
Gauged Global Strings

BSM in Particle Physics and Cosmology

Wei Xue

arXiv: 2311.07639

with Xuce Niu and Fengwei Yang



2

Outline

• Introduction 
 global strings and gauge strings

• Gauge global  
and string solutions

• Cosmological implication 
   1) rich string structure 
   2) opening up QCD axion window 
   3) gauge string radiating axions?
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U(1)Z × U(1)PQ
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Global strings

•
global U(1) symmetry breaking    ⟨Φ⟩ = 1

2
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Global strings

•
global U(1) symmetry breaking    ⟨Φ⟩ = 1

2
fa

• global string solution 
 

           Φ(r, θ) = 1
2

fa eiθ , r → ∞
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Global strings

•
global U(1) symmetry breaking    ⟨Φ⟩ = 1

2
fa

• global string solution 
 

           Φ(r, θ) = 1
2

fa eiθ , r → ∞

• tension 
 

  gradient term  μ ≃ 2π∫
L

m−1
dr

1
r

|∂θΦ(r, θ) |2 = πf 2
a ln(mL)
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Gauge strings
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Gauge strings

• gauge string solution 
 

            

                                 

Φ(r, θ) = 1
2

fa eiθ

Zμ = 1
e

∂μθ r → ∞
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Gauge strings

• gauge string solution 
 

            

                                 

Φ(r, θ) = 1
2

fa eiθ

Zμ = 1
e

∂μθ r → ∞

• tension 

  gradient term   

  core          

μ ≃ 2π∫
L

m−1
dr |( 1

r
∂θ − ieZμ) Φ(r, θ) |2 = 0

μ ≃ *(1)πf 2
a



5

Motivation of cosmic strings
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Motivation of cosmic strings

• theoretically interesting 
    classical field solutions
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Motivation of cosmic strings

• theoretically interesting 
    classical field solutions

• phenomenological rich 
 cosmology (Kibble mechanism) 
 axion dark matter abundance 
 new observables (CMB, …)
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U(1)Z × U(1)PQ

• Lagrangian

 

        
       assume that  

ℒ = − 1
4 ZμνZμν + DμΦ†

1D
μΦ1 − λ1

4 ( |Φ1 |2 − v2
1
2 )

2

+ DμΦ†
2DμΦ2 − λ2

4 ( |Φ2 |2 − v2
2
2 )

2

Dμ = ∂μ − ieZμ
v1 > v2
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U(1)Z × U(1)PQ

• Lagrangian

 

        
       assume that  

ℒ = − 1
4 ZμνZμν + DμΦ†

1D
μΦ1 − λ1

4 ( |Φ1 |2 − v2
1
2 )

2

+ DμΦ†
2DμΦ2 − λ2

4 ( |Φ2 |2 − v2
2
2 )

2

Dμ = ∂μ − ieZμ
v1 > v2

•  
  
Φ1 → Φ1eiαz+iαPQ

Φ2 → Φ2eiαz−iαPQ

�1 �2

U(1)Z 1 1

U(1)PQ 1 -1

Table 1. The charges of the scalar �1, �2 and the fermion Q = QL +QR.

h�1i and h�2i further breaks the global symmetry U(1)PQ, the gauge boson mass increases,

mZ = e
p

v21 + v22.
It is convenient to parametrize the perturbations of �1 and �2 in terms of real scalar

fields �1(x), �2(x), ⇡1(x) and ⇡2(x),

�1(x) =
1p
2
(v1 + �1(x)) e

i⇡1(x)/v1 ,

�2(x) =
1p
2
(v2 + �2(x)) e

i⇡2(x)/v1
(2.4)

We identify the axion a(x) by requiring that the axion field is orthogonal to the would-be

Goldstone boson ⇡z or the longitudinal mode of the gauge boson Zµ
. Using the expression of

U(1)Z current Jµ
z and ⇡z-to-vacuum matrix element, hvac|Jµ

z (0)|⇡z(p)i = ipµv, we can read

the would-be Goldstone boson of U(1)Z, which takes the form

⇡z(x) =
1

v
(v1 ⇡1 + v2 ⇡2) , (2.5)

where v =
p

v21 + v22. Requiring that the axion field is orthogonal to ⇡z gives

a(x) =
1

v
(v2 ⇡1 � v1 ⇡2) . (2.6)

