwl/DLvlilt1ZyDLxMtJBXLUu+WvTi9maYTSMEG1bntuYoKMKsOZwEmpk2pMKBvRAbYtlTRCHWSzYyfkxCo90o+VLWnITP09kdFI63EU2s6ImqFe9Kbif147Nf3rIOMySQ1KNl/UTwUxMZl+TnpcITNibAllittbCRtSRZmx+ZRsCN7iy8ukcVb1LqsX9+eV2k0eRxGO4BhOwYMrqMEd1MEHBhye4RXeHOm8OO/Ox7y14OQzh/AHzucPwqaOqw==</latexit>

⇡b

<latexit sha1_base64="xTalfQWTx4IM+eiQgGh3kLJrh5A=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqhVSj4BJ9w43AVqKQRqHAZji6nfrNJ1Sax/LBjBMMIjqQvM8ZNVbyOwl/ZN1yxa26M5Bl4uWkAjnq3fJXpxezNEJpmKBatz03MUFGleFM4KTUSTUmlI3oANuWShqhDrLZsRNyYpUe6cfKljRkpv6eyGik9TgKbWdEzVAvelPxP6+dmv51kHGZpAYlmy/qp4KYmEw/Jz2ukBkxtoQyxe2thA2poszYfEo2BG/x5WXSOKt6l9WL+/NK7SaPowhHcAyn4MEV1OAO6uADAw7P8ApvjnRenHfnY95acPKZQ/gD5/MHxCqOrA==</latexit>

⇡c

<latexit sha1_base64="z5JRSN73UkjMGuIRC6A/tuRULBc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20sWw2m3bpZjfsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MOVMG9f9dkorq2vrG+XNytb2zu5edf+gpWWmCPWJ5FJ1QqwpZ4L6hhlOO6miOAk5bYej26nffqJKMykezDilQYIHgsWMYGMlv5eyx6hfrbl1dwa0TLyC1KBAs1/96kWSZAkVhnCsdddzUxPkWBlGOJ1UepmmKSYjPKBdSwVOqA7y2bETdGKVCMVS2RIGzdTfEzlOtB4noe1MsBnqRW8q/ud1MxNfBzkTaWaoIPNFccaRkWj6OYqYosTwsSWYKGZvRWSIFSbG5lOxIXiLLy+T1lndu6xf3J/XGjdFHGU4gmM4BQ+uoAF30AQfCDB4hld4c4Tz4rw7H/PWklPMHMIfOJ8/xa6OrQ==</latexit>

⇡d

I =2

<latexit sha1_base64="lexUrYmThHg3DEYsp5FpbfWZAPs=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclaT42ghFN7oQKtgHtDFMptN26GQSZiaFEvInblwo4tY/ceffOG2z0NYDFw7n3Mu99wQxZ0o7zre1tLyyurZe2Chubm3v7Np7+w0VJZLQOol4JFsBVpQzQeuaaU5bsaQ4DDhtBsObid8cUalYJB71OKZeiPuC9RjB2ki+bacdgjm6z3z9lN5dVTLfLjllZwq0SNyclCBHzbe/Ot2IJCEVmnCsVNt1Yu2lWGpGOM2KnUTRGJMh7tO2oQKHVHnp9PIMHRuli3qRNCU0mqq/J1IcKjUOA9MZYj1Q895E/M9rJ7p36aVMxImmgswW9RKOdIQmMaAuk5RoPjYEE8nMrYgMsMREm7CKJgR3/uVF0qiU3fPy2cNpqXqdx1GAQziCE3DhAqpwCzWoA4ERPMMrvFmp9WK9Wx+z1iUrnzmAP7A+fwDVc5Mn</latexit>

MI=2
t

<latexit sha1_base64="VUSYbVU5VStNFMhEW4kFzU5JTgY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEr2PRi8cKpi20pWy2k3bpZhN3N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZekAiujet+O4WV1bX1jeJmaWt7Z3evvH/Q0HGqGPosFrFqBVSj4BJ9w43AVqKQRoHAZjC6nfrNJ1Sax/LBjBPsRnQgecgZNVbyO0FIHnvlilt1ZyDLxMtJBXLUe+WvTj9maYTSMEG1bntuYroZVYYzgZNSJ9WYUDaiA2xbKmmEupvNjp2QE6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO96E3F/7x2asLrbsZlkhqUbL4oTAUxMZl+TvpcITNibAllittbCRtSRZmx+ZRsCN7iy8ukcVb1LqsX9+eV2k0eRxGO4BhOwYMrqMEd1MEHBhye4RXeHOm8OO/Ox7y14OQzh/AHzucPYTiOaw==</latexit>q
<latexit sha1_base64="69A/cDAcR39zbYWgcnNUy7OtxeI=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68RjBPDC7hNlJbzJkdnadmRVCyF948aCIV//Gm3/jJNmDJhY0FFXddHeFqeDauO63s7S8srq2Xtgobm5t7+yW9vYbOskUwzpLRKJaIdUouMS64UZgK1VI41BgMxzcTPzmEyrNE3lvhikGMe1JHnFGjZUe/DAifkgVeeyUym7FnYIsEi8nZchR65S+/G7CshilYYJq3fbc1AQjqgxnAsdFP9OYUjagPWxbKmmMOhhNLx6TY6t0SZQoW9KQqfp7YkRjrYdxaDtjavp63puI/3ntzERXwYjLNDMo2WxRlAliEjJ5n3S5QmbE0BLKFLe3EtanijJjQyraELz5lxdJ47TiXVTO787K1es8jgIcwhGcgAeXUIVbqEEdGEh4hld4c7Tz4rw7H7PWJSefOYA/cD5/ALYokE4=</latexit>

q̄

Extra condition from large-Nc QCD:



• • • • • •• -

<latexit sha1_base64="LM8MteL9OH6Yj6UFXkLelbSfbLE=">AAACDnicbVC7SgNBFJ2Nrxhfq5Y2gyEQUcJu8NUIQRsthAjmAdkkzE5mkyGzD2ZmhTDsF9j4KzYWitha2/k3TpItNPHAhcM593LvPW7EqJCW9W1kFhaXlleyq7m19Y3NLXN7py7CmGNSwyELedNFgjAakJqkkpFmxAnyXUYa7vBq7DceCBc0DO7lKCJtH/UD6lGMpJa6ZsHxOMJKORgxeJt0ZUfdXJSTojiKDxIlOmp4aCdJ18xbJWsCOE/slORBimrX/HJ6IY59EkjMkBAt24pkWyEuKWYkyTmxIBHCQ9QnLU0D5BPRVpN3EljQSg96IdcVSDhRf08o5Asx8l3d6SM5ELPeWPzPa8XSO28rGkSxJAGeLvJiBmUIx9nAHuUESzbSBGFO9a0QD5DOR+oEczoEe/bleVIvl+zT0sndcb5ymcaRBXtgHxSBDc5ABVyDKqgBDB7BM3gFb8aT8WK8Gx/T1oyRzuyCPzA+fwCbi5vW</latexit>

MI=2
t (s, u)

sk+1

Working with 
               (that cannot have poles in the t-channel)

<latexit sha1_base64="e3z+0ZOaEkf7kfIutfwJ5urW+8w=">AAAB/nicbVDJSgNBEO1xjXEbFU9eGoMQQcJMcLsIQS96ECKYBZJx6Ol0kiY9C901QhgG/BUvHhTx6nd482/sJHPQxAcFj/eqqKrnRYIrsKxvY25+YXFpObeSX11b39g0t7brKowlZTUailA2PaKY4AGrAQfBmpFkxPcEa3iDq5HfeGRS8TC4h2HEHJ/0At7llICWXHM3aVMi8G3qwkNyc1FOi+ooPnTNglWyxsCzxM5IAWWouuZXuxPS2GcBUEGUatlWBE5CJHAqWJpvx4pFhA5Ij7U0DYjPlJOMz0/xgVY6uBtKXQHgsfp7IiG+UkPf050+gb6a9kbif14rhu65k/AgioEFdLKoGwsMIR5lgTtcMgpiqAmhkutbMe0TSSjoxPI6BHv65VlSL5fs09LJ3XGhcpnFkUN7aB8VkY3OUAVdoyqqIYoS9Ixe0ZvxZLwY78bHpHXOyGZ20B8Ynz/MTZS+</latexit>

MI=2
t (s, u)

complex s-plane

u fixed➝0

crossing s⬌u invariant



• • • • • •

u fixed➝0

• -

<latexit sha1_base64="LM8MteL9OH6Yj6UFXkLelbSfbLE=">AAACDnicbVC7SgNBFJ2Nrxhfq5Y2gyEQUcJu8NUIQRsthAjmAdkkzE5mkyGzD2ZmhTDsF9j4KzYWitha2/k3TpItNPHAhcM593LvPW7EqJCW9W1kFhaXlleyq7m19Y3NLXN7py7CmGNSwyELedNFgjAakJqkkpFmxAnyXUYa7vBq7DceCBc0DO7lKCJtH/UD6lGMpJa6ZsHxOMJKORgxeJt0ZUfdXJSTojiKDxIlOmp4aCdJ18xbJWsCOE/slORBimrX/HJ6IY59EkjMkBAt24pkWyEuKWYkyTmxIBHCQ9QnLU0D5BPRVpN3EljQSg96IdcVSDhRf08o5Asx8l3d6SM5ELPeWPzPa8XSO28rGkSxJAGeLvJiBmUIx9nAHuUESzbSBGFO9a0QD5DOR+oEczoEe/bleVIvl+zT0sndcb5ymcaRBXtgHxSBDc5ABVyDKqgBDB7BM3gFb8aT8WK8Gx/T1oyRzuyCPzA+fwCbi5vW</latexit>

MI=2
t (s, u)

sk+1

complex s-plane

<latexit sha1_base64="zIq3XAaUzanq2wQRMQPSGe6Dst0="></latexit>

Res
MI=2

t (s, u)

sk+1
=

X

i

|g⇡⇡ i|2

m2k
i

PJi

✓
1 +

2u

m2
i

◆

partial-wave expansion

Working with 
               (that cannot have poles in the t-channel)

<latexit sha1_base64="e3z+0ZOaEkf7kfIutfwJ5urW+8w=">AAAB/nicbVDJSgNBEO1xjXEbFU9eGoMQQcJMcLsIQS96ECKYBZJx6Ol0kiY9C901QhgG/BUvHhTx6nd482/sJHPQxAcFj/eqqKrnRYIrsKxvY25+YXFpObeSX11b39g0t7brKowlZTUailA2PaKY4AGrAQfBmpFkxPcEa3iDq5HfeGRS8TC4h2HEHJ/0At7llICWXHM3aVMi8G3qwkNyc1FOi+ooPnTNglWyxsCzxM5IAWWouuZXuxPS2GcBUEGUatlWBE5CJHAqWJpvx4pFhA5Ij7U0DYjPlJOMz0/xgVY6uBtKXQHgsfp7IiG+UkPf050+gb6a9kbif14rhu65k/AgioEFdLKoGwsMIR5lgTtcMgpiqAmhkutbMe0TSSjoxPI6BHv65VlSL5fs09LJ3XGhcpnFkUN7aB8VkY3OUAVdoyqqIYoS9Ixe0ZvxZLwY78bHpHXOyGZ20B8Ynz/MTZS+</latexit>

MI=2
t (s, u) crossing s⬌u invariant



• • • • • •

u fixed➝0

• -

<latexit sha1_base64="LM8MteL9OH6Yj6UFXkLelbSfbLE=">AAACDnicbVC7SgNBFJ2Nrxhfq5Y2gyEQUcJu8NUIQRsthAjmAdkkzE5mkyGzD2ZmhTDsF9j4KzYWitha2/k3TpItNPHAhcM593LvPW7EqJCW9W1kFhaXlleyq7m19Y3NLXN7py7CmGNSwyELedNFgjAakJqkkpFmxAnyXUYa7vBq7DceCBc0DO7lKCJtH/UD6lGMpJa6ZsHxOMJKORgxeJt0ZUfdXJSTojiKDxIlOmp4aCdJ18xbJWsCOE/slORBimrX/HJ6IY59EkjMkBAt24pkWyEuKWYkyTmxIBHCQ9QnLU0D5BPRVpN3EljQSg96IdcVSDhRf08o5Asx8l3d6SM5ELPeWPzPa8XSO28rGkSxJAGeLvJiBmUIx9nAHuUESzbSBGFO9a0QD5DOR+oEczoEe/bleVIvl+zT0sndcb5ymcaRBXtgHxSBDc5ABVyDKqgBDB7BM3gFb8aT8WK8Gx/T1oyRzuyCPzA+fwCbi5vW</latexit>

