Axion Domain Walls, Small Instantons and Non-Invertible Symmetry Breaking

Sungwoo Hong KAIST (Based on 2309.05636 with Clay Cordova, Liantao Wang)

20th Rencontres du Vietnam: BSM in particle physics and cosmology - 50 years later

I. Axion-QCD Theory

$$S \supset \frac{1}{2} \int \partial_{\mu} a \, \partial^{\mu} a + \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G)$$

I. Axion-QCD Theory

$$S \supset \frac{1}{2} \int \partial_{\mu} a \, \partial^{\mu} a + \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G)$$

(i) Leading Theoretical Proposal to Solve Strong CP Problem

$$S_{QCD} \supset \frac{i\overline{\theta}}{8\pi^2} \int Tr(G \wedge G)$$

Neutron Electric Dipole Moment $d_n \sim 3 \times 10^{16} \ \overline{\theta} \ \rightarrow \ \overline{\theta} < 10^{-10}$

I. Axion-QCD Theory

$$S \supset \frac{1}{2} \int \partial_{\mu} a \, \partial^{\mu} a + \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G)$$

(i) Leading Theoretical Proposal to Solve Strong CP Problem(ii) Well-motivated candidate for Dark Matter

Credit: HAP / A. Chantelauze

II. Axion Domain Wall Problem

$$S \supset \frac{1}{2} \int \partial_{\mu} a \, \partial^{\mu} a + \frac{iK}{8\pi^{2}} \int \frac{a}{f_{a}} Tr(G \wedge G)$$

cf. $S_{QCD} \supset \frac{i\overline{\theta}}{8\pi^{2}} \int Tr(G \wedge G)$
 $U(1)_{PQ} \rightarrow Z_{K} : K$ -degenerate vacua
 $a \sim a + 2\pi f_{a}, \quad a \rightarrow a + \frac{2\pi f_{a}}{K}$
 $A \rightarrow a + \frac{2\pi f_{a}}{K}$
 $A \rightarrow a + \frac{2\pi f_{a}}{k}$

II. Axion Domain Wall Problem

$$S \supset \frac{1}{2} \int \partial_{\mu} a \, \partial^{\mu} a + \frac{iK}{8\pi^{2}} \int \frac{a}{f_{a}} Tr(G \wedge G)$$

cf. $S_{QCD} \supset \frac{i\overline{\theta}}{8\pi^{2}} \int Tr(G \wedge G)$
 $U(1)_{PQ} \rightarrow Z_{K} : K$ -degenerate vacua
 $a \sim a + 2\pi f_{a}, \quad a \rightarrow a + \frac{2\pi f_{a}}{K}$
 $e^{-\frac{8\pi^{2}}{g^{2}(\mu)}} \ll 1$
 $E \approx T$
 a, g_{μ}, q, ℓ
 a, g_{μ}, q, ℓ
 a, g_{μ}, q, ℓ

II. Axion Domain Wall Problem

$$S \supset \frac{1}{2} \int \partial_{\mu} a \, \partial^{\mu} a + \frac{iK}{8\pi^{2}} \int \frac{a}{f_{a}} Tr(G \wedge G)$$

cf. $S_{QCD} \supset \frac{i\theta}{8\pi^{2}} \int Tr(G \wedge G)$
 $U(1)_{PQ} \rightarrow Z_{K} : K$ -degenerate vacua
 $a \sim a + 2\pi f_{a}, \quad a \rightarrow a + \frac{2\pi f_{a}}{K}$
 $e^{-\frac{8\pi^{2}}{g^{2}(\Lambda_{QCD})}} \sim 1$
 $E \approx T$
 A_{QCD}
 A_{QCD}
 $a = \frac{a}{a}$
 $a = \frac{a}{a}$
 $a = \frac{a}{a}$

L

II. Axion Domain Wall Problem

$$S \supset \frac{1}{2} \int \partial_{\mu} a \ \partial^{\mu} a + \frac{iK}{8\pi^{2}} \int \frac{a}{f_{a}} Tr(G \wedge G)$$

cf. $S_{QCD} \supset \frac{i\overline{\theta}}{8\pi^{2}} \int Tr(G \wedge G)$
 $U(1)_{PQ} \rightarrow Z_{K} : K$ -degenerate vacua
 $V(a) = m_{u} \Lambda_{QCD}^{3} \left(1 - \cos \frac{Ka}{f_{a}}\right)$
 Z_{K} Spontaneously Broken : K Domain Walls

II. Axion Domain Wall Problem

$$S \supset \frac{1}{2} \int \partial_{\mu} a \, \partial^{\mu} a + \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G)$$

cf. $S_{QCD} \supset \frac{i\overline{\theta}}{8\pi^2} \int Tr(G \wedge G)$

 $U(1)_{PQ} \rightarrow Z_K : K$ -degenerate vacua

$$V(a) = m_u \Lambda_{QCD}^3 \left(1 - \cos \frac{Ka}{f_a} \right)$$

 Z_K Spontaneously Broken : K Domain Walls

II. Axion Domain Wall Problem

The presence of long-lived axion-Domain-Walls is inconsistent with cosmological observations

- (Dark) matter energy density: $\rho_{\rm DM} \propto R^{-3} \Rightarrow R(t) \propto t^{2/3}$ (Matter-Dominated)
- Domain Wall energy density: $\rho_{\rm DW} \propto R^{-1} \Rightarrow R(t) \propto t^2$ (DW-Dominated)

II. Axion Domain Wall Problem

The presence of long-lived axion-Domain-Walls is inconsistent with cosmological observations

- (Dark) matter energy density: $\rho_{\rm DM} \propto R^{-3} \Rightarrow R(t) \propto t^{2/3}$ (Matter-Dominated)
- Domain Wall energy density: $\rho_{\rm DW} \propto R^{-1} \Rightarrow R(t) \propto t^2$ (DW-Dominated)

II. Axion Domain Wall Problem

Success of axion theory hinges on first solving domain wall problem!

III. Generalized Global Symmetries

I. Non-invertible Symmetries of Axion

Consider axion coupled to $G_g = SU(N)/Z_N$

$$S \supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) \qquad G = \text{field strength of } G_g$$

1. If $G_g = SU(N)$

Full axion shift symmetry: $U(1)_{PQ} \rightarrow Z_K$ (invertible)

I. Non-invertible Symmetries of Axion

Consider axion coupled to $G_g = SU(N)/Z_N$

$$S \supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) \qquad G = \text{field strength of } G_g$$

1. If $G_g = SU(N)$

Full axion shift symmetry: $U(1)_{PQ} \rightarrow Z_K$ (invertible)

$$a \sim a + 2\pi f_a$$
, under $a \rightarrow a + \frac{2\pi f_a}{z}$ with $z \in Z$ (to be determined)
 $S \rightarrow S + \frac{i2\pi K}{z} \int \frac{Tr(G \wedge G)}{8\pi^2}$

I. Non-invertible Symmetries of Axion

Consider axion coupled to $G_g = SU(N)/Z_N$

$$S \supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) \qquad G = \text{field strength of } G_g$$

