Gauged Global Strings

Wei Xue

BSM in Particle Physics and Cosmology
arXiv: 2311.07639

Outline

- Introduction
global strings and gauge strings
- Gauge $\mathrm{U}(1)_{\mathrm{Z}} \times$ global $\mathrm{U}(1)_{\mathrm{PQ}}$ and string solutions
- Cosmological implication

1) rich string structure
2) opening up QCD axion window
3) gauge string radiating axions?

- Conclusion

Global strings

Global strings

- global $\mathrm{U}(1)$ symmetry breaking $\langle\Phi\rangle=\frac{1}{\sqrt{2}} f_{a}$

Global strings

- global $\mathrm{U}(1)$ symmetry breaking $\langle\Phi\rangle=\frac{1}{\sqrt{2}} f_{a}$
- global string solution

$$
\Phi(r, \theta)=\frac{1}{\sqrt{2}} f_{a} \mathrm{e}^{i \theta}, \quad r \rightarrow \infty
$$

Global strings

- global $\mathrm{U}(1)$ symmetry breaking $\langle\Phi\rangle=\frac{1}{\sqrt{2}} f_{a}$
- global string solution

$$
\Phi(r, \theta)=\frac{1}{\sqrt{2}} f_{a} \mathrm{e}^{i \theta}, \quad r \rightarrow \infty
$$

- tension

$$
\text { gradient term } \mu \simeq 2 \pi \int_{m^{-1}}^{L} \mathrm{~d} r \frac{1}{r}\left|\partial_{\theta} \Phi(r, \theta)\right|^{2}=\pi f_{a}^{2} \ln (m L)
$$

Gauge strings

Gauge strings

- gauge string solution

$$
\begin{array}{ll}
\Phi(r, \theta)=\frac{1}{\sqrt{2}} f_{a} \mathrm{e}^{i \theta} & \\
Z_{\mu}=\frac{1}{e} \partial_{\mu} \theta & r \rightarrow \infty
\end{array}
$$

Gauge strings

- gauge string solution

$$
\begin{array}{ll}
\Phi(r, \theta)=\frac{1}{\sqrt{2}} f_{a} \mathrm{e}^{i \theta} & \\
Z_{\mu}=\frac{1}{e} \partial_{\mu} \theta & r \rightarrow \infty
\end{array}
$$

- tension

$$
\begin{aligned}
& \text { gradient term } \mu \simeq 2 \pi \int_{m^{-1}}^{L} \mathrm{~d} r\left|\left(\frac{1}{r} \partial_{\theta}-i e Z_{\mu}\right) \Phi(r, \theta)\right|^{2}=0 \\
& \text { core } \mu \simeq \mathcal{O}(1) \pi f_{a}^{2}
\end{aligned}
$$

Motivation of cosmic strings

Motivation of cosmic strings

- theoretically interesting classical field solutions

Motivation of cosmic strings

- theoretically interesting classical field solutions

- phenomenological rich cosmology (Kibble mechanism) axion dark matter abundance new observables (CMB, ...)
$\mathrm{U}(1)_{\mathrm{Z}} \times \mathrm{U}(1)_{\mathrm{PQ}}$

$\mathrm{U}(1)_{\mathrm{Z}} \times \mathrm{U}(1)_{\mathrm{PQ}}$

- Lagrangian

$$
\begin{aligned}
\mathscr{L}= & -\frac{1}{4} Z_{\mu \nu} Z^{\mu \nu}+D_{\mu} \Phi_{1}^{\dagger} D^{\mu} \Phi_{1}-\frac{\lambda_{1}}{4}\left(\left|\Phi_{1}\right|^{2}-\frac{v_{1}^{2}}{2}\right)^{2}+D_{\mu} \Phi_{2}^{\dagger} D^{\mu} \Phi_{2}-\frac{\lambda_{2}}{4}\left(\left|\Phi_{2}\right|^{2}-\frac{v_{2}^{2}}{2}\right)^{2} \\
& D_{\mu}=\partial_{\mu}-i e Z_{\mu} \\
& \text { assume that } v_{1}>v_{2}
\end{aligned}
$$