MI=2
t (s, u)

sk+1

complex s-plane

<latexit sha1_base64="zIq3XAaUzanq2wQRMQPSGe6Dst0="></latexit>

Res
MI=2

t (s, u)

sk+1
=

X

i

|g⇡⇡ i|2

m2k
i

PJi

✓
1 +

2u

m2
i

◆

partial-wave expansion

<latexit sha1_base64="pl4wyxwWdfIRuzNqguMkuAkd4fQ=">AAACMXicdVDLSiNBFK32NRpfUZduiglCJBKqGycmC0HGTVwMKBgV0klTXanEwuoHVbeE0PQvufFPZDZZOAxu/QkrMYKKHig495x7uXVPmEqhgZCRMzM7N7/wY3GpsLyyurZe3Ni80IlRjLdYIhN1FVLNpYh5CwRIfpUqTqNQ8svw5njsX95ypUUSn8Mw5Z2IDmLRF4yClYJiM/MZlfhPHkA3Ozn08rLeM7s+JHgQZO4eyXFZV8xuxVaercq661VM15sKbq5NxWe9BHRQLJEqsajV8Ji4deJa0mjUPa+B3YlFSAlNcRoUH/xewkzEY2CSat12SQqdjCoQTPK84BvNU8pu6IC3LY1pxHUnm1yc4x2r9HA/UfbFgCfq+4mMRloPo9B2RhSu9WdvLH7ltQ30651MxKkBHrPXRX0jsQ1kHB/uCcUZyKEllClh/4rZNVWUgQ25YEN4uxR/Ty68qlur/jrbLx39nsaxiLbRT1RGLjpAR6iJTlELMXSH/qJH9M+5d0bOf+fptXXGmc5soQ9wnl8AEmSnJg==</latexit>

MI=2
t (s, u) ! g1,0(s+ u) + g2,0(s

2 + u2) + g2,1su+ · · ·
<latexit sha1_base64="z8JZuEB/JIDyNSDl8zo/AIigDno=">AAAB73icdVDLSgMxFL3js9ZX1aWbYBFcSMkUre2u6MZlBfuAdiiZNNOGZjJjkhHK0J9w40IRt/6OO//GTFtBRQ8EDufcS+45fiy4Nhh/OEvLK6tr67mN/ObW9s5uYW+/paNEUdakkYhUxyeaCS5Z03AjWCdWjIS+YG1/fJX57XumNI/krZnEzAvJUPKAU2Ks1NGnSc9ECPcLRVzCFpUKyohbxa4ltVq1XK4hd2ZhXIQFGv3Ce28Q0SRk0lBBtO66ODZeSpThVLBpvpdoFhM6JkPWtVSSkGkvnd07RcdWGaAgUvZJg2bq942UhFpPQt9OhsSM9G8vE//yuokJql7KZZwYJun8oyARyEbMwqMBV4waMbGEUMXtrYiOiCLU2IrytoSvpOh/0iqX3Erp/OasWL9c1JGDQziCE3DhAupwDQ1oAgUBD/AEz86d8+i8OK/z0SVnsXMAP+C8fQKW24+0</latexit>

s, u ! 0

Working with 
               (that cannot have poles in the t-channel)

<latexit sha1_base64="e3z+0ZOaEkf7kfIutfwJ5urW+8w=">AAAB/nicbVDJSgNBEO1xjXEbFU9eGoMQQcJMcLsIQS96ECKYBZJx6Ol0kiY9C901QhgG/BUvHhTx6nd482/sJHPQxAcFj/eqqKrnRYIrsKxvY25+YXFpObeSX11b39g0t7brKowlZTUailA2PaKY4AGrAQfBmpFkxPcEa3iDq5HfeGRS8TC4h2HEHJ/0At7llICWXHM3aVMi8G3qwkNyc1FOi+ooPnTNglWyxsCzxM5IAWWouuZXuxPS2GcBUEGUatlWBE5CJHAqWJpvx4pFhA5Ij7U0DYjPlJOMz0/xgVY6uBtKXQHgsfp7IiG+UkPf050+gb6a9kbif14rhu65k/AgioEFdLKoGwsMIR5lgTtcMgpiqAmhkutbMe0TSSjoxPI6BHv65VlSL5fs09LJ3XGhcpnFkUN7aB8VkY3OUAVdoyqqIYoS9Ixe0ZvxZLwY78bHpHXOyGZ20B8Ynz/MTZS+</latexit>

MI=2
t (s, u) crossing s⬌u invariant

Wilson coefficients



<latexit sha1_base64="cmxRn2U4Z8MNoX6BytUua/Jfhrg=">AAAEOXicpVNNb9MwGPYSPkb5WAdHLhYVpVOjKEm7UlWqNMEFcaFIdJtUt5HjOq3VfC22J1Uhf4sL/4IbEhcOIMSVP4DbBgYd66TxJlEev48tP8/72l4SMC4s6+OWpl+7fuPm9q3S7Tt37+2Ud+8f8limhPZJHMTpsYc5DVhE+4KJgB4nKcWhF9Ajb/Z8wR+d0pSzOHoj5gkdhngSMZ8RLFTK3dVezbp2B6KTE4nHcOJmtmHldfV3DDuHcoEaCsmRUzdNE1a7VcRl6GYsf6solLDFa0A1HDkooL6oQeSnmGQ9N3vpsrxm7+VZ6LKRk9edgnmyRjVzecatk61fe6OUTaZiDxkGiuJIhh5NESrNuk6nEA+Xqq0c1mGhGsoVbhqOwiNHjczlc3UbzYtttDbZaF9mo9E560Gj6EHzdw/2Cwf/2YTWxerbm9RntpVvNlBFp+NYcFh1yxXLtJYBzwO7ABVQRM8tf0DjmMiQRoIEmPOBbSVimOFUMBLQvIQkpwkmMzyhAwUjHFI+zJYnP4ePVWYM/ThVXyTgMvvnigyHnM9DT80MsZjydW6R/Bc3kMJvDzMWJVLQiKw28mUARQwX1wiOWUqJCOYKYJIypRWSKVbVE+qylVQR7HXL58GhY9otc/91s3LwrCjHNngIHoEasMFTcABegB7oA6K90z5pX7Sv+nv9s/5N/76aqm0Vax6Av0L/8RMHf1a0</latexit>

k = 1 : g1,0 + g2,1u+ g3,1u
2 + ... =

X

i

|g⇡⇡ i|2
✓
PJi(1)

m2
i

+ 2
P 0
Ji
(1)

m4
i

u+ 2
P 00
Ji
(1)

m6
i

u2 + ...

◆
,

k = 2 : g2,0 + g3,1u+ g4,2u
2 + ... =

X

i

|g⇡⇡ i|2
✓
PJi(1)

m4
i

+ 2
P 0
Ji
(1)

m6
i

u+ 2
P 00
Ji
(1)

m8
i

u2 + ...

◆
,

k = 3 : g3,0 + g4,1u+ g5,2u
2 + ... =

X

i

|g⇡⇡ i|2
✓
PJi(1)

m6
i

+ 2
P 0
Ji
(1)

m8
i

u+ 2
P 00
Ji
(1)

m10
i

u2 + ...

◆
,

...

Legendre pol. and derivatives (all positive!) 

small u expansion:



<latexit sha1_base64="cmxRn2U4Z8MNoX6BytUua/Jfhrg="></latexit>

k = 1 : g1,0 + g2,1u+ g3,1u
2 + ... =

X

i

|g⇡⇡ i|2
✓
PJi(1)

m2
i

+ 2
P 0
Ji
(1)

m4
i

u+ 2
P 00
Ji
(1)

m6
i

u2 + ...

◆
,

k = 2 : g2,0 + g3,1u+ g4,2u
2 + ... =

X

i

|g⇡⇡ i|2
✓
PJi(1)

m4
i

+ 2
P 0
Ji
(1)

m6
i

u+ 2
P 00
Ji
(1)

m8
i

u2 + ...

◆
,

k = 3 : g3,0 + g4,1u+ g5,2u
2 + ... =

X

i

|g⇡⇡ i|2
✓
PJi(1)

m6
i

+ 2
P 0
Ji
(1)

m8
i

u+ 2
P 00
Ji
(1)

m10
i

u2 + ...

◆
,

...

Legendre pol. and derivatives (all positive!) 

small u expansion:

where PJ are the Legendre polynomials and ⇢J(s), the spectral density, must be positive,
⇢J(s) � 0, due to unitarity of the S-Matrix. The partial wave expansion is guaranteed to
converge in the physical region. For large-Nc theories, we have that the spectral density is
given by

(2J + 1)⇢J(m
2) = ⇡

X

i

g2i⇡⇡m
2

i �(m
2 �m2

i )�JJi , (9)

where i labels mesons of mass mi, spin Ji and coupling to pions gi⇡⇡.
Plugging Eq. (8) into Eq. (7), performing the contour integrals, and expanding around small

u < 0 we find

k = 1 : g1,0 + g2,1u+ g3,1u
2 + ... =

⌧
PJ(1)

m2
+ 2

P 0
J(1)

m4
u+ 2

P 00
J (1)

m6
u2 + ...

�
,

k = 2 : g2,0 + g3,1u+ g4,2u
2 + ... =

⌧
PJ(1)

m4
+ 2

P 0
J(1)

m6
u+ 2

P 00
J (1)

m8
u2 + ...

�
,

k = 3 : g3,0 + g4,1u+ g5,2u
2 + ... =

⌧
PJ(1)

m6
+ 2

P 0
J(1)

m8
u+ 2

P 00
J (1)

m10
u2 + ...

�
,

... (10)

with the definition of the high-energy average [7],

h(...)i ⌘ 1

⇡

X

J

(2J + 1)

Z 1

M2

dm2

m2
⇢J(m

2)(...) . (11)

Considering equations with k � kmin (that we will take later to be kmin = 1, 2), we can relate
the IR Wilson coe�cients with the UV-averages of derivatives of PJ in the following way:

gn+l,l =
2l

l!

*
P (l)
J (1)

m2(n+l)

+
, n � kmin and l = 0, 1, ...,


n� 1

2

�
. (12)

Since P (l)
J (1) � 0, the contributions to Eq. (12) from the di↵erent J-states are always additive,

and therefore gn+l,l � 0 – this is a direct consequence of the lack of s < 0 poles in M(s, u).

Moreover, P (l)
J (1) = 0 for l > J implying that states with J  l do not contribute to gn+l,l.

In particular,

gn,0 =

⌧
1

m2n

�
=

X

i

g2i⇡⇡
m2n

i

,
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all states 

contribute 
positively!

➥ the larger the J, 
           the smaller  giππ / mi
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small u expansion:

due to crossing, overconstrained system!

