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❑ Dark Matter
❑ Gravitational Evidence 



❑  Dark matter mass range poorly constrained 

❑ DM should be cold

❑ SU(3)XU(1)EM Neutral

❑ Stable 



❑  Pauli-Exclusion Principle
❑ No two fermions can occupy same energy state 

 
❑ How many fermions can occupy a volume V? 

❑ Pauli-Exclusion limits two per energy state (spin)
❑ 3D infinite square well, count states

Number of 
states
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Galaxy is a sphere 
full of fermions



❑  Pauli-Exclusion Principle
❑ No two fermions can occupy same energy state 

 
❑ How many fermions can occupy a volume V? 

❑ What does this say for a galaxy

❑ Minimum dark matter mass

Virial Theorem Mass Number of particles 
for a given momentum

Maximum mass in galaxy

Variance of 
velocity

Galaxy Size



❑  Count the number of states for a boson
❑ Basically, the same but can have       particles per state

No lower bound on mass
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❑  Count the number of states for a boson
❑ Basically the same, but can have       particle per state
 

❑  Can there be a lower bound on the mass?
❑ ULBD must be a condensate on “small” scales
❑ Condensate must be smaller than galaxy

Real estimate              
or even larger   
Bound not fr

om special propertie
s of bosons

Dwarf Galaxy



❑ Bosons can occupy the same energy state

❑ In a background, a decay process becomes

❑ Giving an enhancement  

For                       naively 
decays enhanced 
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❑ In a background a decay process becomes
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There are           
ways
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Effectively more paths 
for the particle to take



❑ Bosons can occupy the same state

❑ In a background a decay process becomes
❑ Giving an enhancement  
❑ Where is the enhancement from?  
❑ This ultimately is from indistinguishable particles

Identical particles 

Purely Quantum 
Mechanical



❑ Bosons can occupy the same state

❑ In a background a decay process becomes
❑ What happens to the propagator?

❑ Background provides an additional piece 

No background 

Background 

Can be 
significantly 
enhanced 

n Independent 
of distribution 



❑ Bosons can occupy the same state

❑ In a background a decay process becomes
❑ What happens to the propagator?

❑ Background provides an additional piece  
Same form as time ordered thermal 
propagator in real time formulation. 

Correction from background:
Will affect loop processes 



❑ Bosons can occupy the same state

❑ In a background a decay process becomes
❑ What happens to the propagator?

❑ Background provides an additional piece  

Correction from background:
Will affect loop processes 

All p
rocesses potentia

lly 

enhanced by background 

Same as time ordered thermal 
propagator in real time formulation. 



❑ Two body decays
❑ Coupling hard to realize

Flavor Changing interactions 



❑ Two body decays
❑ Coupling hard to realize

Makes it hard to keep      light
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❑ Two body decays
❑ Three body decays

❑ Many possibilities!!

❑ Propagator on shell when      
momentum goes to zero

❑ IR divergences must cancel 

Warning 

Effectively 
Bremsstrahlung

❑  Z decays well measured
❑ Small enhancement 

detectable 



❑ Two body decays
❑ Three body decays

❑ Many possibilities!!
❑ IR divergences in finite temperature 
❑ Have to include wavefunction renormalization

❑ Power Divergent IR 
singularity 

❑ Shows up in decay too



❑ Two body decays
❑ Three body decays

❑ Many possibilities!!
❑ Example: Higgs Decay in Thermal Bath



❑ Two body decays
❑ Three body decays

❑ Many possibilities!!
❑ Example: Higgs Decay in Thermal Bath

❑ Vertex Corrections
❑ Background 

enhanced 
❑ Same  for

Correction to 
this decay



❑ Two body decays
❑ Three body decays

❑ Many possibilities!!
❑ Example: Higgs Decay in Thermal Bath

❑ Stimulated 
Emission/Absorption 

❑ Background enhanced 



❑ Two body decays
❑ Three body decays

❑ Many possibilities!!
❑ Example: Higgs Decay in Thermal Bath

❑ Enhancement completely cancels at 1-loop

❑ Cancellation of IR divergences expected 

❑ Finite piece goes as

❑ What if it is a background  

Donoghue, Holstein (1983)

Bremsstrahlung
cancelations 



❑ Two body decays
❑ Three body decays

❑ Many possibilities!!
❑ Example: Higgs Decay in Thermal Bath

❑ Enhancement completely cancels at 1-loop

❑ Cancellation of IR divergences expected 

❑ Not IR divergent, why does it cancel?