$\mathrm{U}(1)_{\mathrm{Z}} \times \mathrm{U}(1)_{\mathrm{PQ}}$

- Lagrangian
$\mathscr{L}=-\frac{1}{4} Z_{\mu \nu} Z^{\mu \nu}+D_{\mu} \Phi_{1}^{\dagger} D^{\mu} \Phi_{1}-\frac{\lambda_{1}}{4}\left(\left|\Phi_{1}\right|^{2}-\frac{v_{1}^{2}}{2}\right)^{2}+D_{\mu} \Phi_{2}^{\dagger} D^{\mu} \Phi_{2}-\frac{\lambda_{2}}{4}\left(\left|\Phi_{2}\right|^{2}-\frac{v_{2}^{2}}{2}\right)^{2}$
$D_{\mu}=\partial_{\mu}-i e Z_{\mu}$
assume that $v_{1}>v_{2}$
- $\Phi_{1} \rightarrow \Phi_{1} e^{i \alpha_{z}+i \alpha_{\mathrm{PQ}}}$

$$
\Phi_{2} \rightarrow \Phi_{2} e^{i \alpha_{\mathrm{Z}}-i \alpha_{\mathrm{PQ}}}
$$

Vacuum and fluctuations

Vacuum and fluctuations

- cross section of vacuum manifold

Vacuum and fluctuations

- cross section of vacuum manifold

Vacuum and fluctuations

- cross section of vacuum manifold

Vacuum and fluctuations

- cross section of vacuum manifold

- axion direction is orthogonal to the longitudinal mode of Z^{μ}

$$
a(x)=v_{a} \alpha_{\mathrm{PQ}}, \quad v_{a}=\frac{2 v_{1} v_{2}}{\sqrt{v_{1}^{2}+v_{2}^{2}}} \sim 2 v_{2}
$$

Integrating with QCD axion model

Integrating with QCD axion model

- KSVZ-like model
introduce Q_{L} and Q_{R} with color charge and $\mathrm{U}(1)_{\mathrm{PQ}}$ charge

$$
\mathscr{L}=-\frac{y}{\Lambda}\left(\Phi_{1} \Phi_{2}^{*} \bar{Q}_{L} Q_{R}+h . c .\right)
$$

Integrating with QCD axion model

- KSVZ-like model introduce Q_{L} and Q_{R} with color charge and $\mathrm{U}(1)_{\mathrm{PQ}}$ charge

$$
\begin{aligned}
& \mathscr{L}=-\frac{y}{\Lambda}\left(\Phi_{1} \Phi_{2}^{*} \bar{Q}_{L} Q_{R}+\text { h.c. }\right) \\
& \mathscr{L} \supset \frac{g_{s}^{2}}{32 \pi^{2}} \frac{a}{f_{a}} G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a} \quad \boldsymbol{a}=-\cdots \underbrace{\mathrm{g}}_{-000} \mathrm{~g}
\end{aligned}
$$

Integrating with QCD axion model

- KSVZ-like model introduce Q_{L} and Q_{R} with color charge and $\mathrm{U}(1)_{\mathrm{PQ}}$ charge

$$
\begin{aligned}
& \mathscr{L}=-\frac{y}{\Lambda}\left(\Phi_{1} \Phi_{2}^{*} \bar{Q}_{L} Q_{R}+h . c .\right) \\
& \mathscr{L} \supset \frac{g_{s}^{2}}{32 \pi^{2}} \frac{a}{f_{a}} G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a} \quad a \quad \mathrm{a}
\end{aligned}
$$