According to the symmetry of �1,2, we can express ⇡1 and ⇡2 as a function of angle rations

of U(1)Z and U(1)PQ, ⇡1/v1 = ↵Z + ↵ and ⇡2/v2 = ↵Z � ↵. The rotation angles of U(1)Z
and U(1)PQ are denoted as ↵Z and ↵, respectively. Than, we rewrite the axion fields as the

U(1)PQ rotation angle, ↵.

a(x) = va↵ , va =
2v1v2p
v21 + v22

. (2.7)

va tell us the magnitude of the vacuum expectation value that spontaneously breaks U(1)PQ.

Note that the va can be different from the axion decay constant fa. The ratio of va and fa,
N = va

fa
is often called the domain wall number.

2.2 QCD axion

The U(1)Z⇥U(1)PQ model serves a simple realization. It is intriguing to implement it into the

QCD axion models. One possibility is that, following the KSVZ model, we introduce a heavy

fermion Q = QL + QR. The fermion is in the fundamental representation of the Standard

Model SU(3)c color symmetry, singlet under U(1)Z symmetry. Additionally, the fermion has

a chiral charge under the PQ symmetry: 1/2 charge for QL and �1/2 charge for QR. Since it

is singlet in the gauge U(1)Z symmetry, the fermion will not introduce extra U(1)Z anomaly

and keep the gauge symmetry anomaly free.

– 2 –
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Vacuum and fluctuations

• cross section of vacuum manifold

number for cosmic string solutions is N = 1. This arises because, in the vacuum manifold of
U(1)PQ, the minimal winding is achieved by choosing the angle ↵PQ from 0 to ⇡. ↵PQ = 0

and ↵PQ = ⇡ are gauge-equivalent, and 0 can return to ⇡ through the gauge group U(1)Z

(see fig. 1). A similar method of counting domain wall number is observed in the PQWW
model [31, 32, 40], which has three domain walls in an axion string, but va

fa
= 6.

Figure 1: The cross-section of the vacuum manifold of U(1)Z ⇥U(1)PQ, where the two
black dots represent the angle ↵PQ = 0 and ↵PQ = ⇡.

Alternatively, we can construct a model by introducing two sets of quarks, denoted
as Q1 and Q2, as discussed by Barr and Seckel [91]. These quarks are color-triplets un-
der SU(3)c and are assigned the following chiral charges under U(1)Z ⇥ U(1)PQ: Q1L has
charges (1/2, 1/2), Q1R has charges (�1/2,�1/2), Q2L has charges (�1/2,�1/2), and Q2R

has charges (1/2, 1/2). This charge assignment ensures that U(1)Z remains anomaly-free.
Furthermore, it leads to Q1 interacting with �1 and Q2 interacting with �2 though the
Lagrangian density,

L = �1Q̄1LQ1R + �2Q̄2LQ2R + h.c. . (2.13)

Following a similar procedure, we arrive at the same axion gluon coupling shown in eq. (2.12).
Let us comment on other extensions of these models. In both realizations, we can

introduce Nf flavors of the heavy quarks, thereby suppressing the axion decay constant fa

as a factor of 1/Nf . This increases domain wall numbers in the cosmic string solutions.
Additionally, in the Standard Model, U(1)B�L is anomaly-free and could serve as a gauge
symmetry. Another intriguing possibility is that U(1)Z symmetry can be identified with
the U(1)B�L [92].