1. If $G_g = SU(N)$

Full axion shift symmetry: $U(1)_{PQ} \rightarrow Z_K$ (invertible)

K degenerate vacua \rightarrow *K* invertible Domain Walls

I. Non-invertible Symmetries of Axion

Consider axion coupled to $G_g = SU(N)/Z_N$

$$S \supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) \qquad G = \text{field strength of } G_g$$

1. If $G_g = SU(N)$

Full axion shift symmetry: $U(1)_{PQ} \rightarrow Z_K$ (invertible)

K degenerate vacua $\rightarrow K$ invertible Domain Walls

2. If $G_g = SU(N)/Z_N$

Expected symmetry: $Z_{K/N}$ (invertible)

I. Non-invertible Symmetries of Axion

Consider axion coupled to $G_g = SU(N)/Z_N$

$$S \supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) \qquad G = \text{field strength of } G_g$$

1. If $G_g = SU(N)$

Full axion shift symmetry: $U(1)_{PQ} \rightarrow Z_K$ (invertible)

K degenerate vacua $\rightarrow K$ invertible Domain Walls

2. If $G_g = SU(N)/Z_N$

Enlarged symmetry: $Z_{K/N}$ (invertible) $\subset Z_K$ (non invertible)

I. Non-invertible Symmetries of Axion

 $S \supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) \qquad G = \text{field strength of } G_g$ We still fix: $a \sim a + 2\pi f_a$, under $a \rightarrow a + \frac{2\pi f_a}{z}$ with $z \in Z$ (to be determined) $\Rightarrow \delta S = \frac{2\pi iK}{z} \int \frac{Tr(G \wedge G)}{8\pi^2} = \frac{2\pi iK}{z} n + \frac{2\pi iK}{z} \frac{N-1}{N} \int \frac{w \wedge w}{2} = 2\pi iZ$ $w \in H^2(M_4, Z_N): \quad \oint_{\Sigma_2} w = Z/NZ = Z_N$

2. If $G_g = SU(N)/Z_N$

Enlarged symmetry: $Z_{K/N}$ (invertible) $\subset Z_K$ (non invertible)

I. Non-invertible Symmetries of Axion

$$\begin{split} S &\supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) \qquad G = \text{field strength of } G_g \\ \text{We still fix: } a &\sim a + 2\pi f_a \text{, under } a \rightarrow a + \frac{2\pi f_a}{z} \text{ with } z \in Z \text{ (to be determined)} \\ \Rightarrow \delta S &= \frac{2\pi iK}{z} \int \frac{Tr(G \wedge G)}{8\pi^2} = \frac{2\pi iK}{z} n + \frac{2\pi iK}{z} \frac{N-1}{N} \int \frac{w \wedge w}{2} = 2\pi iZ \\ w \in H^2(M_4, Z_N): \quad \oint_{\Sigma_2} w = Z/NZ = Z_N \\ \Rightarrow n: \quad U(1)_{PQ} \rightarrow Z_K \text{, } \qquad \frac{N-1}{N} \int \frac{w \wedge w}{2}: \quad U(1)_{PQ} \rightarrow Z_{K/N} \\ \Rightarrow \quad Z_{K/N}^I \subset Z_K^{NI} \end{split}$$

2. If $G_g = SU(N)/Z_N$

Enlarged symmetry: $Z_{K/N}$ (invertible) $\subset Z_K$ (non invertible)

NIS construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

e.g. G = SU(N)

electric 1-form: Z_N magnetic 1-form: none

NIS construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

e.g. $G = SU(N)/Z_L$

electric 1-form: $Z_{N/L}$ magnetic 1-form: Z_L

NIS construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

$$U(1)_A \text{ with } \alpha = \frac{2\pi}{k}, \quad S \to S + \frac{2\pi Ai}{k} \int_{M_4} \frac{G \wedge G}{8\pi^2} + \frac{2\pi Ai}{k} \left(\frac{L-1}{L}\right) \int_{M_4} \frac{w_2 \wedge w_2}{2}$$
$$\in \mathbb{Z} \qquad \in \mathbb{Z}_L$$

NIS construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

$$U(1)_{A} \text{ with } \alpha = \frac{2\pi}{k}, \quad S \to S + \frac{2\pi Ai}{k} \int_{M_{4}} \frac{G \wedge G}{8\pi^{2}} + \frac{2\pi Ai}{k} \left(\frac{L-1}{L}\right) \int_{M_{4}} \frac{w_{2} \wedge w_{2}}{2}$$
$$\in \mathbb{Z} \qquad \in \mathbb{Z}_{L}$$
Global $U(1) \rightarrow \mathbb{Z}$ Instanton

NIS construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

$$U(1)_{A} \text{ with } \alpha = \frac{2\pi}{k}, \quad S \to S + \frac{2\pi Ai}{k} \int_{M_{4}} \frac{G \wedge G}{8\pi^{2}} + \frac{2\pi Ai}{k} \left(\frac{L-1}{L}\right) \int_{M_{4}} \frac{w_{2} \wedge w_{2}}{2}$$

$$\in \mathbb{Z} \qquad \in \mathbb{Z}_{L}$$
Global $U(1)$

$$\to \mathbb{Z} \text{ Instanton}$$

$$\to \mathbb{Z}_{L} \text{ (fractional) Instanton}$$

NIS construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

$$U(1)_{A} \text{ with } \alpha = \frac{2\pi}{k}, \quad S \to S + \frac{2\pi Ai}{k} \int_{M_{4}} \frac{G \wedge G}{8\pi^{2}} + \frac{2\pi Ai}{k} \left(\frac{L-1}{L}\right) \int_{M_{4}} \frac{w_{2} \wedge w_{2}}{2}$$

$$\in \mathbb{Z} \qquad \in \mathbb{Z}_{L}$$
Global $U(1)$

$$\to \mathbb{Z} \text{ Instanton}$$

$$\to \mathbb{Z}_{L} \text{ (fractional) Instanton}$$

NIS construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

$$U(1)_A \text{ with } \alpha = \frac{2\pi}{k}, \quad S \to S + \frac{2\pi Ai}{k} \int_{M_4} \frac{G \wedge G}{8\pi^2} + \frac{2\pi Ai}{k} \left(\frac{L-1}{L}\right) \int_{M_4} \frac{w_2 \wedge w_2}{2}$$
$$\in \mathbb{Z} \qquad \in \mathbb{Z}_L$$

NIS construction possible for non-abelian gauge theory with 1-form magnetic center symmetry

$$U(1)_A \text{ with } \alpha = \frac{2\pi}{k}, \quad S \to S + \frac{2\pi Ai}{k} \int_{M_4} \frac{G \wedge G}{8\pi^2} + \frac{2\pi Ai}{k} \left(\frac{L-1}{L}\right) \int_{M_4} \frac{w_2 \wedge w_2}{2}$$
$$\in \mathbb{Z} \qquad \in \mathbb{Z}_L$$

$$U\left(\frac{2\pi}{k},\Sigma_3\right) \to D_k = U\left(\frac{2\pi}{k},\Sigma_3\right) \times \mathcal{A}^{N,p}(w_2) \text{ with } \frac{p}{N} = \frac{A}{k}$$