☞ infinite constraints in the spectrum and couplings
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Lets assume at |s|→∞ & either t or u fixed:

Implications of Positivity bounds

kmin=1

expected from Regge theory
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Vector Meson Dominance (VMD), 
assumed in the past to explain QCD experimental data
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non-scalar UV completions require all spin states
with couplings to pions decreasing with J



J

1
2

3

0.78
0.18

0.03

<latexit sha1_base64="KhUNjAoDx9pGPSyHS67jJ3fjqqA=">AAAB+XicbVDLTsMwENyUVymvAEcuFhUSpyqpeB0ruHAsEn1IbYgc12mtOk5kO5WqtH/ChQMIceVPuPE3uG0O0DLalUYzu/J6goQzpR3n2yqsrW9sbhW3Szu7e/sH9uFRU8WpJLRBYh7LdoAV5UzQhmaa03YiKY4CTlvB8G7mt0ZUKhaLRz1OqBfhvmAhI1gbybftSd/Pugkzhdh08lT17bJTceZAq8TNSRly1H37q9uLSRpRoQnHSnVcJ9FehqVmhNNpqZsqmmAyxH3aMVTgiCovm18+RWdG6aEwlqaFRnP190aGI6XGUWAmI6wHatmbif95nVSHN17GRJJqKsjioTDlSMdoFgPqMUmJ5mNDMJHM3IrIAEtMtAmrZEJwl7+8SprVintVuXy4KNdu8ziKcAKncA4uXEMN7qEODSAwgmd4hTcrs16sd+tjMVqw8p1j+APr8wd1rJOO</latexit>

|g⇡⇡i|2

Upper bound on couplings
 (normalized to            ) 

<latexit sha1_base64="hrJ4SvzGVxr2o/ZUHtv28mQ+rsE=">AAAB9HicbVDLSsNAFL2pr1pfVZduBovgqibF17IoiMsK9gFtGibTSTt0Mokzk0IJ/Q43LhRx68e482+ctllo64ELh3Pu5d57/JgzpW3728qtrK6tb+Q3C1vbO7t7xf2DhooSSWidRDySLR8rypmgdc00p61YUhz6nDb94e3Ub46oVCwSj3ocUzfEfcECRrA2kht6rFs5u+tWvE7MvGLJLtszoGXiZKQEGWpe8avTi0gSUqEJx0q1HTvWboqlZoTTSaGTKBpjMsR92jZU4JAqN50dPUEnRumhIJKmhEYz9fdEikOlxqFvOkOsB2rRm4r/ee1EB9duykScaCrIfFGQcKQjNE0A9ZikRPOxIZhIZm5FZIAlJtrkVDAhOIsvL5NGpexcli8ezkvVmyyOPBzBMZyCA1dQhXuoQR0IPMEzvMKbNbJerHfrY96as7KZQ/gD6/MHp7aRZA==</latexit>

m2
i /F

2
⇡

From the constraints, we find numerically (~50 constraint, Jmax~1000): 
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From the constraints, we find numerically (~50 constraint, Jmax~1000): 



Constraints on Wilson coefficients

It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
M2

F 2
⇡

, g̃2,1 = 16L2

M2

F 2
⇡

. (54)

In the large-Nc limit, 2L1 = L2 [35], which leads to
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
M2

F 2
⇡

, g̃2,1 = 16L2
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. (54)

In the large-Nc limit, 2L1 = L2 [35], which leads to
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mass of the 1st meson

Constraints on Wilson coefficientsConstraints on Wilson coefficients

It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
M2

F 2
⇡

, g̃2,1 = 16L2

M2

F 2
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. (54)

In the large-Nc limit, 2L1 = L2 [35], which leads to
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O(s2):
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
M2

F 2
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In the large-Nc limit, 2L1 = L2 [35], which leads to
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mass of the 1st meson

“Polyhedronal” 
bounds

EFTs are 
“EFT-hedron”

Constraints on Wilson coefficients

Allowed region

Constraints on Wilson coefficients

It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
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⇡

, g̃2,1 = 16L2

M2

F 2
⇡

. (54)
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
M2

F 2
⇡

, g̃2,1 = 16L2

M2

F 2
⇡

. (54)

In the large-Nc limit, 2L1 = L2 [35], which leads to

g̃2,0
g̃2,1

=
1

4

✓
1 +

�L

L2

◆
, (55)

7Following the chiral Lagrangian definition in Ref. [35],

L =
F 2
⇡

4
Tr

�
@µU

†@µU
�
+ L1Tr

2
�
@µU

†@µU
�
+ L2Tr

�
@µU

†@⌫U
�
Tr

�
@µU †@⌫U

�
+ L3Tr

�
@µU

†@µU@⌫U
†@⌫U

�
.

19

mass of the 1st meson

Constraints on Wilson coefficients
“H

ig
gs

” 
U

V
 c

om
pl

et
io

n

O(s2):



0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
M2

F 2
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In the large-Nc limit, 2L1 = L2 [35], which leads to
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
M2

F 2
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In the large-Nc limit, 2L1 = L2 [35], which leads to
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
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In the large-Nc limit, 2L1 = L2 [35], which leads to
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
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In the large-Nc limit, 2L1 = L2 [35], which leads to
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Figure 2 | Ising �✏ upper bound. Upper bound on the leading Z2-even
scalar dimension �✏ as a function of the leading Z2-odd scalar dimension
�� in a 3D CFT21. Although the only assumptions entering this bound are
conformal invariance and unitarity, the resulting curve has an obvious kink
near the critical dimensions of the 3D Ising model.

↵ through the origin such that all vectors lie on one side
of ↵. If ↵ exists, then it is not possible to satisfy (9), and
thus {(�1, `1), . . .} cannot be the dimensions and spins of a
consistent CFT.

Although the F��
�,`s live in an infinite-dimensional space, it

su�ces to find a separating plane in any finite-dimensional
subspace to apply the above logic. Also, if we do not know precisely
which (�, `)s appear, we can demand that all possible F��

�,`s lie
on one side of the separating plane. This allows us to study (9)
by solving inequalities in finite dimensions. Since 2008, several
techniques have been developed for solving these inequalities
e�ciently on a computer using optimizationmethods such as linear
and semidefinite programming20–25.

The above methods yield an exclusion plot in the space of
scaling dimensions. For example, begin by choosing hypothetical
values for �� and �✏ . Now search for a separating plane ↵
that puts F��

�� ,0, F
��
�✏ ,0, and all other possible F��

�,`s on one side.
If ↵ exists, then the hypothetical values (�� , �✏) are incorrect.
Scanning over hypothetical (�� ,�✏) yields an allowed region and
a disallowed region.

Bounds on scaling dimensions
In ref. 21, we applied this procedure to 3D CFTs with a Z2
symmetry, giving the bound in Fig. 2. Although the bound is
rigorously correct, there was no guarantee that it should be
nearly saturated by an interesting theory. However, strikingly,
the bound exhibits a kink near (�� , �✏) ⇡ (0.518, 1.412)—
precisely the values believed to be realized in the critical 3D
Ising model.

Subsequently, in ref. 24, we performed a more sophisticated
analysis using two extra inputs. First, we incorporated crossing
symmetry for h✏✏✏✏i and h��✏✏i as well as h���� i. Second, we
imposed that� and ✏ are the only operators in the 3D IsingCFTwith
�O 3. (Such ‘relevant’ operators are in one-to-one correspondence
with directions on the phase diagram of a material near its critical
point. The 3D Ising CFT has two relevant operators because
the phase diagram of water is two-dimensional.) The analysis of
ref. 24 yielded a small island in (�� , �✏)-space. Subsequently,
with more e�cient algorithms25, we shrank this island to the size
shown in Fig. 3 (ref. 26), determining the scaling dimensions to
high precision,

�� =0.5181489(10) (10)

�✏ =1.412625(10) (11)
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Figure 3 | Ising critical exponents. World record determination of the
leading scaling dimensions in the 3D Ising model from the conformal
bootstrap (blue region) compared to the previous best Monte Carlo
determinations (dashed rectangle)26.

We also obtain high-precision determinations of three-point
function coe�cients26,

f��✏ =1.0518537(41) (12)

f✏✏✏ =1.532435(19) (13)

Our values for (�� ,�✏) are consistent with the best Monte Carlo
results27, and recent results from the ✏-expansion28 and high-
temperature expansions29. Because the conformal bootstrap uses
only conformal symmetry and basic consistency conditions, this
impressive agreement is strong evidence that the 3D critical Ising
model does indeed have emergent conformal symmetry. Let us
mention that conformal invariance of the scaling limit of 2D Ising
model correlations has recently been rigorously established30,31, but
at the present time the numerical bootstrap gives some of the best
evidence for conformal invariance of the 3D Ising model.

In ref. 22, we applied similar techniques to 3D CFTs with
O(N ) symmetry, and found similar kinks to Fig. 4. An improved
analysis again gives islands in the space of scaling dimensions,
shown in Fig. 5 (ref. 32). This ‘O(N ) archipelago’ can be compared
with Monte Carlo simulations and experiment for N = 2, 3, and
with the large-N expansion for higher values of N . We have
also made rigorous determinations for some of the leading three-
point coe�cients, such as the coe�cient of the stress tensor and
global symmetry current. The latter is directly related to the
high-frequency conductivity in 2D superconductors with quantum
critical points. In all cases where comparison with experiment
or numerical simulations can be made, we find agreement to
high accuracy.

Future directions
A great virtue of the conformal bootstrap is its generality and
wide applicability to many areas of theoretical physics. The
numerical techniques above have been applied to statistical and
quantum theories across myriad spacetime dimensions18,20–25,32–54
and with varying amounts of supersymmetry55–71, with relevance to
condensed matter physics, particle phenomenology, and quantum
gravity. For some nonperturbative theories, such as the mysterious
6DN =(2,0) superconformal field theory, the conformal bootstrap
is one of the only calculational tools available66.

However, there are numerous open directions. One direction is
to study more complicated systems of correlation functions and
understand the full power of crossing symmetry and unitarity.
By pushing on this direction we could hope to solve for the
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
M2

F 2
⇡

, g̃2,1 = 16L2
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. (54)

In the large-Nc limit, 2L1 = L2 [35], which leads to
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
M2

F 2
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In the large-Nc limit, 2L1 = L2 [35], which leads to
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mass of the 1st meson

Constraints on Wilson coefficients

spin-1 model
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J = 2, 3, ...

Amazingly,  related to the fact thatA su�cient condition for this, is that the Hankel matrix H0

N , with (Hk
N)ij = µi+j+k, for

i, j = 0, . . . , bN/2c, be asymptotically positive definite [4, 44],

lim
N!1

H0

N = 2 lim
N!1

0

BBBBBBB@

µ0/2 1!2 2!2 · · · n!2

1!2 2!2 3!2 · · · (n+ 1)!2

2!2 3!2 4!2 · · · (n+ 2)!2

· · · · · · · · · . . .
...

n!2 (n+ 1)!2 (n+ 2)!2 · · · (2n)!2

1

CCCCCCCA

� 0 . (43)

Equivalently (using Silvester’s criterion) this can be rewritten as,

1� µ0/2  lim
N!1

det H0

N |µ0=1

detH2

N

. (44)

Explicit evaluation of Eq. (44) for fixed N enables us to reach smaller and smaller values,
going from µ0 ⇡ 0.95 for N = 10 (equivalent to g̃2,0 ⇡ 0.51) to µ0 ⇡ 1.54 for N = 700
(equivalent to g̃2,0 ⇡ 0.39) – to be compared with g̃2,0 ⇡ 0.42 of Ref. [25]. Computing the
asymptotic behavior of determinants of this type is an interesting open problem in mathematics,
see e.g. [45], motivated by their appearance in random matrix theory (interestingly, also in
relation with QCD and chiral perturbation theory [46, 47]). Leaving this for future work, in
Appendix B we take a shortcut and, rather that computing the individual determinants, we
focus on the most e�cient way of computing the ratio Eq. (44), and show that as n ! 1,

µ0 ! 2 and (g̃2,1, g̃2,0) ! (4/3, 1/3) . (45)

At the kink resides the theory of a single spin-1 state, with the improved high-energy behavior
amplitude Eq. (25) with m1 � m⇢.

The su-model and the boundary for J � 1 with minimal g̃2,1/g̃2,0. At the largest value
of g̃2,0 = 1 must lie theories with a degenerate spectrum, see Eq. (13). Apart from a theory
of a scalar (discussed before), the only amplitude with this property is the su-model discussed
in Appendix C, with amplitude Eq. (92). This amplitude can also be obtained analytically
by solving the null constraints. Indeed, for a degenerate spectrum, the null constraints reduce
to a system of equations for the couplings g2i⇡⇡. The dominant null constraints Eq. (18), for
instance, are linearly independent, and can be solved explicitly for a fixed number of couplings
g2i⇡⇡ with i = 1, · · · , n. The solution is a function that can be resummed and converges into
the su-model prediction.

This su-model contains a fraction of scalar residues, controlled by the value of � in Eq. (93);
for the value in Eq. (94) the theory has no scalars. Its amplitude lies at,

(g̃2,1, g̃2,0)J>0 su�model = (⇡ 3.26, 1) , (46)

shown by the black dot in Fig. 3. The uniqueness of this amplitude naturally puts it at kink
of the J � 1 region (and its linear combination with the scalar amplitude at the boundary of
the J � 0 region).
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It is instructive to further divide the allowed region of parameters in terms of the contribu-
tion of the ⇢ to the leading Wilson coe�cient g1,0, i.e.

g̃2⇢ ⌘
g2⇢⇡⇡
g1,0m2

⇢

, (52)

which can be thought to quantify VMD. In Fig. 4 we show in orange the allowed regions in
which g̃2⇢ matches the experimental QCD value and the value taken in the vector model Eq. (24),

(a) g̃2⇢ ' 1

2
(QCD) , (b) g̃2⇢ =

1

3
(spin-1 model) . (53)

As we will discuss in Sec. 3.4, g̃2⇢ = 1/2 is close to its maximal value g̃2⇢ ⇠ 0.78, which is also
where the associated spectral density has the J > 1 contributions maximised (saturated by the
su-model). On the other hand, even for g̃2⇢ = 1/3 (for which 2/3 of the leading e↵ects are taken
care by higher spin-mesons), the allowed region for g̃2,0 and g̃2,1 still sits close to the spin-1
contribution (blue dot), showing a small e↵ect from the J > 1 states.