2.3 String solutions

In this section, we study the string solutions of U(1)Z⇥U(1)PQ analytically. Initially, we an-
alyze the string solutions beyond their core regions to pinpoint the three most energetically
favorable string configurations. Then, we extend our analysis to include string solutions

– 6 –
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Φ1 → Φ1eiπ , Φ2 → Φ2eiπ = Φ2e−iπ
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π

 αz = π
Φ1 → Φ1eiπ , Φ2 → Φ2eiπ = Φ2e−iπ

  ∼ αPQ = π
Φ1 → Φ1eiπ , Φ2 → Φ2e−iπ
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Integrating with QCD axion model

• KSVZ-like model  
   introduce  and   with color charge and  charge 
 
           

QL QR U(1)PQ

ℒ = − y
Λ (Φ1Φ*2 Q̄LQR + h . c . )
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Integrating with QCD axion model

• KSVZ-like model  
   introduce  and   with color charge and  charge 
 
           

QL QR U(1)PQ

ℒ = − y
Λ (Φ1Φ*2 Q̄LQR + h . c . )

ℒ ⊃ g2
s

32π2
a
fa

Ga
μνG̃a

μν
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Integrating with QCD axion model

• KSVZ-like model  
   introduce  and   with color charge and  charge 
 
           

QL QR U(1)PQ

ℒ = − y
Λ (Φ1Φ*2 Q̄LQR + h . c . )

• Barr and Seckel’s model 
       
  color,  and  charges 
 
           

Q1L Q1R Q2L Q2R
U(1)Z U(1)PQ

ℒ = Φ1Q̄1LQ1R + Φ2Q̄2LQ2R + h . c .

ℒ ⊃ g2
s

32π2
a
fa

Ga
μνG̃a

μν
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(1,0) strings
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(1,0) strings
• (1,0) string 

Φ1 = 1
2

v1 eiθ , Φ2 = 1
2

v2 , Zμ = c ∂μθ , r → ∞
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(1,0) strings
• (1,0) string 

Φ1 = 1
2

v1 eiθ , Φ2 = 1
2

v2 , Zμ = c ∂μθ , r → ∞

• gradient energy 
 

μk,(1,0) = ∫
2π

0
dθ∫

L

δ
dr r ( | ( 1

r
∂θ − ieZθ)Φ1 |2 + | (−ieZθ)Φ2 |2 )

= π ln( L
δ

)[v2
1(1 − ec)2 + v2

2(ec)2]
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(1,0) strings
• (1,0) string 

Φ1 = 1
2

v1 eiθ , Φ2 = 1
2

v2 , Zμ = c ∂μθ , r → ∞

• gradient energy 
 

μk,(1,0) = ∫
2π

0
dθ∫

L

δ
dr r ( | ( 1

r
∂θ − ieZθ)Φ1 |2 + | (−ieZθ)Φ2 |2 )

= π ln( L
δ

)[v2
1(1 − ec)2 + v2

2(ec)2]
• outside core ( minimize it by varying c )  

 

         μk,(1,0) = π
v2

1v2
2

v2
1 + v2

2
ln( L

δ
) = πf 2

a ln( L
δ

)
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(0,1) strings
• (0,1) string 

Φ1 = 1
2

v1 , Φ2 = 1
2

v2 eiθ, Zμ = c ∂μθ , r → ∞
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(0,1) strings

• gradient energy of (0,1)  = gradient energy of (1,0) 
         μk,(0,1) = μk,(1,0)

• (0,1) string 

Φ1 = 1
2

v1 , Φ2 = 1
2

v2 eiθ, Zμ = c ∂μθ , r → ∞
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(0,1) strings

• gradient energy of (0,1)  = gradient energy of (1,0) 
         μk,(0,1) = μk,(1,0)

• outside core region 
   (1,0) string is equivalent to (0,-1) string through a gauge transformation 
  
     

   

(Φ1 = 1
2

v1 eiθ, Φ2 = 1
2

v2) αZ→αZ−θ (Φ1 = 1
2

v1 , Φ2 = 1
2

v2e−iθ)

• (0,1) string 

Φ1 = 1
2

v1 , Φ2 = 1
2

v2 eiθ, Zμ = c ∂μθ , r → ∞
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(0,1) strings

• gradient energy of (0,1)  = gradient energy of (1,0) 
         μk,(0,1) = μk,(1,0)

• outside core region 
   (1,0) string is equivalent to (0,-1) string through a gauge transformation 
  
     

   