I. Non-invertible Symmetries of Axion

Consider axion coupled to $G_g = SU(N)/Z_N$

$$S \supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) \qquad G = \text{field strength of } G_g$$

1. If $G_g = SU(N)$

Full axion shift symmetry: $U(1)_{PQ} \rightarrow Z_K$ (invertible)

K degenerate vacua \rightarrow *K* invertible Domain Walls

2. If $G_g = SU(N)/Z_N$

Enlarged symmetry: $Z_{K/N}$ (invertible) $\subset Z_K$ (non invertible) Invertible $Z_{K/N} \Rightarrow K/N$ degenerate vacua

I. Non-invertible Symmetries of Axion

Consider axion coupled to $G_g = SU(N)/Z_N$

$$S \supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) \qquad G = \text{field strength of } G_g$$

1. If $G_g = SU(N)$

Full axion shift symmetry: $U(1)_{PQ} \rightarrow Z_K$ (invertible)

K degenerate vacua \rightarrow *K* invertible Domain Walls

2. If $G_g = SU(N)/Z_N$

Enlarged symmetry: $Z_{K/N}$ (invertible) $\subset Z_K$ (non invertible)

Invertible $Z_{K/N} \Rightarrow K/N$ degenerate vacua

I. Non-invertible Symmetries of Axion

Consider axion coupled to $G_g = SU(N)/Z_N$

$$S \supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) \qquad G = \text{field strength of } G_g$$

1. If $G_g = SU(N)$

Full axion shift symmetry: $U(1)_{PQ} \rightarrow Z_K$ (invertible)

K degenerate vacua \rightarrow *K* invertible Domain Walls

2. If $G_g = SU(N)/Z_N$

Enlarged symmetry: $Z_{K/N}$ (invertible) $\subset Z_K$ (non invertible)

Invertible $Z_{K/N} \Rightarrow K/N$ degenerate vacua

K degenerate vacua \rightarrow invertible + non-invertible Domain Walls

Invertible DW vs Non-Invertible DW

Invertible DW vs Non-Invertible DW

Invertible DW vs Non-Invertible DW

Non-invertible Axion Domain Wall Problem

Invertible DW vs Non-Invertible DW

Non-invertible Axion Domain Wall Problem

II. "Non-invertible Axion Domain Wall Problem"

(Clay Cordova, Sungwoo Hong, Liantao Wang '23)

For given choice of the global structure of G_{SM} and anomaly coefficients, axion-SM theory can contain non-invertible-type as well as regular (invertible-type) domain wall defects. Any of these topological defects in the early universe is inconsistent with cosmological observations, and therefore should be made unstable or removed from the spectrum.

$$G_{SM} = \frac{SU(3)_C \times SU(2)_L \times U(1)_Y}{\Gamma}, \ \Gamma = 1, Z_2, Z_3, Z_6$$

$$S \supset \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

III. Axion-SM

$$S \supset \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

1. $G, W, B = \text{field strength of } SU(3)_C, SU(2)_L, U(1)_Y, \text{ respectively.}$

2.
$$G_{SM} = \frac{SU(3)_C \times SU(2)_L \times U(1)_Y}{\Gamma}$$
, $\Gamma = 1, Z_2, Z_3, Z_6$

III. Axion-SM

$$S \supset \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

1. G, W, B = field strength of $SU(3)_C$, $SU(2)_L$, $U(1)_Y$, respectively.

2.
$$G_{SM} = \frac{SU(3)_C \times SU(2)_L \times U(1)_Y}{\Gamma}$$
, $\Gamma = 1, Z_2, Z_3, Z_6$

i. The entire SM matter fields are neutral under Z_6 transformation generated by

$$e^{\frac{2\pi i}{3}\lambda_8} = e^{\frac{2\pi i}{3}}I_3 \in SU(3)_C$$
, $e^{\frac{2\pi i}{2}T_3} = -I_2 \in SU(2)_L$, $e^{\frac{2\pi i}{6}Q_Y} \in U(1)_Y$
ii. Z_6 Wilson lines are not screened $\Rightarrow Z_6^{(1)}$ electric 1-form center symmetry

iii. Gauging
$$\Gamma = Z_p^{(1)} \subset Z_6^{(1)} \Rightarrow \frac{SU(3)_C \times SU(2)_L \times U(1)_Y}{\Gamma}$$
, $Z_{6/p}^{(1)}(e) \times Z_p^{(1)}(m)$

III. Axion-SM

$$S \supset \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

1. G, W, B = field strength of $SU(3)_C$, $SU(2)_L$, $U(1)_Y$, respectively.

2.
$$G_{SM} = \frac{SU(3)_C \times SU(2)_L \times U(1)_Y}{\Gamma}$$
, $\Gamma = 1, Z_2, Z_3, Z_6$

3. Quantization of Axion-Gauge Couplings from non-trivial global form

$$\begin{split} & \Gamma = 1 : \quad \ell_{1,2,3} \in Z \\ & \Gamma = Z_2 : \quad \ell_1 \in 2Z , \ \ell_{2,3} \in Z , \text{ and } \ell_1 + 2\ell_2 \in 4Z \\ & \Gamma = Z_3 : \quad \ell_1 \in 3Z , \ \ell_{2,3} \in Z , \text{ and } \ell_1 + 6\ell_3 \in 9Z \\ & \Gamma = Z_6 : \quad \ell_1 \in 6Z , \ \ell_{2,3} \in Z , \ \ell_1 + 2\ell_2 \in 4Z, \text{ and } \ell_1 + 6\ell_3 \in 9Z \end{split}$$

See also: [Y. Choi, M. Forslund, H. T. Lam, S-H. Shao, 2309.03937] [M. Reece, 2309.03939]

III. Axion-SM

$$S \supset \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

1. G, W, B = field strength of $SU(3)_C$, $SU(2)_L$, $U(1)_Y$, respectively.

2.
$$G_{SM} = \frac{SU(3)_C \times SU(2)_L \times U(1)_Y}{\Gamma}$$
, $\Gamma = 1, Z_2, Z_3, Z_6$

3. Quantization of Axion-Gauge Couplings from non-trivial global form

$$\begin{split} & \Gamma = 1 : \ell_{1,2,3} \in Z \\ & \Gamma = Z_2 : \ell_1 \in 2Z, \ \ell_{2,3} \in Z, \ \text{and} \ \ell_1 + 2\ell_2 \in 4Z \\ & \Gamma = Z_3 : \ell_1 \in 3Z, \ \ell_{2,3} \in Z, \ \text{and} \ \ell_1 + 6\ell_3 \in 9Z \\ & \Gamma = Z_6 : \ell_1 \in 6Z, \ \ell_{2,3} \in Z, \ \ell_1 + 2\ell_2 \in 4Z, \ \text{and} \ \ell_1 + 6\ell_3 \in 9 \end{split}$$

See also: [Y. Choi, M. Forslund, H. T. Lam, S-H. Shao, 2309.03937] [M. Reece, 2309.03939]