- Barr and Seckel's model
$Q_{1 L} Q_{1 R} Q_{2 L} Q_{2 R}$
color, $\mathrm{U}(1)_{\mathrm{Z}}$ and $\mathrm{U}(1)_{\mathrm{PQ}}$ charges

$$
\mathscr{L}=\Phi_{1} \bar{Q}_{1 L} Q_{1 R}+\Phi_{2} \bar{Q}_{2 L} Q_{2 R}+h . c .
$$

String Solutions

$(1,0)$ strings

$(1,0)$ strings

- $(1,0)$ string
$\Phi_{1}=\frac{1}{\sqrt{2}} v_{1} e^{i \theta}, \quad \Phi_{2}=\frac{1}{\sqrt{2}} v_{2}, \quad Z_{\mu}=c \partial_{\mu} \theta, \quad r \rightarrow \infty$

$(1,0)$ strings

- $(1,0)$ string

$$
\Phi_{1}=\frac{1}{\sqrt{2}} v_{1} e^{i \theta}, \quad \Phi_{2}=\frac{1}{\sqrt{2}} v_{2}, \quad Z_{\mu}=c \partial_{\mu} \theta, \quad r \rightarrow \infty
$$

- gradient energy

$$
\begin{aligned}
\mu_{k,(1,0)} & =\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{\delta}^{L} \mathrm{~d} r r\left(\left|\left(\frac{1}{r} \partial_{\theta}-i e Z_{\theta}\right) \Phi_{1}\right|^{2}+\left|\left(-i e Z_{\theta}\right) \Phi_{2}\right|^{2}\right) \\
& =\pi \ln \left(\frac{L}{\delta}\right)\left[v_{1}^{2}(1-e c)^{2}+v_{2}^{2}(e c)^{2}\right]
\end{aligned}
$$

$(1,0)$ strings

- $(1,0)$ string

$$
\Phi_{1}=\frac{1}{\sqrt{2}} v_{1} e^{i \theta}, \quad \Phi_{2}=\frac{1}{\sqrt{2}} v_{2}, \quad Z_{\mu}=c \partial_{\mu} \theta, \quad r \rightarrow \infty
$$

- gradient energy

$$
\begin{aligned}
\mu_{k,(1,0)} & =\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{\delta}^{L} \mathrm{~d} r r\left(\left|\left(\frac{1}{r} \partial_{\theta}-i e Z_{\theta}\right) \Phi_{1}\right|^{2}+\left|\left(-i e Z_{\theta}\right) \Phi_{2}\right|^{2}\right) \\
& =\pi \ln \left(\frac{L}{\delta}\right)\left[v_{1}^{2}(1-e c)^{2}+v_{2}^{2}(e c)^{2}\right]
\end{aligned}
$$

- outside core (minimize it by varying c)

$$
\mu_{k,(1,0)}=\pi \frac{v_{1}^{2} v_{2}^{2}}{v_{1}^{2}+v_{2}^{2}} \ln \left(\frac{L}{\delta}\right)=\pi f_{a}^{2} \ln \left(\frac{L}{\delta}\right)
$$

$(0,1)$ strings

- $(0,1)$ string

$$
\Phi_{1}=\frac{1}{\sqrt{2}} v_{1}, \quad \Phi_{2}=\frac{1}{\sqrt{2}} v_{2} e^{i \theta}, \quad Z_{\mu}=c \partial_{\mu} \theta, \quad r \rightarrow \infty
$$

$(0,1)$ strings

- $(0,1)$ string

$$
\Phi_{1}=\frac{1}{\sqrt{2}} v_{1}, \quad \Phi_{2}=\frac{1}{\sqrt{2}} v_{2} e^{i \theta}, \quad Z_{\mu}=c \partial_{\mu} \theta, \quad r \rightarrow \infty
$$