Our discussion of VMD so far focused on quantifying the contributions from J > 1 mesons:
these are the di�cult ones to model, and for which our arguments are particularly important.
On the other hand, since J = 0 states decouple from the null constraint, they could indeed
dominate g̃2,0 and g̃2,1, as it happens in the Higgs model. Nevertheless, scalars can be easily
accommodated in any phenomenological analyses as they have simple UV completions. It is
worth noticing, however, that when a spin-1 ⇢ is assumed to be the lightest meson in the
spectrum, as in QCD, the scalar contribution becomes smaller. This property is tied to the fact
that contributions to the Wilson coe�cients are always positive. For example, taking scalars
with masses & 1.65 m⇢, while still fixing g̃2⇢ to the values considered above, we find that the
resulting allowed regions depicted in Fig. 4 increase in size by only 10 � 25% along the g̃2,0
direction.

3.2.1 Comparison with Lattice QCD

The Wilson coe�cients L1,2,3, traditionally defined in the SU(3) chiral Lagrangian [35],7 are
related to ours by

g̃2,0 = 4(2L1 + 3L2 + L3)
M2

F 2
⇡

, g̃2,1 = 16L2

M2

F 2
⇡

. (54)

In the large-Nc limit, 2L1 = L2 [35], which leads to
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mass of the 1st meson

Constraints on Wilson coefficients

that corresponds to two su-models (Eq. (92)) with mass m and M respectively, and an extra
term. Apart from the masses, the amplitude has 4 parameters: the two � of the su-models,
↵ and �. We are interested in this model without the scalars. Removing the scalars in the
two su-models fixes the �’s to the value Eq. (94). Removing the scalar from the last term of
Eq. (101) corresponds to adding to the amplitude the term

�


f(m,M)

✓
1

s�m2
+

1

u�m2

◆
+ (M $ m)

�
, (102)

where

f(m,M) =
m4M2 +m6 (ln 2� 1) +m2M4 ln M2

m2+M2

(m2 �M2)2
. (103)

Requiring the positivity of the spectral function for the J > 0 states in Eq. (101) leads to � � 0.
Eq. (101) with Eq. (102) leads to

g̃2,1
g̃2,0

=
3.26

�
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m4 +
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�
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1

m4 +
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M4

�
� �(f(m,M)

m4 + f(M,m)

M4 )
. (104)

Since �(f(m,M)

m4 + f(M,m)

M4 ) is a positive-definite function, we see that the ratio g̃2,1/g̃2,0 is bounded
from below by the su-model.

D The Lovelace-Shapiro amplitude

The Lovelace-Shapiro (LS) amplitude for the scattering of four pions is defined as [26, 27]

M(LS)(s, u) =
�(1� ↵(s))�(1� ↵(u))

�(1� ↵(s)� ↵(u))
, (105)

where ↵(s) = ↵0 + ↵0s is referred as the Regge trajectory. We will fix the values of ↵0 and ↵0

by requiring that Eq. (106) satisfies the Adler zero condition, M(LS)(s, u) ! 0 for s, u ! 0,
and that the first pole of Eq. (106) occurs for s = m2

⇢. These two conditions lead to ↵0 = 1/2
and ↵0 = 1/(2m2

⇢) [66] and then we can write

M(LS)(s, u) =
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t
2m2
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⌘ . (106)

By looking at the poles of Eq. (106), one can see that the LS amplitude corresponds to a theory
of higher-spin states with masses

m2

n = m2

⇢(2n+ 1) , n = 0, 1, 2, ... . (107)

For a given n, there are at most n+1 states with spin J = 0, 1, ..., n+1. Furthermore, Eq. (106)
satisfies the condition Eq. (6a) and Eq. (6b) with kmin = 1.
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Baryon physics in a five-dimensional model of hadrons 7

Table 1.1. Global fit to mesonic physical quantities.
Masses, decay constants and widths are given in MeV.
Physical masses have been used in the kinematic factors
of the partial decay widths.

Experiment AdS5 Deviation
mρ 775 824 +6%
ma1

1230 1347 +10%
mω 782 824 +5%
Fρ 153 169 +11%

Fω/Fρ 0.88 0.94 +7%
Fπ 87 88 +1%
gρππ 6.0 5.4 −10%
L9 6.9 · 10−3 6.2 · 10−3 −10%
L10 −5.2 · 10−3 −6.2 · 10−3 −12%

Γ(ω → πγ) 0.75 0.81 +8%
Γ(ω → 3π) 7.5 6.7 −11%
Γ(ρ → πγ) 0.068 0.077 +13%
Γ(ω → πµµ) 8.2 · 10−4 7.3 · 10−4 −10%
Γ(ω → πee) 6.5 · 10−3 7.3 · 10−3 +12%

up to a cut-off Λ5 ∼ 2 GeV and our tree-level calculations only correspond to the
leading term of an E/Λ5 expansion. Apart from this restriction, we must include in
our fit observables with an experimental accuracy better than 10%. This is because
we want to neglect the experimental error in order to obtain an estimate of the
accuracy of our theoretical predictions. Much more observables can be computed,
once the best-fit value of the parameters are obtained, and several of them have
already been considered in the literature. For instance, one can study the other
low-energy constants of the chiral lagrangian, the physics of the f1 resonance or
the pseudo–scalar resonances which arise when the explicit breaking of the chiral
symmetry is taken into account [11]. It would also be interesting to compute the
a1 → πγ decay, which is absent in our model at tree-level and only proceeds via
loop effects or higher-dimensional terms of our 5D effective lagrangian. c

As discussed in the Introduction, the semiclassical expansion in the 5D model
should correspond to the large-Nc expansion on the 4D side. The results presented
above provide a confirmation of this interpretation: at large-Nc meson masses are
expected to scale like N0

c , while meson couplings and decay constants scale like
gi, 1/Fi ∼ 1/

√
Nc. These scalings agree with Eq. (1.15) and (1.16) if the parameters

α, L and M5 are taken to scale like d

α ∼ N0
c , L ∼ N0

c , M5 ∼ Nc . (1.17)

This leads us to define the adimensional Nc-invariant parameter

γ ≡
Nc

16π2M5Lα
, (1.18)

cHigher order contributions will also change our tree-level prediction L9 +L10 = 0, which is again
related with the absence of the a1–π–γ vertex.
dThis scaling can also be obtained from the AdS/CFT correspondence.
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Figure 5: Allowed region in the g̃3,1– g̃3,0 plane from positivity. Same labelling as in Fig. 3, with
nmax = 11 null constraints.

3.3 Higher order Wilson coe�cients

The features that sculpt the allowed region of g̃2,0 and g̃2,1 play a dominant role also in under-
standing higher-order Wilson coe�cients, g̃n,0 versus g̃n,1. From Eq. (13) we have,

g̃n,1
g̃n,0

=

⌦ J 2

m2n

↵
⌦

1

m2n

↵ , (57)

whose minimal value (zero) corresponds to a model with J = 0. Focusing instead on J > 0
theories, the minimal value arises for models of spin-1 that give g̃n,1/g̃n,0 = 2.10

We illustrate this in Fig. 5, where a blue dot corresponds to a model with a single J = 1
state:

(g̃3,1, g̃3,0)vector = (2/3, 1/3) , (58)

while theories with many spin-1 states populate the blue line.
As for g̃2,0, g̃2,1, we can show that Eq. (58) corresponds to a kink of the boundary, see

Appendix B. The other kink corresponds again to the J > 0 su-model (the only one with a
degenerate spectrum) that gives

(g̃3,1, g̃3,0)su�model = (⇡ 3.26, 1) . (59)

10Notice that we could not use this argument for the case n = 2, since we cannot use the sum rules in Eq. (57)
with n = 2 for a theory of J = 1 states only, as explained at the end of Sec. 2.3.2. In other words, the infinitely
heavy J > 1 states give zero contribution to Eq. (57) only when n > 2.
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Similar structure for higher-order Wilson coeff.

O(s3):
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U(1)A axial anomaly

Introducing the η’ (Goldstone of an anomalous symmetry):

U(2)⊗U(2) →U(2)

SU(2)⊗SU(2)⊗U(1)A⊗U(1)



U(1)A axial anomaly

Introducing the η’ (Goldstone of an anomalous symmetry):

• WZW term:  5-goldstone int.

• Adding external gauge-bosons:

Figure 2: Exclusion plot for the Wilsons g2 and g
0
2 given in Eq. (62).

2.4 The W⇡ ! ⌘⇡ Amplitude and the Chiral Anomaly

Let us now consider the W⇡ ! ⌘⇡ amplitude. For �W = +1 helicity, we have

M(W a+
, ⇡

b
, ⌘, ⇡

c) / [12]h24i[41] /
p
stu . (28)

At low-energy, this amplitude can be written as

|M(W a+
, ⇡

b
, ⌘, ⇡

c)| = |fabc|MW⇡⌘⇡ =


2
p
2
|fabc|

p
stu+ ... . (29)

The Wilson coe�cient  is related to the chiral anomaly. Indeed, from the WZW term [26, 27]
we have

�
Nc

48⇡2
"
µ⌫↵�Tr [AµLU⌫LU↵LU�L + L ! R] ⇢ LWZW , (30)

where U⌫L = (@⌫U)U †, U⌫R = U
†(@⌫U), and U = Exp(i⌘/F⇡)Exp(2i⇡a

⌧
a
/F⇡) with ⌧

a = �
a
/2

and A
a
L = A

a
R = W

a. By matching Eq. (29) with Eq. (30), we obtain

 =
Nc

12⇡2F 3
⇡

. (31)

The W⇡⌘⇡ amplitude is mediated by the following meson states:

s/u� channel:
G = �1

I = 1

⇡ ⇡

W ⌘

t� channel: G = 1 I = 1

⇡ ⇡

W ⌘

(32)

For the s/u�channel the exchanged mesons must have G = �1, I = 1, J = even and parity
P = (�1)J = +1. These states are classified as n = 2 in Table. 1 (highlighted in green).
On the other hand, in the t�channel the states must have G = +1, I = 1, J = odd and
P = (�1)J = �1. These states are classified as n = 5 in Table. 1 (also highlighted in green). We
notice therefore that in this amplitude, only 2 out of the 6 possible types of mesons contribute.
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U(1)A axial anomaly

Introducing the η’ (Goldstone of an anomalous symmetry):

2 Amplitudes for pions and external gauge bosons in the
large-Nc limit

We are interested in studying SU(Nc) gauge theories in the large-Nc limit. We will consider
that the theory also contains Nf massless quarks (qL, qR) in the fundamental representation
of SU(Nc), with the following pattern of chiral symmetry breaking: U(Nf )L ⇥ U(Nf )R !

SU(Nf ) ⇥ U(1). The massless Goldstone bosons associated with the breaking of this global
symmetry are the pions (⇡a with a = 1, ..., N2

f � 1 in the adjoint representation of SU(Nf ))
and the ⌘ (singlet). The chiral axial symmetry U(1)A is anomalous but in the large-Nc limit
the corresponding Goldstone, the ⌘, remains massless.

As usual, we will introduce the coupling to external gauge bosons by gauging the global
SU(Nf )⇥ U(1) symmetry. These gauge bosons will be considered (non-propagating) external
fields, sitting in the adjoint and singlet representations.

For simplicity, we will concentrate in this paper in the Nf = 2 case, but the arguments we
make can be extended straightforwardly to a general Nf . For Nf = 2 the pions and gauge
bosons are isospin triplets, ⇡a and W

a, and isospin singlets, the ⌘ and B.3 We are interested
in the following amplitudes:

⇡
b ⇡

c

W a ⌘
1

2

3

4
⇡
b

⇡
d

W a W c
1

2

3

4
⇡
b

1

2

3

4
⇡
d

⇡
a

⇡
c

(2)

(a) (b) (c)

The amplitude (a) is important as, at low-energies, becomes proportional to the chiral anomaly
coe�cient that we want to bootstrap. For this purpose, as we will see, we will also need
the amplitudes (b) and (c). The amplitude (c) was already discussed in detail in [3, 4]. In
this section we will then only discuss the amplitudes (b) and (a) in the large-Nc limit for the
di↵erent polarizations of the gauge bosons �W = ±1. In the following, we will derive the
relevant dispersion relations necessary to obtain sum rules for the chiral anomaly coe�cient
and other Wilson coe�cients, as well as null constraints necessary for obtaining bounds.