III. Axion-SM

$$S \supset \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

1. G, W, B = field strength of $SU(3)_C$, $SU(2)_L$, $U(1)_Y$, respectively.

2.
$$G_{SM} = \frac{SU(3)_C \times SU(2)_L \times U(1)_Y}{\Gamma}$$
, $\Gamma = 1, Z_2, Z_3, Z_6$

3. Quantization of Axion-Gauge Couplings from non-trivial global form

$$\begin{split} &\Gamma = 1 : \ell_{1,2,3} \in Z \\ &\Gamma = Z_2 : \ell_1 \in 2Z, \ \ell_{2,3} \in Z, \ \text{ and } \ \ell_1 + 2\ell_2 \in 4Z \\ &\Gamma = Z_3 : \ell_1 \in 3Z, \ \ell_{2,3} \in Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \\ &\Gamma = Z_6 : \ell_1 \in 6Z, \ \ell_{2,3} \in Z, \ \ell_1 + 2\ell_2 \in 4Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \end{split}$$

e.g. Experimental observation: $\ell_1 = 0$, $\ell_2 = 2$, $\ell_3 = 2$

III. Axion-SM

$$S \supset \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

1. G, W, B = field strength of $SU(3)_C$, $SU(2)_L$, $U(1)_Y$, respectively.

2.
$$G_{SM} = \frac{SU(3)_C \times SU(2)_L \times U(1)_Y}{\Gamma}$$
, $\Gamma = 1, Z_2, Z_3, Z_6$

3. Quantization of Axion-Gauge Couplings from non-trivial global form

$$\begin{split} & \Gamma = 1 : \ell_{1,2,3} \in Z \\ & \Gamma = Z_2 : \ell_1 \in 2Z, \ \ell_{2,3} \in Z, \ \text{ and } \ \ell_1 + 2\ell_2 \in 4Z \\ & \Gamma = Z_3 : \ell_1 \in 3Z, \ \ell_{2,3} \in Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \\ & \Gamma = Z_6 : \ell_1 \in 6Z, \ \ell_{2,3} \in Z, \ \ell_1 + 2\ell_2 \in 4Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \end{split}$$

e.g. Experimental observation: $\ell_1 = 0$, $\ell_2 = 2$, $\ell_3 = 2 \implies \Gamma = 1$ or Z_2

III. Axion-SM

$$S \supset \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

1. G, W, B = field strength of $SU(3)_C$, $SU(2)_L$, $U(1)_Y$, respectively.

2.
$$G_{SM} = \frac{SU(3)_C \times SU(2)_L \times U(1)_Y}{\Gamma}$$
, $\Gamma = 1, Z_2, Z_3, Z_6$

3. Quantization of Axion-Gauge Couplings from non-trivial global form

$$\begin{split} & \Gamma = 1 : \ell_{1,2,3} \in Z \\ & \Gamma = Z_2 : \ell_1 \in 2Z, \ \ell_{2,3} \in Z, \ \text{ and } \ \ell_1 + 2\ell_2 \in 4Z \\ & \Gamma = Z_3 : \ell_1 \in 3Z, \ \ell_{2,3} \in Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \\ & \Gamma = Z_6 : \ell_1 \in 6Z, \ \ell_{2,3} \in Z, \ \ell_1 + 2\ell_2 \in 4Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \end{split}$$

e.g. Experimental observation: $\ell_1 = 0$, $\ell_2 = 2$, $\ell_3 = 2 \Rightarrow \Gamma = 1$ or Z_2

$$\begin{split} &\Gamma = Z_6: SU(5), SO(10), E_6 \\ &\Gamma = Z_3: SU(4)_C \times SU(2)_L \times SU(2)_R \text{ [Pati-Salam]} \\ &\Gamma = Z_2: SU(3)_C \times SU(3)_L \times SU(3)_R \text{ [Trinification]} \end{split}$$

III. Axion-SM

$$S \supset \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

1. G, W, B = field strength of $SU(3)_C$, $SU(2)_L$, $U(1)_Y$, respectively.

2.
$$G_{SM} = \frac{SU(3)_C \times SU(2)_L \times U(1)_Y}{\Gamma}$$
, $\Gamma = 1, Z_2, Z_3, Z_6$

3. Quantization of Axion-Gauge Couplings from non-trivial global form

$$\begin{split} & \Gamma = 1 : \ell_{1,2,3} \in Z \\ & \Gamma = Z_2 : \ell_1 \in 2Z, \ \ell_{2,3} \in Z, \ \text{ and } \ \ell_1 + 2\ell_2 \in 4Z \\ & \Gamma = Z_3 : \ell_1 \in 3Z, \ \ell_{2,3} \in Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \\ & \Gamma = Z_6 : \ell_1 \in 6Z, \ \ell_{2,3} \in Z, \ \ell_1 + 2\ell_2 \in 4Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \end{split}$$

e.g. Experimental observation: $\ell_1 = 0$, $\ell_2 = 2$, $\ell_3 = 2 \Rightarrow \Gamma = 1$ or Z_2

$$\begin{split} & \Gamma = Z_6 : SU(5), SO(10), E_6 \\ & \Gamma = Z_3 : SU(4)_C \times SU(2)_L \times SU(2)_R \text{ [Pati Salam]} \\ & \Gamma = Z_2 : SU(3)_C \times SU(3)_L \times SU(3)_R \text{ [Trinification]} \end{split}$$

III. Axion-SM

$$S \supset \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

1. G, W, B = field strength of $SU(3)_C$, $SU(2)_L$, $U(1)_Y$, respectively.

2.
$$G_{SM} = \frac{SU(3)_C \times SU(2)_L \times U(1)_Y}{\Gamma}$$
, $\Gamma = 1, Z_2, Z_3, Z_6$

3. Quantization of Axion-Gauge Couplings from non-trivial global form

$$\begin{split} & \Gamma = 1 : \quad \ell_{1,2,3} \in Z \\ & \Gamma = Z_2 : \quad \ell_1 \in 2Z , \ \ell_{2,3} \in Z , \ \text{ and } \ \ell_1 + 2\ell_2 \in 4Z \\ & \Gamma = Z_3 : \quad \ell_1 \in 3Z , \ \ell_{2,3} \in Z , \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \\ & \Gamma = Z_6 : \quad \ell_1 \in 6Z , \ \ell_{2,3} \in Z , \ \ell_1 + 2\ell_2 \in 4Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \end{split}$$

4. Non-invertible Axion Shift Symmetry: e.g. $\Gamma = Z_3$

$$Z_K^I \subset Z_{\gcd(\ell_2,\ell_3)}^{NI} \approx Z_{\ell_3}^{NI} \quad \text{where} \quad K = \gcd\left(\frac{\ell_1}{3}, \ell_2, \ell_3, \frac{\ell_1 + 6\ell_3}{9}\right)$$