- gradient energy of $(0,1)=$ gradient energy of $(1,0)$

$$
\mu_{k,(0,1)}=\mu_{k,(1,0)}
$$

$(0,1)$ strings

- $(0,1)$ string

$$
\Phi_{1}=\frac{1}{\sqrt{2}} v_{1}, \quad \Phi_{2}=\frac{1}{\sqrt{2}} v_{2} e^{i \theta}, \quad Z_{\mu}=c \partial_{\mu} \theta, \quad r \rightarrow \infty
$$

- gradient energy of $(0,1)=$ gradient energy of $(1,0)$

$$
\mu_{k,(0,1)}=\mu_{k,(1,0)}
$$

- outside core region
$(1,0)$ string is equivalent to $(0,-1)$ string through a gauge transformation

$$
\left(\Phi_{1}=\frac{1}{\sqrt{2}} v_{1} e^{i \theta}, \Phi_{2}=\frac{1}{\sqrt{2}} v_{2}\right) \xrightarrow{\alpha_{z} \rightarrow \alpha_{z}-\theta}\left(\Phi_{1}=\frac{1}{\sqrt{2}} v_{1}, \Phi_{2}=\frac{1}{\sqrt{2}} v_{2} e^{-i \theta}\right)
$$

$(0,1)$ strings

- $(0,1)$ string

$$
\Phi_{1}=\frac{1}{\sqrt{2}} v_{1}, \quad \Phi_{2}=\frac{1}{\sqrt{2}} v_{2} e^{i \theta}, \quad Z_{\mu}=c \partial_{\mu} \theta, \quad r \rightarrow \infty
$$

- gradient energy of $(0,1)=$ gradient energy of $(1,0)$

$$
\mu_{k,(0,1)}=\mu_{k,(1,0)}
$$

- outside core region
$(1,0)$ string is equivalent to $(0,-1)$ string through a gauge transformation

$$
\left(\Phi_{1}=\frac{1}{\sqrt{2}} v_{1} e^{i \theta}, \Phi_{2}=\frac{1}{\sqrt{2}} v_{2}\right) \xrightarrow{\alpha_{z} \rightarrow \alpha_{z}-\theta}\left(\Phi_{1}=\frac{1}{\sqrt{2}} v_{1}, \Phi_{2}=\frac{1}{\sqrt{2}} v_{2} e^{-i \theta}\right)
$$

- outside core region
$(1,0)$ can be viewed as an anti-string of $(0,1)$

$(1,0)+(0,1) \rightarrow$?

$(1,0)+(0,1) \rightarrow ?$

$(1,1)$ strings

$(1,1)$ strings

- gradient energy of (1,1) string

$$
\begin{aligned}
& \Phi_{1}=\frac{1}{\sqrt{2}} v_{1} e^{i \theta}, \quad \Phi_{2}=\frac{1}{\sqrt{2}} v_{2} e^{i \theta}, \quad Z_{\mu}=c \partial_{\mu} \theta, \quad r \rightarrow \infty \\
& \mu_{k,(1,1)}=\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{\delta}^{L} \mathrm{~d} r r\left(\left|\left(\frac{1}{r} \partial_{\theta}-i e Z_{\theta}\right) \Phi_{1}\right|^{2}+\left|\left(\frac{1}{r} \partial_{\theta}-i e Z_{\theta}\right) \Phi_{2}\right|^{2}\right)
\end{aligned}
$$

$(1,1)$ strings

- gradient energy of (1,1) string

$$
\begin{aligned}
& \Phi_{1}=\frac{1}{\sqrt{2}} v_{1} e^{i \theta}, \quad \Phi_{2}=\frac{1}{\sqrt{2}} v_{2} e^{i \theta}, \quad Z_{\mu}=c \partial_{\mu} \theta, \quad r \rightarrow \infty \\
& \mu_{k,(1,1)}=\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{\delta}^{L} \mathrm{~d} r r\left(\left|\left(\frac{1}{r} \partial_{\theta}-i e Z_{\theta}\right) \Phi_{1}\right|^{2}+\left|\left(\frac{1}{r} \partial_{\theta}-i e Z_{\theta}\right) \Phi_{2}\right|^{2}\right)
\end{aligned}
$$