Donoghue, Holstein (1983)



❑ What will give us the most “bang for our buck”?
❑ First generation particles in loop (Denominator then                         )

❑ Precision measurement, more sensitive to everything 

Dimensional analysis 
and IR finite 



❑ What will give us the most “bang for our buck”?
❑ First generation particles in loop (Denominator then                         )
❑ Precision measurement, more sensitive to everything 

❑           of electron perfect 

❑ Plan
❑ Calculate              of the electron

❑ Show that charge is not 
renormalized in background

❑ Show ward identities satisfied in 
background 



❑ Start with wave function renormalization

❑ New type of contribution 
❑ Violates Lorentz symmetry 
❑ Can’t be combined to C(k) or B(k) 

Do no specify              until end



❑ Start with wave function renormalization

❑ New type of contribution 
❑ Violates Lorentz symmetry 
❑ Can’t be combined to C(k) or B(k) 

Do no specify              until end

Lorentz 
violating

Gauge mixing parameter 



❑ Start with wave function renormalization

❑ New type of contribution 
❑ Violates Lorentz symmetry 
❑ Can’t be combined to C(k) or B(k) 

❑ Use a background dependent spinor 

❑ So that we have “mass counterterms” 
Not a real counterterm, just 
use it like a counterterm.
No new divergences



❑ Total Vertex correction 

 



❑ Charge non-renormalization 
❑ Apply                                to vertex

 

Cancels Due to Gordon 
Decomposition for  



❑ Ward Identities apply           to
❑ Use slightly different form of 

                                

 

Come From Gordon 
Decomposing



❑ Ward Identities apply           to
❑ Use slightly different form of

❑ Generically true to order   
 

 



❑ Simplified Total Vertex correction

 



❑ Magnetic Field (Approximate Penning trap)

❑  Momentum Integrals (                )

❑ Relativistic Hamiltonian  
❑ Must use corrections to frequencies and compare to experiment 

 

Other components 
suppressed by 

determines 
size of effect 



❑ Magnetic Field (Approximate Penning trap)

❑  Momentum Integrals (                )

❑ Relativistic Hamiltonian  
❑ Must use corrections to frequencies and compare to experiment 

 

Other components 
suppressed by 

❑ Cyclotron Frequency 
also corrected 

❑ Affects            
measurement 

determines 
size of effect 

Spin 
frequency 
corrections



❑ Predicted spin and cyclotron frequencies

❑ Measured quantity ratio  

 

Background 
corrections small

SM prediction 

SM 
prediction 

Because                
this dominates



❑ Number density of dark matter

❑ Occupation number is density per

❑ Integrate occupation number

❑   The variation in         is then 
 

Three 
polarizations 

Assumes DM velocity 
spread small Enhanced by mass 

squared



❑ Experimental uncertainties
❑ The experimental constraints on

❑ Gives a constraint on      for a given

❑ Very strong compared to previous constraints 
 

Being 
Conservative

Previous constraints from: Caputo, 
Millar, O'Hare and Vitagliano



❑ Experimental uncertainties
❑ The experimental constraints on

❑ Gives a constraint on      for a given

❑ Very strong compared to previous constraints

❑ Constraints scale as ½ power of DM density    
 

Being 
Conservative

Previous constraints from: Caputo, 
Millar, O'Hare and Vitagliano



❑ ALP’s are another motivated ultralight dark matter Background
❑ Also contributes to the anomalous magnetic moment 

❑ Experimental constraints on its contribution

❑ For light ALP constraint quite strong 

Arza, JLE 2308.05375 



❑ Fundamental properties of dark matter can lead to constraints
❑ Pauli exclusion principle prevents ultralight fermionic dark matter
❑ Compton wavelength prevents super-ultralight dark matter bosons

❑ Production of ultralight dark matter 
❑ Thermal production problematic
❑ Coherent condense production needed

❑ Ultralight dark matter is very dense throughout the universe
❑ Occupation number becomes very large
❑ Number of paths for processes shoots way up (Bose Enhancement)

❑ Bose enhancements work on loop processes 
❑ Anomalous magnetic contribution greatly enhanced
❑ Strong constrains gauge mixing parameter for dark photon
❑ Coupling of ALP to electron strongly constrained as well 



❑ Previous Measurements give us an average value for

❑ Weighted average very close to 2022 measurement (~164) 
❑ Also close to theory prediction 