III. Axion-SM

3. Quantization of Axion-Gauge Couplings from non-trivial global form

$$\begin{split} & \Gamma = 1 : \ell_{1,2,3} \in Z \\ & \Gamma = Z_2 : \ell_1 \in 2Z, \ \ell_{2,3} \in Z, \ \text{ and } \ \ell_1 + 2\ell_2 \in 4Z \\ & \Gamma = Z_3 : \ell_1 \in 3Z, \ \ell_{2,3} \in Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \\ & \Gamma = Z_6 : \ell_1 \in 6Z, \ \ell_{2,3} \in Z, \ \ell_1 + 2\ell_2 \in 4Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \end{split}$$

4. Non-invertible Axion Shift Symmetry: e.g. $\Gamma = Z_3$ ($\ell_1 = 18, \ell_2 = 0, \ell_3 = 3$)

$$Z_{K=1}^{I} \qquad \text{where} \quad K = \gcd\left(\frac{\ell_1}{3}, \ell_3, \frac{\ell_1 + 6\ell_3}{9}\right)$$

III. Axion-SM

3. Quantization of Axion-Gauge Couplings from non-trivial global form

$$\begin{split} & \Gamma = 1 : \ell_{1,2,3} \in Z \\ & \Gamma = Z_2 : \ell_1 \in 2Z, \ \ell_{2,3} \in Z, \ \text{ and } \ \ell_1 + 2\ell_2 \in 4Z \\ & \Gamma = Z_3 : \ell_1 \in 3Z, \ \ell_{2,3} \in Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \\ & \Gamma = Z_6 : \ell_1 \in 6Z, \ \ell_{2,3} \in Z, \ \ell_1 + 2\ell_2 \in 4Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \end{split}$$

4. Non-invertible Axion Shift Symmetry: e.g. $\Gamma = Z_3$ ($\ell_1 = 18, \ell_2 = 0, \ell_3 = 3$)

$$Z_{K=1}^{I} \subset Z_{\ell_3=3}^{NI} \quad \text{where} \quad K = \gcd\left(\frac{\ell_1}{3}, \ell_3, \frac{\ell_1 + 6\ell_3}{9}\right)$$

Solving DW Problem by Non-Invertible Symmetry Breaking

I. Non-invertible Symmetry Breaking

$$U(\alpha, \Sigma_3) = e^{i\alpha Q(\Sigma_3)}$$
$$Q(\Sigma_3) = \int_{\Sigma_3} d^3 x J^0 = \int_{\Sigma_3} * J_1$$

I. Non-invertible Symmetry Breaking

$$U(\alpha, \Sigma_3) = e^{i\alpha Q(\Sigma_3)}$$
$$Q(\Sigma_3) = \int_{\Sigma_3} d^3 x J^0 = \int_{\Sigma_3} *J_1$$

$$U\left(\frac{2\pi}{k},\Sigma_3\right) \rightarrow D_k = U\left(\frac{2\pi}{k},\Sigma_3\right) \times \mathcal{A}^{N,p}(w)$$

I. Non-invertible Symmetry Breaking

$$U(\alpha, \Sigma_3) = e^{i\alpha Q(\Sigma_3)}$$
$$Q(\Sigma_3) = \int_{\Sigma_3} d^3 x J^0 = \int_{\Sigma_3} *J_1$$

$$U\left(\frac{2\pi}{k},\Sigma_3\right) \rightarrow D_k = U\left(\frac{2\pi}{k},\Sigma_3\right) \times \mathcal{A}^{N,p}(w)$$

$$D \times \overline{D} \sim \sum_{\Sigma_2 \subset \Sigma_3} \exp\left(\frac{2\pi i}{N} \oint_{\Sigma_2} w\right)$$

I. Non-invertible Symmetry Breaking

$$U(\alpha, \Sigma_3) = e^{i\alpha Q(\Sigma_3)}$$
$$Q(\Sigma_3) = \int_{\Sigma_3} d^3 x J^0 = \int_{\Sigma_3} *J_1$$

$$U\left(\frac{2\pi}{k},\Sigma_3\right) \rightarrow D_k = U\left(\frac{2\pi}{k},\Sigma_3\right) \times \mathcal{A}^{N,p}(w)$$

$$D \times \overline{D} \sim \sum_{\Sigma_2 \subset \Sigma_3} \exp\left(\frac{2\pi i}{N} \oint_{\Sigma_2} w\right)$$

II. Solution by Non-invertible Symmetry Breaking (Clay Cordova, Sungwoo Hong, Liantao Wang)

Consider axion coupled to $G_g = SU(N)/Z_N$

 $S \supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G)$ $G = \text{field strength of } G_g$

Enlarged symmetry: $Z_{K/N}$ (invertible) $\subset Z_K$ (non invertible)

II. Solution by Non-invertible Symmetry Breaking (Clay Cordova, Sungwoo Hong, Liantao Wang)

Consider axion coupled to $G_g = SU(N)/Z_N$

$$S \supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G)$$
 $G = \text{field strength of } G_g$

Enlarged symmetry: $Z_{K/N}$ (invertible) $\subset Z_K$ (non invertible)

 G_g (IR) Instanton effects $\Rightarrow Z_K^{NI}$ invariant V(a)

$$V(a) = \sum_{n=NZ} \alpha_n \cos \frac{Kn}{N} \frac{a}{f_a}$$
, $\alpha_n \propto e^{-\frac{GR}{g_{IR}^2}}$

 $8\pi^2n$

II. Solution by Non-invertible Symmetry Breaking (Clay Cordova, Sungwoo Hong, Liantao Wang)

Consider axion coupled to $G_g = SU(N)/Z_N$

$$S \supset \frac{iK}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) \qquad G = \text{field strength of } G_g$$

Enlarged symmetry: $Z_{K/N}$ (invertible) $\subset Z_K$ (non invertible)

 G_g (IR) Instanton effects $\Rightarrow Z_K^{NI}$ invariant V(a)

$$V(a) = \sum_{n=NZ} \alpha_n \cos \frac{Kn}{N} \frac{a}{f_a}$$
, $\alpha_n \propto e^{-\frac{GR}{g_{IR}^2}}$

 $G_g \to G_{uv} = SU(N^2 - 1) \supset G_g$ with $\pi_1(G_{uv}) = 0 \Rightarrow Z_K^{NI}$ violating $\Delta V(a)$

$$\Delta V(a) = \sum_{m=0}^{N-1} \beta_m \cos \frac{Km}{N} \frac{a}{f_a} , \quad \beta_m \propto e^{-\frac{8\pi^2 m}{g_{uv}^2}}$$

 $8\pi^2n$

II. Solution by Non-invertible Symmetry Breaking (Clay Cordova, Sungwoo Hong, Liantao Wang)

 $V(a) = V(a) + \Delta V(a)$ $V(a) = \sum_{n=NZ} \alpha_n \cos \frac{Kn}{N} \frac{a}{f_a} \quad \text{and} \quad \Delta V(a) = \sum_{m=0}^{N-1} \beta_m \cos \frac{Km}{N} \frac{a}{f_a}$ $(\widehat{G_{IR}} \text{ - instantons}) \quad (G_{UV}/G_{IR} \text{ - instantons})$

II. Solution by Non-invertible Symmetry Breaking

(Clay Cordova, Sungwoo Hong, Liantao Wang)