- the profile of Z_{θ} can simultaneously cancel the gradient energy of Φ_{1} and Φ_{2}

$$
\mu_{k,(1,1)}=0
$$

$(1,1)$ strings

- gradient energy of (1,1) string

$$
\begin{aligned}
& \Phi_{1}=\frac{1}{\sqrt{2}} v_{1} e^{i \theta}, \quad \Phi_{2}=\frac{1}{\sqrt{2}} v_{2} e^{i \theta}, \quad Z_{\mu}=c \partial_{\mu} \theta, \quad r \rightarrow \infty \\
& \mu_{k,(1,1)}=\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{\delta}^{L} \mathrm{~d} r r\left(\left|\left(\frac{1}{r} \partial_{\theta}-i e Z_{\theta}\right) \Phi_{1}\right|^{2}+\left|\left(\frac{1}{r} \partial_{\theta}-i e Z_{\theta}\right) \Phi_{2}\right|^{2}\right)
\end{aligned}
$$

- the profile of Z_{θ} can simultaneously cancel the gradient energy of Φ_{1} and Φ_{2}

$$
\mu_{k,(1,1)}=0
$$

- $(1,1)$ gauge string
$(1,0)$ and $(0,1)$ global strings

The full tension

The full tension

- magnetic self-energy, scalar potential energy, and gradient energy

The full tension

- magnetic self-energy, scalar potential energy, and gradient energy
- $(1,0)$ string

$$
\mu_{(1,0)} \simeq \pi v_{1}^{2}+\pi v_{1}^{2} \ln \left(\frac{m_{1}}{m_{Z}}\right)+\pi v_{2}^{2} \ln \left(\frac{m_{Z} L}{2}\right)
$$

$(0,1)$ string

$$
\mu_{(0,1)} \simeq \frac{\pi}{2} v_{2}^{2}+\pi v_{2}^{2} \ln \left(\frac{m_{2}}{m_{Z}}\right)+\pi v_{2} \ln \left(\frac{m_{Z} L}{2}\right)
$$

$(1,1)$ string

$$
\mu_{(1,1)}=\pi v_{1}^{2}+\pi v_{1}^{2} \ln \left(\frac{m_{1}}{m_{Z}}\right)+0
$$

The full tension

- magnetic self-energy, scalar potential energy, and gradient energy
- $(1,0)$ string

$$
\mu_{(1,0)} \simeq \pi v_{1}^{2}+\pi v_{1}^{2} \ln \left(\frac{m_{1}}{m_{Z}}\right)+\pi v_{2}^{2} \ln \left(\frac{m_{Z} L}{2}\right)
$$

$(0,1)$ string

$$
\begin{aligned}
& \mu_{(0,1)} \simeq \frac{\pi}{2} v_{2}^{2}+\pi v_{2}^{2} \ln \left(\frac{m_{2}}{m_{Z}}\right)+\pi v_{2} \ln \left(\frac{m_{Z} L}{2}\right) \\
& (1,1) \text { string }
\end{aligned}
$$

$$
\mu_{(1,1)}=\pi v_{1}^{2}+\pi v_{1}^{2} \ln \left(\frac{m_{1}}{m_{Z}}\right)+0
$$

- heavy core of $(1,0)$ string $\quad \mu_{(1,0)}>\mu_{(0,1)}$

The full tension

- magnetic self-energy, scalar potential energy, and gradient energy
- $(1,0)$ string

$$
\mu_{(1,0)} \simeq \pi v_{1}^{2}+\pi v_{1}^{2} \ln \left(\frac{m_{1}}{m_{Z}}\right)+\pi v_{2}^{2} \ln \left(\frac{m_{Z} L}{2}\right)
$$