2.1 Exchanged meson states

In the large-Nc limit, a SU(Nc) gauge theory reduces to a theory of weakly-coupled mesons,
whose trilinear couplings scale as ⇠ 1/

p
Nc [1, 2]. Amplitudes are then mediated by tree-level

meson exchange. In the amplitudes (2), the exchanged mesons are colorless qq̄ states that, as in
the quark model, can be classified according to their quantum numbers: Isospin (I), G�parity
(G), parity (P ) and spin (J). The relation between these quantum numbers is discussed in
Appendix A.4 We have six types of mesons as shown in Table 1. It is important to say that in

3We normalize the gauge bosons as W aT a +B I/2, where Tr [T aT b] = 1/2, and the gauge coupling g = 1.
4Fixing I, G and P , the spin J is fixed to either be even or odd, as explicitly shown in Table 1.

2
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• Adding external gauge-bosons:

but also

Figure 2: Exclusion plot for the Wilsons g2 and g
0
2 given in Eq. (62).

2.4 The W⇡ ! ⌘⇡ Amplitude and the Chiral Anomaly

Let us now consider the W⇡ ! ⌘⇡ amplitude. For �W = +1 helicity, we have

M(W a+
, ⇡

b
, ⌘, ⇡

c) / [12]h24i[41] /
p
stu . (28)

At low-energy, this amplitude can be written as

|M(W a+
, ⇡

b
, ⌘, ⇡

c)| = |fabc|MW⇡⌘⇡ =


2
p
2
|fabc|

p
stu+ ... . (29)

The Wilson coe�cient  is related to the chiral anomaly. Indeed, from the WZW term [26, 27]
we have

�
Nc

48⇡2
"
µ⌫↵�Tr [AµLU⌫LU↵LU�L + L ! R] ⇢ LWZW , (30)

where U⌫L = (@⌫U)U †, U⌫R = U
†(@⌫U), and U = Exp(i⌘/F⇡)Exp(2i⇡a

⌧
a
/F⇡) with ⌧

a = �
a
/2

and A
a
L = A

a
R = W

a. By matching Eq. (29) with Eq. (30), we obtain

 =
Nc

12⇡2F 3
⇡

. (31)

The W⇡⌘⇡ amplitude is mediated by the following meson states:

s/u� channel:
G = �1

I = 1

⇡ ⇡

W ⌘

t� channel: G = 1 I = 1

⇡ ⇡

W ⌘

(32)

For the s/u�channel the exchanged mesons must have G = �1, I = 1, J = even and parity
P = (�1)J = +1. These states are classified as n = 2 in Table. 1 (highlighted in green).
On the other hand, in the t�channel the states must have G = +1, I = 1, J = odd and
P = (�1)J = �1. These states are classified as n = 5 in Table. 1 (also highlighted in green). We
notice therefore that in this amplitude, only 2 out of the 6 possible types of mesons contribute.
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2 Amplitudes for pions and external gauge bosons in the
large-Nc limit

We are interested in studying SU(Nc) gauge theories in the large-Nc limit. We will consider
that the theory also contains Nf massless quarks (qL, qR) in the fundamental representation
of SU(Nc), with the following pattern of chiral symmetry breaking: U(Nf )L ⇥ U(Nf )R !

SU(Nf ) ⇥ U(1). The massless Goldstone bosons associated with the breaking of this global
symmetry are the pions (⇡a with a = 1, ..., N2

f � 1 in the adjoint representation of SU(Nf ))
and the ⌘ (singlet). The chiral axial symmetry U(1)A is anomalous but in the large-Nc limit
the corresponding Goldstone, the ⌘, remains massless.

As usual, we will introduce the coupling to external gauge bosons by gauging the global
SU(Nf )⇥ U(1) symmetry. These gauge bosons will be considered (non-propagating) external
fields, sitting in the adjoint and singlet representations.

For simplicity, we will concentrate in this paper in the Nf = 2 case, but the arguments we
make can be extended straightforwardly to a general Nf . For Nf = 2 the pions and gauge
bosons are isospin triplets, ⇡a and W

a, and isospin singlets, the ⌘ and B.3 We are interested
in the following amplitudes:

⇡
b ⇡

c

W a ⌘
1

2

3

4
⇡
b

⇡
d

W a W c
1

2

3

4
⇡
b

1

2

3

4
⇡
d

⇡
a

⇡
c

(2)

(a) (b) (c)

The amplitude (a) is important as, at low-energies, becomes proportional to the chiral anomaly
coe�cient that we want to bootstrap. For this purpose, as we will see, we will also need
the amplitudes (b) and (c). The amplitude (c) was already discussed in detail in [3, 4]. In
this section we will then only discuss the amplitudes (b) and (a) in the large-Nc limit for the
di↵erent polarizations of the gauge bosons �W = ±1. In the following, we will derive the
relevant dispersion relations necessary to obtain sum rules for the chiral anomaly coe�cient
and other Wilson coe�cients, as well as null constraints necessary for obtaining bounds.

2.1 Exchanged meson states

In the large-Nc limit, a SU(Nc) gauge theory reduces to a theory of weakly-coupled mesons,
whose trilinear couplings scale as ⇠ 1/

p
Nc [1, 2]. Amplitudes are then mediated by tree-level

meson exchange. In the amplitudes (2), the exchanged mesons are colorless qq̄ states that, as in
the quark model, can be classified according to their quantum numbers: Isospin (I), G�parity
(G), parity (P ) and spin (J). The relation between these quantum numbers is discussed in
Appendix A.4 We have six types of mesons as shown in Table 1. It is important to say that in

3We normalize the gauge bosons as W aT a +B I/2, where Tr [T aT b] = 1/2, and the gauge coupling g = 1.
4Fixing I, G and P , the spin J is fixed to either be even or odd, as explicitly shown in Table 1.
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Figure 2: Exclusion plot for the Wilsons g2 and g
0
2 given in Eq. (62).

2.4 The W⇡ ! ⌘⇡ Amplitude and the Chiral Anomaly

Let us now consider the W⇡ ! ⌘⇡ amplitude. For �W = +1 helicity, we have

M(W a+
, ⇡

b
, ⌘, ⇡

c) / [12]h24i[41] /
p
stu . (28)

At low-energy, this amplitude can be written as

|M(W a+
, ⇡

b
, ⌘, ⇡

c)| = |fabc|MW⇡⌘⇡ =


2
p
2
|fabc|

p
stu+ ... . (29)

The Wilson coe�cient  is related to the chiral anomaly. Indeed, from the WZW term [26, 27]
we have

�
Nc

48⇡2
"
µ⌫↵�Tr [AµLU⌫LU↵LU�L + L ! R] ⇢ LWZW , (30)

where U⌫L = (@⌫U)U †, U⌫R = U
†(@⌫U), and U = Exp(i⌘/F⇡)Exp(2i⇡a

⌧
a
/F⇡) with ⌧

a = �
a
/2

and A
a
L = A

a
R = W

a. By matching Eq. (29) with Eq. (30), we obtain

 =
Nc

12⇡2F 3
⇡

. (31)

The W⇡⌘⇡ amplitude is mediated by the following meson states:

s/u� channel:
G = �1

I = 1

⇡ ⇡

W ⌘

t� channel: G = 1 I = 1

⇡ ⇡

W ⌘

(32)

For the s/u�channel the exchanged mesons must have G = �1, I = 1, J = even and parity
P = (�1)J = +1. These states are classified as n = 2 in Table. 1 (highlighted in green).
On the other hand, in the t�channel the states must have G = +1, I = 1, J = odd and
P = (�1)J = �1. These states are classified as n = 5 in Table. 1 (also highlighted in green). We
notice therefore that in this amplitude, only 2 out of the 6 possible types of mesons contribute.
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Figure 2: Exclusion plot for the Wilsons g2 and g
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2 given in Eq. (62).

2.4 The W⇡ ! ⌘⇡ Amplitude and the Chiral Anomaly

Let us now consider the W⇡ ! ⌘⇡ amplitude. For �W = +1 helicity, we have

M(W a+
, ⇡

b
, ⌘, ⇡

c) / [12]h24i[41] /
p
stu . (28)

At low-energy, this amplitude can be written as

|M(W a+
, ⇡

b
, ⌘, ⇡

c)| = |fabc|MW⇡⌘⇡ =


2
p
2
|fabc|

p
stu+ ... . (29)

The Wilson coe�cient  is related to the chiral anomaly. Indeed, from the WZW term [26, 27]
we have

�
Nc

48⇡2
"
µ⌫↵�Tr [AµLU⌫LU↵LU�L + L ! R] ⇢ LWZW , (30)

where U⌫L = (@⌫U)U †, U⌫R = U
†(@⌫U), and U = Exp(i⌘/F⇡)Exp(2i⇡a

⌧
a
/F⇡) with ⌧

a = �
a
/2

and A
a
L = A

a
R = W

a. By matching Eq. (29) with Eq. (30), we obtain

 =
Nc

12⇡2F 3
⇡

. (31)

The W⇡⌘⇡ amplitude is mediated by the following meson states:

s/u� channel:
G = �1

I = 1

⇡ ⇡

W ⌘

t� channel: G = 1 I = 1

⇡ ⇡

W ⌘

(32)

For the s/u�channel the exchanged mesons must have G = �1, I = 1, J = even and parity
P = (�1)J = +1. These states are classified as n = 2 in Table. 1 (highlighted in green).
On the other hand, in the t�channel the states must have G = +1, I = 1, J = odd and
P = (�1)J = �1. These states are classified as n = 5 in Table. 1 (also highlighted in green). We
notice therefore that in this amplitude, only 2 out of the 6 possible types of mesons contribute.
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while the t�channel exchanged meson couples to WW and W⇡:

⇡ ⇡

W W

/ g
2
W⇡i

⇡ ⇡

W W

/ g
2
W⇡i

⇡ ⇡

W W

/ gWWig⇡⇡i (5)

Since the couplings gWWi do not appear in the amplitude W⇡⌘⇡ (the one related to the chiral
anomaly), we will restrict to situations in which the t�channel meson exchange is not present
such that we will not have to deal with these couplings gWWi any longer. This can be achieved
by either taking t�fixed or working with M

I=2
t . This leaves only 3 possibilities to consider:

1. M
I=2
t at u�fixed ,

2. M
I=2
t at t�fixed ,

3. M
I=2
u at t�fixed .

Notice that we have not included M
I=2
s since it contains the same information as M I=2

u as far
as our positivity arguments are concerned.

It is also of central importance to understand the sign of the on-shell couplings of the meson
being exchanged, or, equivalently, the sign of the residues at the mass poles. Defining these as
RI=1,0 for the I = 1, 0 mesons respectively, we have

M(�t 6= 0, �s = �u = 0) = At(s, u) �!
s�channel

onshell

⇡
a

⇡
a

W b W b

= �
P

i
(RI=1)i
s�m2

i
,

M(�s 6= 0, �t = �u = 0) = Ã(s, u) �!
s�channel

onshell

⇡
b ⇡

a

W b W a

= �
P

i
(RI=0)i
s�m2

i
,

where the sum over i runs over all the possible intermediate states. Knowing that the amplitudes
Eq. (4) cannot have poles at the s, t and u–channel respectively, we can derive the relative sign
of the residues in the s and u�channel, which we show in Table 2.

For I = 1 (0) mesons, we have 3 types of states, n = 1, 2, 3 (4, 5, 6), given in Table 1.
The signs of their residues depend on the helicity of the external vector states. We have two
independent possibilities, either an elastic process (W+

⇡ ! W
+
⇡) which we will refer to as

the +� amplitude, or inelastic (W+
⇡ ! W

�
⇡) which we will refer to as the ++ amplitude.

Following the discussion of Appendix A, one finds that the signs of the residues are given by

R
+�
I=0 = +g

2
4 + g

2
5 + g

2
6 R

+�
I=1 = +g

2
1 + g

2
2 + g

2
3 ,

R
++
I=0 = �g

2
4 + g

2
5 � g

2
6 R

++
I=1 = �g

2
1 + g

2
2 � g

2
3 , (6)

4
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while the t�channel exchanged meson couples to WW and W⇡:
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Since the couplings gWWi do not appear in the amplitude W⇡⌘⇡ (the one related to the chiral
anomaly), we will restrict to situations in which the t�channel meson exchange is not present
such that we will not have to deal with these couplings gWWi any longer. This can be achieved
by either taking t�fixed or working with M

I=2
t . This leaves only 3 possibilities to consider:

1. M
I=2
t at u�fixed ,

2. M
I=2
t at t�fixed ,

3. M
I=2
u at t�fixed .

Notice that we have not included M
I=2
s since it contains the same information as M I=2

u as far
as our positivity arguments are concerned.