 $V(a) = V(a) + \Delta V(a)$ $V(a) = \sum_{n=NZ} \alpha_n \cos \frac{Kn}{N} \frac{a}{f_a}$

$$\Lambda_1 = \Lambda_2 = \Lambda_3$$

II. Solution by Non-invertible Symmetry Breaking (Clay Cordova, Sungwoo Hong, Liantao Wang)

 $V(a) = V(a) + \Delta V(a)$ $V(a) = \sum_{n=NZ} \alpha_n \cos \frac{Kn}{N} \frac{a}{f_a} \text{ and } \Delta V(a) = \sum_{m=0}^{N-1} \beta_m \cos \frac{Km}{N} \frac{a}{f_a}$ (G_{IIV} / G_{IR} - instantons) (G_{IIV} / G_{IR} - instantons) $(\widehat{G_{IR}}$ - instantons) $(G_{IIV}/G_{IR} - instantons)$

II. Solution by Non-invertible Symmetry Breaking (Clay Cordova, Sungwoo Hong, Liantao Wang)

 $V(a) = V(a) + \Delta V(a)$ $V(a) = \sum_{n=NZ} \alpha_n \cos \frac{Kn}{N} \frac{a}{f_a} \quad \text{and} \quad \Delta V(a) = \sum_{m=0}^{N-1} \beta_m \cos \frac{Km}{N} \frac{a}{f_a}$ $(\widehat{G_{IR}} \text{ - instantons}) \quad (G_{UV}/G_{IR} \text{ - instantons})$

II. Solution by Non-invertible Symmetry Breaking (Clay Cordova, Sungwoo Hong, Liantao Wang)

 $V(a) = V(a) + \Delta V(a)$ $V(a) = \sum_{n=NZ} \alpha_n \cos \frac{\kappa n}{N} \frac{a}{f_a}$ and $\Delta V(a) = \sum_{m=0}^{N-1} \beta_m \cos \frac{\kappa m}{N} \frac{a}{f_a}$ $(\widehat{G_{IR}}$ - instantons) $(G_{IIV}/G_{IR} - instantons)$ GW GW GW GW GW & GW GW

Thank You For Your Attention!

III. Constraints on GUT Theories

(Clay Cordova, Sungwoo Hong, Liantao Wang)

- 1. We found that the most well-known GUTs can not lift the vacuum degeneracy
 - $\Gamma = Z_6 : SU(5), SO(10), E_6$ $\Gamma = Z_3 : SU(4)_C \times SU(2)_L \times SU(2)_R \text{ [Pati-Salam]}$ $\Gamma = Z_2 : SU(3)_C \times SU(3)_L \times SU(3)_R \text{ [Trinification]}$

III. Constraints on GUT Theories

(Clay Cordova, Sungwoo Hong, Liantao Wang)

- 1. We found that the most well-known GUTs can not lift the vacuum degeneracy
 - $\Gamma = Z_6 : SU(5), SO(10), E_6$
 - $\Gamma = Z_3$: $SU(4)_C \times SU(2)_L \times SU(2)_R$ [Pati-Salam]
 - $\Gamma = Z_2$: $SU(3)_C \times SU(3)_L \times SU(3)_R$ [Trinification]

index of embedding in $G_{\rm UV} \rightarrow G_{\rm IR}$: 1-IR-instanton = n-UV-instanton

If $n \neq 1$, then $\exists G_{UV}$ -instantons not gauge-equvalent to G_{IR} -instanton "Small Instantons"

These small instantons can break non-invertible symmetries.

III. Constraints on GUT Theories

(Clay Cordova, Sungwoo Hong, Liantao Wang)

1. We found that the most well-known GUTs can not lift the vacuum degeneracy

 $\Gamma = Z_6 : SU(5), SO(10), E_6$

- $\Gamma = Z_3$: $SU(4)_C \times SU(2)_L \times SU(2)_R$ [Pati-Salam]
- $\Gamma = Z_2$: $SU(3)_C \times SU(3)_L \times SU(3)_R$ [Trinification]

index of embedding in $G_{\rm UV} \rightarrow G_{\rm IR}$: 1-IR-instanton = *n*-UV-instanton

If $n \neq 1$, then $\exists G_{UV}$ -instantons not gauge-equvalent to G_{IR} -instanton

"Small Instantons"

These small instantons can break non-invertible symmetries.

```
In all these cases, "index of embedding (n)" = 1
```

So, either anomaly coefficients " ℓ " in GUT should be $\ell_{UV} = 1$ or extra structures have to be supplemented to cure the DW problem

III. Constraints on GUT Theories

(Clay Cordova, Sungwoo Hong, Liantao Wang)

2. GUT constraints on Axion-Gauge Couplings

 $S_{SU(5)} \supset \frac{i\ell_{\rm uv}}{8\pi^2} \int \frac{a}{f_a} Tr(g \wedge g)$

III. Constraints on GUT Theories

2. GUT constraints on Axion-Gauge Couplings

$$\begin{split} S_{SU(5)} &\supset \frac{i\ell_{\rm uv}}{8\pi^2} \int \frac{a}{f_a} Tr(g \wedge g) \\ &\rightarrow \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B \end{split}$$

III. Constraints on GUT Theories

(Clay Cordova, Sungwoo Hong, Liantao Wang)

2. GUT constraints on Axion-Gauge Couplings

$$S_{SU(5)} \supset \frac{i\ell_{uv}}{8\pi^2} \int \frac{a}{f_a} Tr(g \wedge g)$$

$$\rightarrow \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

$$\ell_3 = \ell_{uv}, \ \ell_2 = \ell_{uv}, \ \ell_1 = 30\ell_{uv}$$

III. Constraints on GUT Theories

(Clay Cordova, Sungwoo Hong, Liantao Wang)

2. GUT constraints on Axion-Gauge Couplings

$$S_{SU(5)} \supset \frac{i\ell_{uv}}{8\pi^2} \int \frac{a}{f_a} Tr(g \wedge g)$$

$$\rightarrow \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

$$\ell_3 = \ell_{uv}, \ \ell_2 = \ell_{uv}, \ \ell_1 = \mathbf{30}\ell_{uv}$$

This is consistent with

$$\begin{split} & \Gamma = 1 : \quad \ell_{1,2,3} \in Z \\ & \Gamma = Z_2 : \quad \ell_1 \in 2Z , \ \ell_{2,3} \in Z , \ \text{ and } \ \ell_1 + 2\ell_2 \in 4Z \\ & \Gamma = Z_3 : \quad \ell_1 \in 3Z , \ \ell_{2,3} \in Z , \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \\ & \Gamma = Z_6 : \quad \ell_1 \in 6Z , \ \ell_{2,3} \in Z , \ \ell_1 + 2\ell_2 \in 4Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \end{split}$$

but provides more stringent constraints.