$(0,1)$ string

$$
\begin{aligned}
& \mu_{(0,1)} \simeq \frac{\pi}{2} v_{2}^{2}+\pi v_{2}^{2} \ln \left(\frac{m_{2}}{m_{Z}}\right)+\pi v_{2} \ln \left(\frac{m_{Z} L}{2}\right) \\
& (1,1) \text { string }
\end{aligned}
$$

$$
\mu_{(1,1)}=\pi v_{1}^{2}+\pi v_{1}^{2} \ln \left(\frac{m_{1}}{m_{Z}}\right)+0
$$

- heavy core of $(1,0)$ string $\quad \mu_{(1,0)}>\mu_{(0,1)}$
- binding energy of $(1,1)$ string

$$
\mu_{(1,0)}+\mu_{(0,1)}-\mu_{(1,1)}=\pi v_{2}^{2}\left[2 \ln \left(\frac{m_{Z} L}{2}\right)-1\right]
$$

Cosmological Implication

formation

evolution

radiation

First phase transition and string formation

First phase transition and string formation

- consider $v_{1} \gg v_{2}$
first phase transition

$$
\left\langle\Phi_{1}(x)\right\rangle=\frac{v_{1}}{\sqrt{2}} \text { and }\left\langle\Phi_{2}(x)\right\rangle=0
$$

First phase transition and string formation

- consider $v_{1} \gg v_{2}$
first phase transition

$$
\left\langle\Phi_{1}(x)\right\rangle=\frac{v_{1}}{\sqrt{2}} \text { and }\left\langle\Phi_{2}(x)\right\rangle=0
$$

- string formation, the correlation length $\sim 1 / v_{1}$

First phase transition and string formation

- consider $v_{1} \gg v_{2}$
first phase transition

$$
\left\langle\Phi_{1}(x)\right\rangle=\frac{v_{1}}{\sqrt{2}} \text { and }\left\langle\Phi_{2}(x)\right\rangle=0
$$

- string formation, the correlation length $\sim 1 / v_{1}$
- $\mathrm{U}(1)$ gauge strings form (1, n) string

Second phase transition

Second phase transition

- second phase transition

$$
\left\langle\Phi_{1}(x)\right\rangle=\frac{v_{1}}{\sqrt{2}} \text { and }\left\langle\Phi_{2}(x)\right\rangle=\frac{v_{2}}{\sqrt{2}}
$$

Second phase transition

- second phase transition

$$
\left\langle\Phi_{1}(x)\right\rangle=\frac{v_{1}}{\sqrt{2}} \text { and }\left\langle\Phi_{2}(x)\right\rangle=\frac{v_{2}}{\sqrt{2}}
$$

- string formation, the correlation length $\sim 1 / v_{2}$

Second phase transition

- second phase transition

$$
\left\langle\Phi_{1}(x)\right\rangle=\frac{v_{1}}{\sqrt{2}} \text { and }\left\langle\Phi_{2}(x)\right\rangle=\frac{v_{2}}{\sqrt{2}}
$$

- string formation, the correlation length $\sim 1 / \nu_{2}$
- $(0,1)$ strings form via Kibble mechanism

$(1, \mathrm{n})$ string in the second phase transition

- $(1, \mathrm{n})$ string \rightarrow ?

$(1, \mathrm{n})$ string in the second phase transition

- $(1, \mathrm{n})$ string \rightarrow ?

$(1, \mathrm{n})$ string in the second phase transition

$$
0 / 0
$$

$(1, \mathrm{n})$ string in the second phase transition

- $(1, \mathrm{n})$ string \rightarrow ?

$(1, \mathrm{n})$ string in the second phase transition

- $(1, \mathrm{n})$ string \rightarrow ?