(Φ1 = 1
2

v1 eiθ, Φ2 = 1
2

v2) αZ→αZ−θ (Φ1 = 1
2

v1 , Φ2 = 1
2

v2e−iθ)
• outside core region 

   (1,0) can be viewed as an anti-string of (0,1)   

• (0,1) string 

Φ1 = 1
2

v1 , Φ2 = 1
2

v2 eiθ, Zμ = c ∂μθ , r → ∞



-.=I I-.=I I
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(1,1) strings

• gradient energy of (1,1) string 
 
        

   

      

Φ1 = 1
2

v1 eiθ , Φ2 = 1
2

v2eiθ , Zμ = c ∂μθ , r → ∞

μk,(1,1) = ∫
2π

0
dθ∫

L

δ
dr r ( | ( 1

r
∂θ − ieZθ)Φ1 |2 + | ( 1

r
∂θ − ieZθ)Φ2 |2 )
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(1,1) strings

• gradient energy of (1,1) string 
 
        

   

      

Φ1 = 1
2

v1 eiθ , Φ2 = 1
2

v2eiθ , Zμ = c ∂μθ , r → ∞

μk,(1,1) = ∫
2π

0
dθ∫

L

δ
dr r ( | ( 1

r
∂θ − ieZθ)Φ1 |2 + | ( 1

r
∂θ − ieZθ)Φ2 |2 )

•   the profile of  can simultaneously cancel the gradient energy of  
   and  
   
        

Zθ
Φ1 Φ2

μk,(1,1) = 0
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(1,1) strings

• gradient energy of (1,1) string 
 
        

   

      

Φ1 = 1
2

v1 eiθ , Φ2 = 1
2

v2eiθ , Zμ = c ∂μθ , r → ∞

μk,(1,1) = ∫
2π

0
dθ∫

L

δ
dr r ( | ( 1

r
∂θ − ieZθ)Φ1 |2 + | ( 1

r
∂θ − ieZθ)Φ2 |2 )

•   the profile of  can simultaneously cancel the gradient energy of  
   and  
   
        

Zθ
Φ1 Φ2

μk,(1,1) = 0

• (1,1) gauge string 
 
(1,0) and (0,1) global strings
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The full tension
• magnetic self-energy, scalar potential energy, and gradient energy 
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The full tension
• magnetic self-energy, scalar potential energy, and gradient energy 

  
• (1,0) string 

       

(0,1) string 

       

(1,1) string 

      

μ(1,0) ≃ πv2
1 + πv2

1 ln ( m1
mZ )+πv2

2 ln ( mZL
2 )

μ(0,1) ≃ π
2 v2

2 + πv2
2 ln ( m2

mZ )+πv2 ln ( mZL
2 )

μ(1,1) = πv2
1 + πv2

1 ln ( m1
mZ )+ 0
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The full tension
• magnetic self-energy, scalar potential energy, and gradient energy 

  
• (1,0) string 

       

(0,1) string 

       

(1,1) string 

      

μ(1,0) ≃ πv2
1 + πv2

1 ln ( m1
mZ )+πv2

2 ln ( mZL
2 )

μ(0,1) ≃ π
2 v2

2 + πv2
2 ln ( m2

mZ )+πv2 ln ( mZL
2 )

μ(1,1) = πv2
1 + πv2

1 ln ( m1
mZ )+ 0

• heavy core of (1,0) string     μ(1,0) > μ(0,1)
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The full tension
• magnetic self-energy, scalar potential energy, and gradient energy 

  
• (1,0) string 

       

(0,1) string 

       

(1,1) string 

      

μ(1,0) ≃ πv2
1 + πv2

1 ln ( m1
mZ )+πv2

2 ln ( mZL
2 )

μ(0,1) ≃ π
2 v2

2 + πv2
2 ln ( m2

mZ )+πv2 ln ( mZL
2 )

μ(1,1) = πv2
1 + πv2

1 ln ( m1
mZ )+ 0

• heavy core of (1,0) string     μ(1,0) > μ(0,1)

• binding energy of (1,1) string  

μ(1,0) + μ(0,1) − μ(1,1) = πv2
2 [2 ln ( mZL

2 ) − 1]