It is also of central importance to understand the sign of the on-shell couplings of the meson
being exchanged, or, equivalently, the sign of the residues at the mass poles. Defining these as
RI=1,0 for the I = 1, 0 mesons respectively, we have

M(�t 6= 0, �s = �u = 0) = At(s, u) �!
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i
,
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s�channel
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W b W a
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i
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i
,

where the sum over i runs over all the possible intermediate states. Knowing that the amplitudes
Eq. (4) cannot have poles at the s, t and u–channel respectively, we can derive the relative sign
of the residues in the s and u�channel, which we show in Table 2.

For I = 1 (0) mesons, we have 3 types of states, n = 1, 2, 3 (4, 5, 6), given in Table 1.
The signs of their residues depend on the helicity of the external vector states. We have two
independent possibilities, either an elastic process (W+

⇡ ! W
+
⇡) which we will refer to as

the +� amplitude, or inelastic (W+
⇡ ! W

�
⇡) which we will refer to as the ++ amplitude.

Following the discussion of Appendix A, one finds that the signs of the residues are given by
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The W⇡⌘⇡ amplitude is mediated by the following meson states:

s/u� channel:
G = �1

I = 1

⇡ ⇡

W ⌘

t� channel: G = 1 I = 1

⇡ ⇡

W ⌘

(34)

For the s/u�channel the exchanged mesons must have G = �1, I = 1, J = even and parity
P = (�1)J = +1. These states are classified as n = 2 in Table. 1 (highlighted in green).
On the other hand, in the t�channel the states must have G = +1, I = 1, J = odd and
P = (�1)J = �1. These states are classified as n = 5 in Table. 1 (also highlighted in green). We
notice therefore that in this amplitude, only 2 out of the 6 possible types of mesons contribute.

2.5 Dispersion Relations

Let us consider the W⇡⌘⇡ amplitude without the non-analytical pre-factor coming from the
polarization structure, MW⇡⌘⇡/

p
stu, and assume at fixed u < 0

lim
|s|!1

MW⇡⌘⇡
p
stu

= 0 , (35)

and similarly at fixed t < 0. In the s-plane with u fixed, we get the following dispersion relation:

I
ds

2⇡is
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where we specified that only J
P mesons with J odd or even are summed over. Expanding the

above dispersion relation for u ! 0, we obtain
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m
3
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, (37)

where J =
p
J 2.

Similarly, we can also get another dispersion relation by fixing t < 0 in the s-plane. We
obtain in this case
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2
= 2

J+
evenX

i

gW⇡ig⇡⌘i J

m
3
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. (38)

From Eq. (37) and Eq. (38) we get the null constraint
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. (39)
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How a bound on the anomaly arises:
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while the t�channel exchanged meson couples to WW and W⇡:
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Since the couplings gWWi do not appear in the amplitude W⇡⌘⇡ (the one related to the chiral
anomaly), we will restrict to situations in which the t�channel meson exchange is not present
such that we will not have to deal with these couplings gWWi any longer. This can be achieved
by either taking t�fixed or working with M

I=2
t . This leaves only 3 possibilities to consider:

1. M
I=2
t at u�fixed ,

2. M
I=2
t at t�fixed ,

3. M
I=2
u at t�fixed .

Notice that we have not included M
I=2
s since it contains the same information as M I=2

u as far
as our positivity arguments are concerned.

It is also of central importance to understand the sign of the on-shell couplings of the meson
being exchanged, or, equivalently, the sign of the residues at the mass poles. Defining these as
RI=1,0 for the I = 1, 0 mesons respectively, we have

M(�t 6= 0, �s = �u = 0) = At(s, u) �!
s�channel

onshell

⇡
a

⇡
a

W b W b

= �
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i
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s�m2

i
,

M(�s 6= 0, �t = �u = 0) = Ã(s, u) �!
s�channel

onshell

⇡
b ⇡

a

W b W a

= �
P

i
(RI=0)i
s�m2

i
,

where the sum over i runs over all the possible intermediate states. Knowing that the amplitudes
Eq. (4) cannot have poles at the s, t and u–channel respectively, we can derive the relative sign
of the residues in the s and u�channel, which we show in Table 2.

For I = 1 (0) mesons, we have 3 types of states, n = 1, 2, 3 (4, 5, 6), given in Table 1.
The signs of their residues depend on the helicity of the external vector states. We have two
independent possibilities, either an elastic process (W+

⇡ ! W
+
⇡) which we will refer to as

the +� amplitude, or inelastic (W+
⇡ ! W

�
⇡) which we will refer to as the ++ amplitude.

Following the discussion of Appendix A, one finds that the signs of the residues are given by
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⇡ ⇡

W W

/ g
2
W⇡i

⇡ ⇡

W W

/ g
2
W⇡i

⇡ ⇡

W W

/ gWWig⇡⇡i (5)

Since the couplings gWWi do not appear in the amplitude W⇡⌘⇡ (the one related to the chiral
anomaly), we will restrict to situations in which the t�channel meson exchange is not present
such that we will not have to deal with these couplings gWWi any longer. This can be achieved
by either taking t�fixed or working with M

I=2
t . This leaves only 3 possibilities to consider:

1. M
I=2
t at u�fixed ,

2. M
I=2
t at t�fixed ,

3. M
I=2
u at t�fixed .

Notice that we have not included M
I=2
s since it contains the same information as M I=2

u as far
as our positivity arguments are concerned.

It is also of central importance to understand the sign of the on-shell couplings of the meson
being exchanged, or, equivalently, the sign of the residues at the mass poles. Defining these as
RI=1,0 for the I = 1, 0 mesons respectively, we have
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where the sum over i runs over all the possible intermediate states. Knowing that the amplitudes
Eq. (4) cannot have poles at the s, t and u–channel respectively, we can derive the relative sign
of the residues in the s and u�channel, which we show in Table 2.

For I = 1 (0) mesons, we have 3 types of states, n = 1, 2, 3 (4, 5, 6), given in Table 1.
The signs of their residues depend on the helicity of the external vector states. We have two
independent possibilities, either an elastic process (W+

⇡ ! W
+
⇡) which we will refer to as

the +� amplitude, or inelastic (W+
⇡ ! W

�
⇡) which we will refer to as the ++ amplitude.

Following the discussion of Appendix A, one finds that the signs of the residues are given by
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The W⇡⌘⇡ amplitude is mediated by the following meson states:

s/u� channel:
G = �1

I = 1

⇡ ⇡

W ⌘

t� channel: G = 1 I = 1

⇡ ⇡

W ⌘

(34)

For the s/u�channel the exchanged mesons must have G = �1, I = 1, J = even and parity
P = (�1)J = +1. These states are classified as n = 2 in Table. 1 (highlighted in green).
On the other hand, in the t�channel the states must have G = +1, I = 1, J = odd and
P = (�1)J = �1. These states are classified as n = 5 in Table. 1 (also highlighted in green). We
notice therefore that in this amplitude, only 2 out of the 6 possible types of mesons contribute.

2.5 Dispersion Relations

Let us consider the W⇡⌘⇡ amplitude without the non-analytical pre-factor coming from the
polarization structure, MW⇡⌘⇡/

p
stu, and assume at fixed u < 0

lim
|s|!1

MW⇡⌘⇡
p
stu

= 0 , (35)

and similarly at fixed t < 0. In the s-plane with u fixed, we get the following dispersion relation:
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where we specified that only J
P mesons with J odd or even are summed over. Expanding the

above dispersion relation for u ! 0, we obtain
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where J =
p
J 2.

Similarly, we can also get another dispersion relation by fixing t < 0 in the s-plane. We
obtain in this case
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From Eq. (37) and Eq. (38) we get the null constraint

J�
oddX

i

gW⌘ig⇡⇡i J

m
3
i

= 3
J+
evenX

i

gW⇡ig⇡⌘i J

m
3
i

. (39)

11

How a bound on the anomaly arises:

Amazingly, a bound can be extended in general (from positivity):

see also J. Albert and L. Rastelli, arXiv: 2307.01246
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In light of this, one may hope that the kink corresponds to large N QCD with scalars
(and perhaps more) subtracted. A more meaningful observable is then the ratio

g̃
2
f2

g̃2⇢
=

g
2
⇡⇡f2

g2⇡⇡⇢
, (4.5)

which cancels out the g1,0 dependence, susceptible to subtractions. Fixing the cutoff fM
to the horizontal position of the kink, and scanning over g̃

2
f2

, allows one to carve out the
allowed region in the space of normalized couplings g̃

2
⇢, g̃

2
f2

. This is shown in figure 7. Here,
the stable kink of figure 5 corresponds to the top-right corner, and real-world QCD is again
marked on this plot with a black dot (with uncertainty).
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g̃ρ
20.0

0.1

0.2

0.3

0.4

0.5

g̃f2
2

QCD

LS-like

f2 kink

Figure 7: Allowed value in the space of the first two on-shell couplings. The black rectangle
denotes the values of real-world QCD (4.4). The gray dot denotes the linear amplitude with
scalars removed, (C.8). The dotted line is chosen to go though the corner of the allowed
region, which coincides with values at the kink. The plot was made at nmax = 15.

While real-world QCD is not too close to the kink, it lies (within uncertainty) just on
top of the dashed line representing the ratio g̃

2
f2

/g̃
2
⇢ for the kink. The ratio of the rho and f2

on-shell couplings at the f2 kink is thus compatible with experimental QCD! This supports
the idea that the f2 kink might correspond to large N QCD but with a sparser spectrum
(such as subtracting scalars), which would decrease g1,0 pushing the normalized couplings
out all the way to the top-right corner. We will discuss this possibility further when we
investigate the spectrum.

– 18 –
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Figure 1: Our best estimate for the extremal spectrum at the f2 kink (orange points),
together with the spectrum of real-world mesons as listed in [1] (with error bars). To guide
the eye, we have drawn a linear trajectory passing through the ⇢ and f2 mesons (gray line).

Recap

The physical picture of large N QCD has long been clear. At strictly infinite N , its
single-particle spectrum consists of an infinite tower of stable, freely propagating mesons
and glueballs. To leading 1/N order, these asymptotic states interact via meromorphic
scattering amplitudes, with well-understood high energy behavior. This picture calls for
the development of a bootstrap program that is in many ways parallel to the very powerful
conformal bootstrap. We should consider the full landscape of putative large N confining
gauge theories, and rigorously carve it out by imposing physical consistency conditions on
2 ! 2 scattering processes. The aspiration is that with enough physical input (such as
suitable spectral assumptions) we will be able to corner large N QCD at a special point in
theory space.

A systematic investigation of this large N theory space was initiated in [2] and further
developed in [3–6], focusing on the mesons. Mesons form a consistent subsector at large N

and are a natural place to start, both because their scattering is more constrained than that
of glueballs (due to flavor ordering of the external qq̄ states) and because our explorations
can be guided by the enormous wealth of real-world data.1 The most obvious way to
parametrize theory space is in terms of the spectrum of the full tower of large N mesons

1
While in actual QCD we of course have N = 3, it has long been appreciated that for many purposes

N = 1 is a surprisingly good approximation. Needless to say, our primary interest in the large N theory

goes beyond phenomenological considerations and it is ultimately driven by the dream of finding the Platonic

planar theory, which might have a dual string theory description.

– 2 –

J.Albert, J.Henriksson, L.Rastelli, A.Vichi arXiv:2312.15013
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Figure 10: Allowed values for the coefficients g0,2, g0,1 normalized to the gauge constant
e2 in d = 5 dimensions. The shaded region is allowed.

However, since we chose functionals which are applicable for any value of the coeffi-
cients, these bounds lead to an interesting conclusion: in the limit e2 ! 0, the positivity
bound g0,2 ± 1

2g1,0 � 0 found in the forward limit is restored, even in presence of gravity!
In section 5.6 we give a weaker (but analytic) analog of these bounds.

In figure 10 we show the allowed region for (g0,1/e2, g0,2/e2). In this case one finds that
g0,1 � 0 in the limit of vanishing gauge coupling. A similar plot can also be obtained for
g1,1 and g0,2, although we do not show it here.