$(1, \mathrm{n})$ string in the second phase transition

- $(1, n)$ string $\rightarrow(1,0)$ string to minimize the energy

String network evolution

- $(1,0)$ string encounters $(1,0)$ string

String network evolution

- $(1,0)$ string encounters $(1,0)$ string

String network evolution

- $(1,0)$ string encounters $(1,0)$ string

String network evolution

- $(1,0)$ string encounters $(0,1)$ string $\rightarrow(1,1)$ bound state Y-junctions

String network evolution

- $(1,0)$ string encounters $(0,1)$ string $\rightarrow(1,1)$ bound state Y-junctions

String network evolution

- $(1,0)$ string encounters $(0,1)$ string $\rightarrow(1,1)$ bound state Y-junctions

String network evolution

- $(1,0)$ string encounters $(0,1)$ string $\rightarrow(1,1)$ bound state Y-junctions

- Other works on simulations of Y -junctions found 1) some fraction of Y -junctions remain

2) scaling solution

Urrestilla, Vilenkin JHEP(2008)
Rajentie, Skellariodou, Stoica, JCAP (2007)
Copeland, Saffin JHEP (2005)

QCD axion

QCD axion

- dark matter abundance
misalignment + string radiation + domain wall collapse

$$
\rho_{a, 0}=\rho_{a}^{\mathrm{vac}}\left(t_{0}\right)+m_{a} n_{a}^{\mathrm{str}}\left(t_{0}\right)+m_{a} n_{a}^{\mathrm{DW}}\left(t_{0}\right)
$$

QCD axion

- dark matter abundance
misalignment + string radiation + domain wall collapse

$$
\rho_{a, 0}=\rho_{a}^{\mathrm{vac}}\left(t_{0}\right)+m_{a} n_{a}^{\mathrm{str}}\left(t_{0}\right)+m_{a} n_{a}^{\mathrm{DW}}\left(t_{0}\right)
$$

- uncertainty from string radiation

Scenario A : IR spectrum $\frac{d E}{d \omega} \propto \delta\left(\omega-2 \pi t^{-1}\right)$
Scenario B: flat spectrum $\frac{d E}{d \omega} \propto \frac{1}{\omega}$

QCD axion

- dark matter abundance
misalignment + string radiation + domain wall collapse

$$
\rho_{a, 0}=\rho_{a}^{\mathrm{vac}}\left(t_{0}\right)+m_{a} n_{a}^{\mathrm{str}}\left(t_{0}\right)+m_{a} n_{a}^{\mathrm{DW}}\left(t_{0}\right)
$$

- uncertainty from string radiation

$$
\text { Scenario A : IR spectrum } \frac{d E}{d \omega} \propto \delta\left(\omega-2 \pi t^{-1}\right)
$$

$$
\text { Scenario B: flat spectrum } \frac{d E}{d \omega} \propto \frac{1}{\omega}
$$

- $n_{a}^{\mathrm{str}} \propto \frac{1}{\left\langle\frac{d E}{d \omega}\right\rangle}$

Gauged global string

Gauged global string

- $(0,1)$ string tension is the same as a standard QCD axion string
- heavy core of $(1,0)$ string

$$
\mu_{(1,0)}(t) \simeq \pi v_{1}^{2} \ln \left(\frac{m_{1}}{m_{Z}}\right)+\pi f_{a}^{2} \ln \left(\frac{m_{Z} t}{2}\right)
$$

Gauged global string

- $(0,1)$ string tension is the same as a standard QCD axion string
- heavy core of $(1,0)$ string

$$
\mu_{(1,0)}(t) \simeq \pi v_{1}^{2} \ln \left(\frac{m_{1}}{m_{Z}}\right)+\pi f_{a}^{2} \ln \left(\frac{m_{Z} t}{2}\right)
$$

Scenario A

Scenario B

Gauged global string

- $(0,1)$ string tension is the same as a standard QCD axion string
- heavy core of $(1,0)$ string

$$
\mu_{(1,0)}(t) \simeq \pi v_{1}^{2} \ln \left(\frac{m_{1}}{m_{Z}}\right)+\pi f_{a}^{2} \ln \left(\frac{m_{Z} t}{2}\right)
$$

Scenario B

QCD axion window

Future explorations

Gauged global string

Gauge string $(1,1)$ radiation

Gauge string $(1,1)$ radiation

- gauge strings radiate gravitons

Gauge string $(1,1)$ radiation

- gauge strings radiate gravitons
- How about $(1,1)$ gauge strings?