III. Constraints on GUT Theories (Clay Cordova, Sungwoo Hong, Liantao Wang)

2. GUT constraints on Axion-Gauge Couplings

 $SU(5) [Z_6]: \ \ell_3 = \ell_{uv}, \ \ell_2 = \ell_{uv}, \ \ell_1 = 30\ell_{uv}$ $SU(4)_C \times SU(2)_L \times SU(2)_R [Z_3]: \ \ell_3 = \ell_4, \ \ell_2 = \ell_L, \ \ell_1 = 12\ell_4 + 18\ell_R$ $SU(3)_C \times SU(3)_L \times SU(3)_R [Z_2]: \ \ell_3 = \ell_C, \ \ell_2 = \ell_L, \ \ell_1 = 6\ell_L + 24\ell_R$
Thank You For Your Attention!

Back-up-1

(Quantization of Axion-Gauge Couplings)

- 3. Quantization of Axion-Gauge Couplings from non-trivial global form
- $\Gamma = Z_3: \quad \ell_1 \in 3Z \text{ , } \ell_{2,3} \in Z \text{ , and } \ell_1 + 6\ell_3 \in 9Z$

3. Quantization of Axion-Gauge Couplings from non-trivial global form $\Gamma = Z_3: \quad \ell_1 \in 3Z, \ \ell_{2,3} \in Z, \text{ and } \ell_1 + 6\ell_3 \in 9Z$ (i) $G_{SM} = \frac{SU(3)_C \times U(1)_Y}{Z_3} \times SU(2)_L$

3. Quantization of Axion-Gauge Couplings from non-trivial global form $\Gamma = Z_3: \quad \ell_1 \in 3Z, \ \ell_{2,3} \in Z, \text{ and } \ell_1 + 6\ell_3 \in 9Z$ (i) $G_{SM} = \frac{SU(3)_C \times U(1)_Y}{Z_3} \times SU(2)_L$ (ii) Fractional Instanton of $\frac{SU(N)}{Z_N}: \quad \int \frac{Tr(G \wedge G)}{8\pi^2} \supset \frac{N-1}{N} \int \frac{w \wedge w}{2}$ (iii) $\oint_{\Sigma_2} \frac{F}{2\pi} = \frac{1}{3} \oint_{\Sigma_2} w(A_3) \implies \frac{F}{2\pi} = \frac{1}{3} w(A_3) + X, \ X \in H^2(M_4, Z)$

3. Quantization of Axion-Gauge Couplings from non-trivial global form $\Gamma = Z_3: \quad \ell_1 \in 3Z, \ \ell_{2,3} \in Z, \text{ and } \ell_1 + 6\ell_3 \in 9Z$ (i) $G_{SM} = \frac{SU(3)_C \times U(1)_Y}{Z_3} \times SU(2)_L$ (ii) Fractional Instanton of $\frac{SU(N)}{Z_N}: \quad \int \frac{Tr(G \wedge G)}{8\pi^2} \supset \frac{N-1}{N} \int \frac{w \wedge w}{2}$ (iii) $\oint_{\Sigma_2} \frac{F}{2\pi} = \frac{1}{3} \oint_{\Sigma_2} w(A_3) \Rightarrow \frac{F}{2\pi} = \frac{1}{3} w(A_3) + X, \ X \in H^2(M_4, Z)$ (iv) Then, the axion periodicity $a \sim a + 2\pi f_a$ is respected if

$$\frac{\ell_1}{2} \int \left(\frac{w(A_3)}{3} + X\right)^2 + \ell_2 n_2 + \ell_3 \left(n_3 + \frac{2}{3} \int \frac{w(A_3)^2}{2}\right) \in \mathbb{Z}$$

3. Quantization of Axion-Gauge Couplings from non-trivial global form $\Gamma = Z_3$: $\ell_1 \in 3Z$, $\ell_{2,3} \in Z$, and $\ell_1 + 6\ell_3 \in 9Z$ (i) $G_{SM} = \frac{SU(3)_C \times U(1)_Y}{Z_2} \times SU(2)_L$ (ii) Fractional Instanton of $\frac{SU(N)}{Z_N}$: $\int \frac{Tr(G \wedge G)}{8\pi^2} \supset \frac{N-1}{N} \int \frac{w \wedge w}{2}$ (iii) $\oint_{\Sigma_2} \frac{F}{2\pi} = \frac{1}{3} \oint_{\Sigma_2} w(A_3) \implies \frac{F}{2\pi} = \frac{1}{3} w(A_3) + X, \quad X \in H^2(M_4, Z)$ (iv) Then, the axion periodicity $a \sim a + 2\pi f_a$ is respected if $\frac{\ell_1}{2} \int \left(\frac{w(A_3)}{3} + X\right)^2 + \ell_2 n_2 + \ell_3 \left(n_3 + \frac{2}{3} \int \frac{w(A_3)^2}{2}\right) \in \mathbb{Z}$

(1) Consider first the case when $w(A_3)^2$ -term vanishes

$$\frac{\ell_1}{3} \int w(A_3) \wedge X + \ell_2 n_2 + \ell_3 n_3 \in Z \implies \ell_1 \in 3Z, \ \ell_2, \ell_3 \in Z$$

3. Quantization of Axion-Gauge Couplings from non-trivial global form $\Gamma = Z_3$: $\ell_1 \in 3Z$, $\ell_{2,3} \in Z$, and $\ell_1 + 6\ell_3 \in 9Z$ (i) $G_{SM} = \frac{SU(3)_C \times U(1)_Y}{Z_2} \times SU(2)_L$ (ii) Fractional Instanton of $\frac{SU(N)}{Z_N}$: $\int \frac{Tr(G \wedge G)}{8\pi^2} \supset \frac{N-1}{N} \int \frac{w \wedge w}{2}$ (iii) $\oint_{\Sigma_2} \frac{F}{2\pi} = \frac{1}{3} \oint_{\Sigma_2} w(A_3) \implies \frac{F}{2\pi} = \frac{1}{3} w(A_3) + X, \quad X \in H^2(M_4, Z)$ (iv) Then, the axion periodicity $a \sim a + 2\pi f_a$ is respected if $\frac{\ell_1}{2} \int \left(\frac{w(A_3)}{3} + X\right)^2 + \ell_2 n_2 + \ell_3 \left(n_3 + \frac{2}{3} \int \frac{w(A_3)^2}{2}\right) \in \mathbb{Z}$ (1) Consider first the case when $w(A_3)^2$ -term vanishes

$$\frac{\ell_1}{3} \int w(A_3) \wedge X + \ell_2 n_2 + \ell_3 n_3 \in Z \implies \ell_1 \in 3Z, \ \ell_2, \ell_3 \in Z$$

$$(2) w(A_3)^2: \ \left(\frac{\ell_1}{9} + \frac{2\ell_3}{3}\right) \int \frac{w(A_3)^2}{2} \in Z \implies \ell_1 + 6\ell_3 \in 9Z$$

III. Axion-SM

$$S \supset \frac{i\ell_3}{8\pi^2} \int \frac{a}{f_a} Tr(G \wedge G) + \frac{i\ell_2}{8\pi^2} \int \frac{a}{f_a} Tr(W \wedge W) + \frac{i\ell_1}{8\pi^2} \int \frac{a}{f_a} B \wedge B$$