5.5 Analytic bounds for e2 and G

In the previous section we obtained numerical bounds independent of the gravity coupling
G. Here instead we want to obtain bounds involving both e2 and G. We will not try to get
the best bound, but rather we will provide a functional, which can be shown to be positive
by inspection and use it to show that whenever the t-channel dominance assumption holds,
in presence of gauge coupling and gravity, one has the inequality

G  10.6618 e2 + 0.0367 g0,1 . (5.24)

The above constraint has deep and intriguing consequences. When phrased as a bound on
G, it is a form of the weak gravity conjecture: the strength of gravity is bounded by the
gauge force plus the self-couplings.10 It is also very interesting that for g0,1 < 0, we cannot

10We have tried to find a bound on G and e2 which does not involve any other couplings but we have
not succeeded. However it is interesting that we find such a weak dependence on g0,1. Perhaps it would be
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Bounds on the anomaly in susy models:
1909.11676

the theory to a one-form background gauge field Aµ via the coupling
R
d
4
xjµA

µ. The hallmark of

the ’t Hooft anomaly is that the partition function Z[A] in the presence of this background is not

invariant under the background gauge transformation Aµ ! Aµ + @µ⇤, but changes by a phase:7

Z[A+ d⇤] = exp


�

i

4⇡2

K

3!

Z
⇤F ^ F

�
Z[A] , (3.1)

where the anomaly coe�cient K 2 Z is normalized to be 1 for a left-handed Weyl fermion with plus

one U(1) charge. While the U(1) is a perfectly healthy global symmetry with a conserved Noether

current, the anomalous phase in (3.1) signals the obstruction to gauging the global symmetry

U(1). This is the conventional perturbative ’t Hooft anomaly captured by the one-loop triangle

Feynman diagram in a Lagrangian theory.

The anomalous transformation (3.1) implies that the current is not conserved in the presence

of a nontrivial background field, with the nonconservation given in (1.1). By taking the functional

derivative with respect to Aµ, we see that the anomaly coe�cient K enters into the contact term

of the three-point function h@
µ
jµ(x)j⌫(y)j⇢(z)i. Upon integration, K becomes the coe�cient of

the parity-odd structure in the three-point function hjµ(x)j⌫(y)j⇢(z)i at separated points [14].

The normalization of the current jµ(x) is fixed by the Ward identity,

@
µ
jµ(x)O(y) = iq�

(4)(x� y)O(y) , (3.2)

where O is a local operator with U(1) charge q 2 Z. Therefore, the overall coe�cient ⌧ of the

two-point function for jµ(x), which takes the form of (1.3) in any CFT, is physically meaningful.

In a free theory of N Weyl fermions with U(1) charges qi, ⌧ ⇠
P

i q
2
i , so roughly speaking ⌧

measures the amount of charged degrees of freedom.

In the conformal bootstrap we normalize external operators, i.e. the ones in the four-point

function under consideration, to have unit two-point function coe�cients. The three-point function

of the normalized current |̂µ = 2⇡2
p
3⌧
jµ is

h|̂µ(x)|̂⌫(y)|̂⇢(z)i =
K

⌧3/2
Dµ⌫⇢(x, y, z) , (3.3)

where Dµ⌫⇢(x, y, z) is a parity-odd structure that is fixed by conformal symmetry. The main point

of the current paper is to use the conformal bootstrap of the current four-point function to place

an upper bound on the three-point function coe�cient |K|/⌧
3/2.

In a nonsupersymmetric theory, the constraints we are after would require bootstrapping

the four-point function of the spin-one conserved current jµ(x). However, if we assume N = 1

supersymmetry, then the conserved, flavor current resides in a multiplet whose zero component is

a real scalar, J(x). Furthermore, the associated superconformal blocks for the four-point function

hJ(x1)J(x2)J(x3)J(x4)i are known [15, 16]. Due to these simplifications, we will restrict ourselves

7Here we ignore the possible phases from the mixed gauge-gravitational anomaly.
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Nf ⇤ = 29 ⇤ = 1 SU(Nc) SQCD SO(Nc) SQCD

3 2.6 2.2(2)

4 2.2 1.8(2) 0.38 0.27

5 2.1 1.7(2) 0.54 0.38

6 2.1 1.7(2) 0.31 0.24

7 2.0 1.6(2) 0.40 0.31

8 1.9 1.5(2) 0.48 0.37

9 1.9 1.5(2) 0.32 0.27

10 1.8 1.5(2) 0.38 0.31

11 1.8 1.4(1) 0.44 0.36

12 1.8 1.4(1) 0.32 0.27

13 1.7 1.4(1) 0.36 0.30

14 1.7 1.4(1) 0.40 0.34

15 1.7 1.4(1) 0.31 0.27

16 1.6 1.4(1) 0.34 0.30

17 1.6 1.3(1) 0.37 0.32

18 1.6 1.3(1) 0.30 0.26

19 1.6 1.3(1) 0.33 0.29

20 1.6 1.3(1) 0.35 0.31

Table 1: The bootstrap upper bounds on the ratio |K|/⌧
3/2 for an SU(Nf ) flavor symmetry are

shown in the second and the third columns. The numerical results at derivative order ⇤ = 29

and from extrapolating to infinite derivative order are both included. For a fixed Nf , the fourth

and the fifth columns show the maximum values of the ratio |K|/⌧
3/2 for SQCD in the conformal

window, which are all consistent with the bootstrap bounds.

5. Discussion

In this paper we use the conformal bootstrap method to derive universal constraints on ’t Hooft

anomalies in (3+1)d superconformal field theories. The existence of an upper bound on K/⌧
3/2

matches with our expectation that the anomaly is constrained by the amount of charged degrees

of freedom in a theory, or simply, “central charge > anomaly”. Since the ’t Hooft anomaly is

invariant under renormalization group flows, we further apply this bound to compare with the

conformal window of SQCD.

Another application of our result we have not discussed thus far is to AdS/CFT [21–23]. As

pointed out originally in [22], the ’t Hooft anomaly of conserved currents in a (3+1)d CFT is dual
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➥ potential interest to constrain DM scenarios (e.g. SIMPs)
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obtained from the sum rules Eq. (21) and Eq. (25) respectively.
We can also obtain a relation between the sum over g2⇡⇡i/m

2
i in Eq. (42) by using sum rules

derived from dispersion relations for the ⇡⇡ ! ⇡⇡ process in [3, 4]. In particular, we need
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Armed with Eq. (47) and Eq. (50), we can now obtain a bound on  as a function of F 2
⇡

and P . Defining
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we can rewrite 
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Written in this way we notice that as we decrease X and Y to make 
UB
2 larger, UB

5 becomes
smaller, and viceversa. Since  must be smaller than both bounds, the largest value of  is
reached when 
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that inserted in Eq. (52) gives us UB
5 as a function of only X that is maximized for X = 3/8.

This corresponds to Y = 3/8, and gives UB
5 |max = 1/8. Taking this value in Eq. (42), we finally

get the following upper bound on the chiral anomaly:

p
P/F 2

⇡


1
p
2
. (54)

This is the main result of the paper. This tells us that the anomaly coe�cient is bounded by P ,
a quantity related with the polarizabilities of the pions (see Appendix B). Using the constraints
Eq. (27), we can write Eq. (54) as a function of other Wilson coe�cients. For example, we get
that P  7hs

0,0 that leads to

q
h
s
0,0/F

2
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r
7

2
. (55)
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where J 2 ⌘ J(J + 1). Notice that only for kmin = 1 all Wilson coe�cients have a dispersive
representation in terms of Eq. (12). For kmin = 2, the couplings g1,0 and g2,1 are not captured
by these dispersion relations.

In a similar way, we can obtain dispersion relations for theM(s, t) amplitude, whose analytic
structure is given in Fig. 1b,
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These can be expanded as in the previous section, and provide yet more relations [25]. In the
case kmin > 1 these new relations are crucial, as they give access to Wilson coe�cients that
do not have a dispersive representation in terms of M(s, u). In particular, for kmin = 2, the
coupling g2,1 is not determined by Eq. (12) but appears in Eq. (14),

g2,1 = 2g2,0 � 2

⌧
(�1)J

m4

�
, (15)

while for kmin = 3, g3,1 can only be determined by

g3,1 = 3g3,0 +

⌧
(�1)J(2J 2 � 3)

m6

�
. (16)

2.2 Null Constraints

The dispersion relations in Eq. (10), and the small-u expansion of Eq. (14), over-determine the
Wilson coe�cients. This leads to a set of null constraints,

⌦
Xn,k(J,m

2)
↵
= 0 ,

⌦
Yn,k(J,m

2)
↵
= 0 , (17)

on the high-energy spectral density, with m2nXn,k and m2nYn,k functions of J only. Their
compact expression at all orders is provided in Ref. [25]. For the analytic arguments in this
article we are only interested in the most relevant null constraints (those involving less powers
of 1/m) and in those with the leading asymptotic J ! 1 behavior at a fixed order n in 1/m2n.

For kmin = 1, there is one (and only one) null constraint ⇠ O(J2(n�1)/m2n) at each order n,1

n = 2 : m4 Y2,1 = �2(1� (�1)J) + J 2 ,

n = 3 : m6 X3,1 = �6J 2 + J 4 ,

n = 4 : m8 X4,1 = �24J 2 � 8J 4 + J 6 ,
...

(n� 1)!2 m2n Xn,1 =
2n�1

(n� 1)!
P (n�1)

J (1)� J 2 . (18)

1We use a slightly di↵erent normalization w.r.t. Ref. [25], which has no impact on Eq. (17).
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Figure 2: Null constraints from Eq. (18), as a function of J , for fixed m.

The other null constraints have only subleading terms in powers of J w.r.t. these.
When we study larger kmin, the constraints in Eq. (18) disappear, and subleading null con-

straints now dominate. For kmin = 2 this involves null constraints that grow as O(J2(n�2)/m2n).
There are two of them at each order n, and can be separated into those where the sign of the
term O(J2(n�2)/m2n) is fixed, and those where this sign oscillates between J-odd and J-even.
In the first class we have,

n = 4 : m8
�
Y4,2 � Y4,1

�
= 8(1� (�1)J)� 10J 2 + J 4 ,

n = 5 : m10 X5,2 = 30J 2 � 17J 4 + J 6 ,

n = 6 : m12 X6,2 = 144J 2 � 46J 4 � 20J 6 + J 8 ,
...

(n� 2)!2 m2n Xn,2 =
2n�2

(n� 2)!
P (n�2)

J (1)� 2P (2)

J (1) . (19)

In both cases, Eq. (18) and Eq. (19), the Yn,k null constraints (originating from M(s, t) dis-
persion relations) appear only at the lowest order in 1/m2, and at higher order the dominant
J behavior is controlled by the Xn,k null constraints (originating from M(s, u) dispersion rela-
tions). On the other hand, the most relevant oscillating null constraint is,

n = 3 : m6 Y3,1 = �6(1� (�1)J) + 2(1� 2(�1)J)J 2 , (20)

where the sign of the J 2 term oscillates with J .
Notice that for J = 0 the arguments of all null constraints vanish, as can be easily seen in

Eq. (18) and Eq. (19) (and more generally by the expressions in Ref. [25]). This implies that
the spin-0 component of the UV spectrum decouples and is not restricted by null constraints.
This is related to the fact that models with only J = 0 states can provide a consistent UV
completion of the pion amplitude, satisfying Eq. (6a) and Eq. (6b) for kmin = 1, as we will
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{

where J 2 ⌘ J(J + 1). Notice that only for kmin = 1 all Wilson coe�cients have a dispersive
representation in terms of Eq. (12). For kmin = 2, the couplings g1,0 and g2,1 are not captured
by these dispersion relations.

In a similar way, we can obtain dispersion relations for theM(s, t) amplitude, whose analytic
structure is given in Fig. 1b,
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These can be expanded as in the previous section, and provide yet more relations [25]. In the
case kmin > 1 these new relations are crucial, as they give access to Wilson coe�cients that
do not have a dispersive representation in terms of M(s, u). In particular, for kmin = 2, the
coupling g2,1 is not determined by Eq. (12) but appears in Eq. (14),

g2,1 = 2g2,0 � 2
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�
, (15)

while for kmin = 3, g3,1 can only be determined by

g3,1 = 3g3,0 +

⌧
(�1)J(2J 2 � 3)

m6

�
. (16)

2.2 Null Constraints

The dispersion relations in Eq. (10), and the small-u expansion of Eq. (14), over-determine the
Wilson coe�cients. This leads to a set of null constraints,

⌦
Xn,k(J,m

2)
↵
= 0 ,

⌦
Yn,k(J,m

2)
↵
= 0 , (17)

on the high-energy spectral density, with m2nXn,k and m2nYn,k functions of J only. Their
compact expression at all orders is provided in Ref. [25]. For the analytic arguments in this
article we are only interested in the most relevant null constraints (those involving less powers
of 1/m) and in those with the leading asymptotic J ! 1 behavior at a fixed order n in 1/m2n.