Gauge string $(1,1)$ radiation

- gauge strings radiate gravitons
- How about $(1,1)$ gauge strings?

- $(1,1)$ string is gauge string, but it also has axion as light d.o.f

$$
\begin{gathered}
\mathscr{L}=-\frac{1}{4} Z_{\mu \nu} Z^{\mu \nu}+\frac{1}{2} e^{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right) Z_{\mu}^{2}-g\left(\phi_{1}, \phi_{2}\right) e Z^{\mu} \partial_{\mu} a+\frac{1}{2} f\left(\phi_{1}, \phi_{2}\right)\left(\partial_{\mu} a\right)^{2} \\
g\left(\phi_{1}, \phi_{2}\right)=f_{a} \frac{\phi_{1}^{2}}{v_{1}^{2}}-f_{a} \frac{\phi_{2}^{2}}{v_{2}^{2}}
\end{gathered}
$$

Gauge string $(1,1)$ radiation

- gauge strings radiate gravitons
- How about $(1,1)$ gauge strings?

- $(1,1)$ string is gauge string, but it also has axion as light d.o.f

$$
\begin{gathered}
\mathscr{L}=-\frac{1}{4} Z_{\mu \nu} Z^{\mu \nu}+\frac{1}{2} e^{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right) Z_{\mu}^{2}-g\left(\phi_{1}, \phi_{2}\right) e Z^{\mu} \partial_{\mu} a+\frac{1}{2} f\left(\phi_{1}, \phi_{2}\right)\left(\partial_{\mu} a\right)^{2} \\
g\left(\phi_{1}, \phi_{2}\right)=f_{a} \frac{\phi_{1}^{2}}{v_{1}^{2}}-f_{a} \frac{\phi_{2}^{2}}{v_{2}^{2}}
\end{gathered}
$$

. Kalb-Ramond field $B^{\mu \nu}$,

$$
\partial_{\mu} a=\frac{1}{2} \epsilon_{\mu \nu \alpha \beta} \partial^{\nu} B^{\alpha \beta}
$$

Gauge string $(1,1)$ radiation

- gauge strings radiate gravitons
- How about $(1,1)$ gauge strings?

- $(1,1)$ string is gauge string, but it also has axion as light d.o.f

$$
\begin{gathered}
\mathscr{L}=-\frac{1}{4} Z_{\mu \nu} Z^{\mu \nu}+\frac{1}{2} e^{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right) Z_{\mu}^{2}-g\left(\phi_{1}, \phi_{2}\right) e Z^{\mu} \partial_{\mu} a+\frac{1}{2} f\left(\phi_{1}, \phi_{2}\right)\left(\partial_{\mu} a\right)^{2} \\
g\left(\phi_{1}, \phi_{2}\right)=f_{a} \frac{\phi_{1}^{2}}{v_{1}^{2}}-f_{a} \frac{\phi_{2}^{2}}{v_{2}^{2}}
\end{gathered}
$$

. Kalb-Ramond field $B^{\mu \nu}$,

$$
\partial_{\mu} a=\frac{1}{2} \epsilon_{\mu \nu \alpha \beta} \partial^{\nu} B^{\alpha \beta}
$$

- radiation power

$$
\frac{\mathrm{d} P_{a}}{\mathrm{~d} \Omega} \sim e^{2} f_{a}^{2}
$$

Conclusion

$(1,0),(0,1)$ and (1,1) strings

- Cosmology

Y-Junctions

opening QCD axion mass windows

- $(1,1)$ gauge string radiating axions and gravitons