1. G, W, B = field strength of $SU(3)_C$, $SU(2)_L$, $U(1)_Y$, respectively.

2.
$$G_{SM} = \frac{SU(3)_C \times SU(2)_L \times U(1)_Y}{\Gamma}$$
, $\Gamma = 1, Z_2, Z_3, Z_6$

3. Quantization of Axion-Gauge Couplings from non-trivial global form

$$\begin{split} & \Gamma = 1 : \quad \ell_{1,2,3} \in Z \\ & \Gamma = Z_2 : \quad \ell_1 \in 2Z , \ \ell_{2,3} \in Z , \ \text{ and } \ \ell_1 + 2\ell_2 \in 4Z \\ & \Gamma = Z_3 : \quad \ell_1 \in 3Z , \ \ell_{2,3} \in Z , \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \\ & \Gamma = Z_6 : \quad \ell_1 \in 6Z , \ \ell_{2,3} \in Z , \ \ell_1 + 2\ell_2 \in 4Z, \ \text{ and } \ \ell_1 + 6\ell_3 \in 9Z \end{split}$$

Back-up-2 (Non-invertible Axion Shift Symmetry)

4. Non-invertible Axion Shift Symmetry: e.g. $\Gamma = Z_3$

$$Z_K^I \subset Z_{\gcd(\ell_2,\ell_3)}^{NI} \approx Z_{\ell_3}^{NI} \quad \text{where} \quad K = \gcd\left(\frac{\ell_1}{3}, \ell_2, \ell_3, \frac{\ell_1 + 6\ell_3}{9}\right)$$

Under $a \rightarrow a + 2\pi f_a/z$ (recall: $F/2\pi = w/3 + X$)

$$\delta S = \frac{2\pi i}{z} \frac{\ell_1}{2} \int \left(\frac{w}{3} + X\right)^2 + \frac{2\pi i}{z} \ell_2 n_2 + \frac{2\pi i}{z} \ell_3 \left(n_3 + \frac{2}{3} \int \frac{w^2}{2}\right) \in 2\pi i Z$$

4. Non-invertible Axion Shift Symmetry: e.g. $\Gamma = Z_3$

$$Z_K^I \subset Z_{\gcd(\ell_2,\ell_3)}^{NI} \approx Z_{\ell_3}^{NI} \quad \text{where} \quad K = \gcd\left(\frac{\ell_1}{3}, \ell_2, \ell_3, \frac{\ell_1 + 6\ell_3}{9}\right)$$

Under $a \rightarrow a + 2\pi f_a/z$ (recall: $F/2\pi = w/3 + X$)

$$\delta S = \frac{2\pi i}{z} \frac{\ell_1}{2} \int \left(\frac{w}{3} + X\right)^2 + \frac{2\pi i}{z} \ell_2 n_2 + \frac{2\pi i}{z} \ell_3 \left(n_3 + \frac{2}{3} \int \frac{w^2}{2}\right) \in 2\pi i Z$$

(1) For $w^2 = 0$: $\frac{\ell_1/3}{z}$, $\frac{\ell_2}{z}$, $\frac{\ell_3}{z} \in Z$

4. Non-invertible Axion Shift Symmetry: e.g. $\Gamma = Z_3$

$$Z_K^I \subset Z_{\gcd(\ell_2,\ell_3)}^{NI} \approx Z_{\ell_3}^{NI} \quad \text{where} \quad K = \gcd\left(\frac{\ell_1}{3}, \ell_2, \ell_3, \frac{\ell_1 + 6\ell_3}{9}\right)$$

Under $a \rightarrow a + 2\pi f_a/z$ (recall: $F/2\pi = w/3 + X$)

$$\delta S = \frac{2\pi i}{z} \frac{\ell_1}{2} \int \left(\frac{w}{3} + X\right)^2 + \frac{2\pi i}{z} \ell_2 n_2 + \frac{2\pi i}{z} \ell_3 \left(n_3 + \frac{2}{3} \int \frac{w^2}{2}\right) \in 2\pi i Z$$

(1) For
$$w^2 = 0$$
: $\frac{\ell_1/3}{z}$, $\frac{\ell_2}{z}$, $\frac{\ell_3}{z} \in Z$

(2) From w^2 -term : $\frac{\ell_1 + 6\ell_3}{9z} \in Z$

4. Non-invertible Axion Shift Symmetry: e.g. $\Gamma = Z_3$

$$Z_K^I \subset Z_{\gcd(\ell_2,\ell_3)}^{NI} \approx Z_{\ell_3}^{NI} \quad \text{where} \quad K = \gcd\left(\frac{\ell_1}{3}, \ell_2, \ell_3, \frac{\ell_1 + 6\ell_3}{9}\right)$$

Under $a \rightarrow a + 2\pi f_a/z$ (recall: $F/2\pi = w/3 + X$)

$$\delta S = \frac{2\pi i}{z} \frac{\ell_1}{2} \int \left(\frac{w}{3} + X\right)^2 + \frac{2\pi i}{z} \ell_2 n_2 + \frac{2\pi i}{z} \ell_3 \left(n_3 + \frac{2}{3} \int \frac{w^2}{2}\right) \in 2\pi i Z$$

(1) For
$$w^2 = 0$$
 : $\frac{\ell_1/3}{z}$, $\frac{\ell_2}{z}$, $\frac{\ell_3}{z} \in Z$

(2) From
$$w^2$$
-term : $\frac{\ell_1 + 6\ell_3}{9z} \in Z$

 \Rightarrow Invertible Symmetry: $Z_{\text{gcd}(\ell_1/3,\ell_2,\ell_3,(\ell_1+6\ell_3)/9)}$

4. Non-invertible Axion Shift Symmetry: e.g. $\Gamma = Z_3$

$$Z_K^I \subset Z_{\gcd(\ell_2,\ell_3)}^{NI} \approx Z_{\ell_3}^{NI} \quad \text{where} \quad K = \gcd\left(\frac{\ell_1}{3}, \ell_2, \ell_3, \frac{\ell_1 + 6\ell_3}{9}\right)$$

Under $a \rightarrow a + 2\pi f_a/z$ (recall: $F/2\pi = w/3 + X$)

$$\delta S = \frac{2\pi i}{z} \frac{\ell_1}{2} \int \left(\frac{w}{3} + X\right)^2 + \frac{2\pi i}{z} \ell_2 n_2 + \frac{2\pi i}{z} \ell_3 \left(n_3 + \frac{2}{3} \int \frac{w^2}{2}\right) \in 2\pi i Z$$

(1) For
$$w^2 = 0$$
 : $\frac{\ell_1/3}{z}$, $\frac{\ell_2}{z}$, $\frac{\ell_3}{z} \in Z$

(2) From
$$w^2$$
-term : $\frac{\ell_1 + 6\ell_3}{9z} \in Z$

$$\Rightarrow$$
 Invertible Symmetry: $Z_{\text{gcd}(\ell_1/3,\ell_2,\ell_3,(\ell_1+6\ell_3)/9)}$

(3) Regular Z-valued instanton effects: $Z_{\text{gcd}(\ell_2,\ell_3)} \approx Z_{\ell_3}$