Y
O &

Cosmological Implication

Y
O &

formation evolution radiation



16
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First phase transition and string formation
• consider  

 
first phase transition 
    and  

v1 ≫ v2

⟨Φ1(x)⟩ = v1

2
⟨Φ2(x)⟩ = 0
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First phase transition and string formation
• consider  

 
first phase transition 
    and  

v1 ≫ v2

⟨Φ1(x)⟩ = v1

2
⟨Φ2(x)⟩ = 0

• string formation, the correlation length ~  1/v1



S
(1 ,? ) string

S
(1 ,? ) string

1 -
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First phase transition and string formation
• consider  

 
first phase transition 
    and  

v1 ≫ v2

⟨Φ1(x)⟩ = v1

2
⟨Φ2(x)⟩ = 0

• U(1) gauge strings form 
 (1, n ) string 

• string formation, the correlation length ~  1/v1
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Second phase transition
• second phase transition 

    and  ⟨Φ1(x)⟩ = v1

2
⟨Φ2(x)⟩ = v2

2
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Second phase transition
• second phase transition 

    and  ⟨Φ1(x)⟩ = v1

2
⟨Φ2(x)⟩ = v2

2
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•  (0,1) strings form via Kibble mechanism

• string formation, the correlation length ~ 1/v2
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(1,n) string in the second phase transition
•  (1, n ) string   (1,0) string to minimize the energy→



19

String network evolution

• (1,0) string encounters (1,0) string



19

String network evolution

&
• (1,0) string encounters (1,0) string



19

String network evolution

&
• (1,0) string encounters (1,0) string

&



20

String network evolution
• (1,0) string encounters (0,1) string    (1,1) bound state 

 Y-junctions
→



·
20

String network evolution
• (1,0) string encounters (0,1) string    (1,1) bound state 

 Y-junctions
→



··
20

String network evolution
• (1,0) string encounters (0,1) string    (1,1) bound state 

 Y-junctions
→



··
20

String network evolution
• (1,0) string encounters (0,1) string    (1,1) bound state 

 Y-junctions
→

• Other works on simulations of Y-junctions 
found 1) some fraction of Y-junctions remain  
            2) scaling solution Urrestilla, Vilenkin JHEP(2008) 

Rajentie, Skellariodou, Stoica, JCAP (2007) 
Copeland, Saffin JHEP (2005) 
… 
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   ρa,0 = ρvac

a (t0)+manstr
a (t0)+manDW

a (t0)

• uncertainty from string radiation 
 

 Scenario A : IR spectrum    

 

  Scenario B:  flat spectrum  

dE
dω
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•
nstr

a ∝ 1
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Figure 7: The three contributions to the dark matter relic abundance as a function of v2.
The red solid lines show the string decay contribution from (1, 0) and (0, 1) strings. The
blue solid line shows the misalignment mechanism contribution. The orange dot-dashed
lines show the domain wall decay contribution from the walls bound by (1, 0) and (0, 1)

strings. The total axion abundance is shown by a horizontal black dashed line. We set the
gauge coupling e = 4⇥10�5, �1 = �2 = 1, the Lorentz factor � = 60 for domain wall decay.
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Gauged global string 
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Figure 8: The bound on the QCD axion-photon coupling as a function of the axion mass
(Top). The existing constraints are shown by gray-shaded regions from ADMX experiments
[107–110] and globular clusters [111]. The combined projection using future haloscope
experiments is shown by a blue dashed line [65–73]. The gray solid line denotes the power-
law dependence of the axion-photon coupling on QCD axion mass in the KSVZ model.
Considering the QCD axion to explain 100% dark matter relic abundance, the magenta
and cyan bands show the mass region opened up by the gauge global string model in
Scenarios A and B. The bottom panel shows the value of v1 and v2 to reproduce the dark
matter relic abundance. The lines are truncated at v1 = v2 since we assume v1 & v2.
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Conclusion

•  
 (1,0),  (0,1) and (1,1) strings 

• Cosmology 
   Y-Junctions 
   opening QCD axion mass windows 
 

• (1,1) gauge string 
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