For kmin = 1, there is one (and only one) null constraint ⇠ O(J2(n�1)/m2n) at each order n,1

n = 2 : m4 Y2,1 = �2(1� (�1)J) + J 2 ,

n = 3 : m6 X3,1 = �6J 2 + J 4 ,

n = 4 : m8 X4,1 = �24J 2 � 8J 4 + J 6 ,
...

(n� 1)!2 m2n Xn,1 =
2n�1

(n� 1)!
P (n�1)

J (1)� J 2 . (18)

1We use a slightly di↵erent normalization w.r.t. Ref. [25], which has no impact on Eq. (17).
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Figure 6: Upper bound on g̃2⇢ (dashed blue line), g̃2f2 (dashed green line) and g̃2⇢3 (dashed magenta
line) as a function of M 0/m⇢ using null constraints with nmax = 7. The solid lines correspond
to the prediction from the interpolating model Eq. (47). The dots correspond to the values of the
Lovelace-Shapiro amplitude without scalars, and the diamonds to the QCD experimental values.

We have not been able to find an analytic formula for the boundary connecting the two kinks,
Eq. (58) and Eq. (59); we illustrate the numerical analysis in Fig. 5. We believe that by adding
more null constraints the boundary must approach, but not reach, Eq. (47), consisting of a
theory connecting the two kinks (the magenta line in Fig. 5). Nevertheless, as in Sec. 3.1, this
line cannot be the true boundary since the Lovelace-Sphapiro model with J > 0 states lies
at the left of this line, and so does part of the Coon amplitude, Eq. (118) (with C = 1 and
q 2 [0, 1], after subtracting all scalars).

3.4 Bounding the couplings of mesons to pions

So far, we have phrased dispersion relations as UV! IR vehicles to reformulate microscopic
unitarity, causality and crossing-symmetry as predictions for low-energy coe�cients. Null con-
straints, however, provide genuine UV-UV relations, inspired by the same principles. As such,
they contain information on the UV meson spectrum and couplings to pions. We define the
latter, normalized as,

g̃2i =
g2i⇡⇡

g1,0 m2

i

, (60)

where i = s, ⇢, f2, ⇢3, ... labels J = 0, 1, 2, 3, ... mesons, following the QCD notation of Ref. [54].
Since spin-0 mesons decouple from the null constraints, it is easy to understand that g̃2s is

maximised by the smallest possible value of g1,0 that, due to its additive property, occurs when

22
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Figure 7: Allowed region in the ḡ3,1– ḡ3,0 plane (left) and ḡ4,1– ḡ4,0 plane (right) from positivity.
The black lines correspond to the J > 1 su-model (Eq. (97) with Eq. (98) and 0  m  M),
the green lines to J = 2 models, and the magenta lines to Eq. (69) and Eq. (70) for the left and
right plot respectively. The green areas limited by the dashed line corresponds to the allowed
region with nmax = 7 null constraints.

It is the spin-2 state that now plays an analog role to that of the ⇢-meson in Sec. 3. Indeed,
the hY4,2 � Y4,1i = 0 null constraint reads,

6

⌧
1

m8

� ����
J=2

= 10

⌧
1

m8

� ����
J=3

+ 50

⌧
1

m8

� ����
J=4

+ · · · , (64)

which tells us that spin-2 states need J > 2 states and viceversa (for instance, the amplitude
Eq. (27) requires J � 3 states as in Eq. (28), to comply with the Froissart-Martin bound).

4.1 Bounds on Wilson coe�cients

At the leading order O(s2), we only have ḡ2,1. As discussed before, we have ḡ2,1 = 0 (ḡ2,1 = 4)
for J = 0 (J = 1) models, that are decoupled from higher-spin states. Focusing instead on
theories with J � 2 states, the largest value of ḡ2,1 comes from the su-model, once we have
subtracted not only the scalar but also the J = 1 state, whose amplitude is given by Eq. (97)
in appendix C, using Eq. (98). Then, from Eq. (100) we find,

ḡ2,1 
18 ln 2� 13

10 ln 2� 7
' 7.6 . (65)

At order O(s3) and O(s4) we can also consider (ḡ3,1, ḡ3,0) and (ḡ4,1, ḡ4,0). The contributions
from models of scalars and vectors are given by the lines going respectively from the points
(0, 1) and (2, 1) to the origin, illustrated in Fig. 7 in red and blue.

The allowed regions for J � 2 are less trivial, and correspond to the green areas in Fig. 7.
Again the upper kink is associated with the su-model, with its degenerate spectrum that makes
ḡn,0 maximal. The coe�cients are

(ḡn,1, ḡn,0)J>1 su�model = (⇡ 7.6, 1) , (66)
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of states that enhance gn,0/g1,0 without a↵ecting the ratio gn,1/gn,0 (n = 3, 4, ...). This latter
condition implies, from Eq. (57),

⌦ J 2

m2n

↵
! 0 and therefore also

⌦
1/m2n

↵
! 0. This leads to

g̃n,0 =
1

1 + M2

g2⇢⇡⇡

⌦
1

m2 i
. (90)

Following the same reasoning as before, one can obtain that M2

g2⇢⇡⇡

⌦
1

m̂2 i � 2, and therefore

g̃n,0  1/3, leading to Eq. (89). Also this kink lies at the extremum of the spin-1 line.

C The su-models

Let us consider the most general theory of a degenerate spectrum that contributes to the four-
pion amplitude M(s, u) [7, 8]. This means that all states have equal mass m, and therefore
the denominator of this amplitude is fixed to be M(s, u) / 1/((s�m2)(u�m2)). If we further
demand that Eq. (6a) and Eq. (6b) are satisfied for kmin = 1, we are led to

M(s, u) =
a1m4 + a2m2(s+ u) + a3su

(s�m2)(u�m2)
, (91)

where ai are constants. The Adler’s zero condition fixes a1 = 0. Then, aside from a global
multiplicative factor, the amplitude has only one free parameter. We can write it as

M(su)
1

(s, u) =
m2(s+ u) + �su

(s�m2)(u�m2)
, (92)

where the possible values of � are determined by unitarity. Indeed, imposing the positivity of
the residues of Eq. (92), we obtain

�2  �  2 ln 2� 1

1� ln 2
. (93)

In the limiting case � = �2, the residues of all J > 0 states are zero, and we are left with the
scalar amplitude Eq. (22). In the other limit,

� =
2 ln 2� 1

1� ln 2
' 1.26 , (94)

the residue of the spin-0 state is zero, leading to an amplitude mediated by an infinite tower of
states of spin J > 0 and mass m. We will refer to this latter case as the J > 0 su-model.

Expanding Eq. (92) for s, u ⌧ m2, we can obtain the Wilson coe�cients:

gn,0 =
1

m2n
, gn,l =

2 + �

m2n
(n, l > 0) . (95)

For Eq. (94), the Wilson coe�cients, normalized as in Eq. (30) for M = m, are given by

g̃n,0 = 1 , g̃n,l =
1

1� ln 2
' 3.26 (n > 1, l > 0) . (96)
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that corresponds to two su-models (Eq. (92)) with mass m and M respectively, and an extra
term. Apart from the masses, the amplitude has 4 parameters: the two � of the su-models,
↵ and �. We are interested in this model without the scalars. Removing the scalars in the
two su-models fixes the �’s to the value Eq. (94). Removing the scalar from the last term of
Eq. (101) corresponds to adding to the amplitude the term

�


f(m,M)

✓
1

s�m2
+

1

u�m2

◆
+ (M $ m)

�
, (102)

where

f(m,M) =
m4M2 +m6 (ln 2� 1) +m2M4 ln M2

m2+M2

(m2 �M2)2
. (103)

Requiring the positivity of the spectral function for the J > 0 states in Eq. (101) leads to � � 0.
Eq. (101) with Eq. (102) leads to

g̃2,1
g̃2,0

=
3.26

�
1

m4 +
a

M4

�
�

1

m4 +
a

M4

�
� �(f(m,M)

m4 + f(M,m)

M4 )
. (104)

Since �(f(m,M)

m4 + f(M,m)

M4 ) is a positive-definite function, we see that the ratio g̃2,1/g̃2,0 is bounded
from below by the su-model.

D The Lovelace-Shapiro amplitude

The Lovelace-Shapiro (LS) amplitude for the scattering of four pions is defined as [26, 27]

M(LS)(s, u) =
�(1� ↵(s))�(1� ↵(u))

�(1� ↵(s)� ↵(u))
, (105)

where ↵(s) = ↵0 + ↵0s is referred as the Regge trajectory. We will fix the values of ↵0 and ↵0

by requiring that Eq. (106) satisfies the Adler zero condition, M(LS)(s, u) ! 0 for s, u ! 0,
and that the first pole of Eq. (106) occurs for s = m2

⇢. These two conditions lead to ↵0 = 1/2
and ↵0 = 1/(2m2

⇢) [66] and then we can write

M(LS)(s, u) =
�
⇣

1

2
� s

2m2
⇢

⌘
�
⇣

1

2
� u

2m2
⇢

⌘

�
⇣

t
2m2

⇢

⌘ . (106)

By looking at the poles of Eq. (106), one can see that the LS amplitude corresponds to a theory
of higher-spin states with masses

m2

n = m2

⇢(2n+ 1) , n = 0, 1, 2, ... . (107)

For a given n, there are at most n+1 states with spin J = 0, 1, ..., n+1. Furthermore, Eq. (106)
satisfies the condition Eq. (6a) and Eq. (6b) with kmin = 1.
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E The Coon amplitude

The Lovelace-Shapiro amplitude presented in Appendix D can be generalized to a larger class
of amplitudes depending on an additional parameter q. This is the so-called Coon amplitude,
which was first proposed in [28]11:

Mq(s, u) = C(�, ⌧, q)
1Y

n=0

(1� qn+1) (�⌧ � qn+1)

(� � qn+1) (⌧ � qn+1)
, (118)

where � = 1 + (q � 1)(↵0 + ↵0s) and ⌧ = 1 + (q � 1)(↵0 + ↵0u). As explained in Appendix D,
we take ↵0 = 1/2 and ↵0 = 1/(2m2

⇢). The parameter q takes values between 0 and 1, and in
the limit q ! 1 we recover the LS amplitude Eq. (106). There is some freedom in the choice of
the prefactor C, as long as it satisfies limq!1 C(�, ⌧, q) = 1.

The Coon amplitude has an infinite number of simple poles at

sn = m2

⇢

1 + q � 2qn+1

1� q
, n = 0, 1, 2, ... . (119)

The corresponding residues are

Res
s=sn

Mq(s, u) = C(�n, ⌧, q)
2qn+1

1� q

⌧ � 1

⌧n+1
m2

⇢

n�1Y

l=0

(⌧ � ql�n)

(1� ql�n)
, (120)

where �n = �(s = sn). It is important to remark that the spectrum has an accumulation point
at s⇤ = limn!1 sn = m2

⇢
1+q
1�q . In the limit q ! 1, the accumulation point is located at infinity

and we recover the evenly-spaced spectrum of the LS amplitude.
It is customary to fix the prefactor C(�, ⌧, q) with the further assumption that the residues

of the Coon amplitude are polynomials in u, since it is believed that non-polynomial residues
lead to problems with the locality of the theory. The prefactor is in this case set to

C(�, ⌧, q) = q
ln� ln ⌧
ln q ln q , (121)

which reduces to C(�n, ⌧, q) = ⌧n+1 at the sn pole. This term cancels the factor ⌧n+1 in the
denominator of Eq. (120) and ensures that the residues are polynomials. In this case, we have
that for any n, there are n+ 1 states with spin J = 0, 1, ..., n+ 1, as in the LS amplitude.

Using the prefactor Eq. (121) makes however the Coon amplitude Eq. (118) non-meromorphic.
In addition to the simple poles, there is a branch cut starting at the accumulation point s⇤.
Although the physical meaning of this kind of singularities is unclear, amplitudes with branch
cuts can still obey the requirements of unitarity, crossing symmetry and Regge boundedness,
so it is interesting to include them in our study.

Regarding the high-energy behavior, the amplitude with prefactor Eq. (121) grows at fixed
u like Mq(s, u) ⇠ f(u) sln ⌧/ ln q. For negative u, ln ⌧/ ln q < 0.5, so the amplitude obeys

11The idea of the Coon amplitude goes back to an earlier work by Coon [67], where he defined a generalization
of the Veneziano amplitude which was slightly di↵erent from Eq. (118). Shortly after that he proposed the Coon
version of Lovelace-Shapiro amplitude together with Sukhatme and Tran Thanh Van in [28].
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