❑ Allows us to call any deviation larger than experimental error a measurement 
 



❑ Dark matter condensate has very long period 

❑ Decoherence time of condensate
❑ Virilization from gravity on large object

❑ Can experiments resolve this as a particle? 
❑ Heisenberg uncertainty principle  

 

Time to resolve 
energy 



❑ Two body decays
❑ Three body decays

❑ Many possibilities!!
❑ Higgs Decay in Thermal Bath

2 2

2



❑ Ward Identities
 

 



❑ Thermal production out

❑ Production of longitudinal modes from quantum fluctuations
❑ longitudinal mode behaves like scalar field 
❑ Choose the Bunch-Davies vacuum we get 
❑ Power spectrum  suppressed at low momentum 



❑ The Penning Trap
❑ Constant magnetic Field/Quadrapole Electric Field

❑ Clearly not cavity since electric field non-zero inside
❑ Thus, fields penetrate trap

Electron  effectively 
orbits in constant B field 

E field just to 
contain particle 



❑ If the experiment were in a Cavity, this effect would cancel 
❑ The cavity would produce an identical background of photons

❑ Except opposition spin vector

❑ This introduces additional enhanced propagators

❑ This then leads to a total propagator of 

❑ Classically this amounts to 

Negative: Spin sum 
has negative sign 

Cavity Generated



❑  Can do a similar calculation with a background

❑  However, there is a very strong field because so light 

Because massive, this 
is not the same

Need opposite 
correlated momentum



❑  The integrands is expanded in k so        
depends on k only through 

❑               scales as 

❑                           scale as 
❑ But 
❑ Effective scaling 

❑                scales as 

❑ Thus for                       still well defined 



❑ Same formulas apply to no background

❑                                         Found by       

❑ Applied to pseudoscalar we get
 

Exactly what previous 
calculations get 



❑ Ward Identities apply           to
❑ Use slightly different form of   

 

 

This row of order 



❑ Simple model of Ionosphere permittivity
❑ Find the displacement of the electron and then Polarization



❑ Simple model of Ionosphere permittivity
❑ Find the displacement of the electron and then Polarization

❑ Solve for the displacement of the electron in the atom 

❑ The polarization can then be found and thus permittivity
 

Charge # 
Density

If we take 
propagation 
parallel to  



❑ Simple model of Ionosphere permittivity
❑ Find the displacement of the electron and then Polarization

❑ Solve for the displacement of the electron in the atom 

❑ The polarization can then be found and thus permittivity

❑ Using this can solve for the dispersion relation 
 

Charge # 
Density

B direction Propagation 
Direction

Circular Polarized

and real then 
No propagation



❑ Self energy plus counterterm contribution

❑ Derivatives arise because of definition

 

Mass counterterms on shell,
Since part of EOM



❑ Thermally corrected propagator

❑ Renormalized propagator 
❑ Perform       integral 

❑ Compare to calculation of

❑ Wave function renormalization changed by background 

Wave Function 
Renormalization 

Background 
dependent spinors

Residue changed
 if                               depend on 

Standard Wave 
Function 
Renormalization 



❑ Charge non-renormalization 
❑ Apply                                to vertex

 



❑ Thermal production not possible
❑ Dark Matter tends to be hot



❑ Thermal production out

❑ Production of longitudinal modes from quantum fluctuations  
❑ longitudinal mode behaves like scalar field

 

❑ Choose the Bunch-Davies vacuum we get 

Graham, Mardon, Rajendran



❑ Thermal production out

❑ Production of longitudinal modes from quantum fluctuations
❑ longitudinal mode behaves like scalar field 
❑ Choose the Bunch-Davies vacuum we get 
❑ Power spectrum  suppressed at low momentum
❑ Relation between inflation scale and mass for dark matter
 

However, can still place 
a strong constraint!!



❑ Thermal production out

❑ Production of longitudinal modes from quantum fluctuations  

❑ Production from inflaton induced tachyonic DP mass 

❑ Equations of motion 

❑ Have to worry about isocuvature, so need a curvaton 

Tachyonic Mass

Kitajima and Nakayama 



❑ Thermal production out
❑ Production of longitudinal modes from quantum fluctuations
❑ Production from inflaton induced tachyonic DP mass 



❑ Experimental uncertainties 
 

Fan, Xing. 2022. An Improved Measurement of the Electron Magnetic Moment. 
Doctoral dissertation, Harvard University Graduate School of Arts and Sciences.



❑ Experimental uncertainties
❑ The experimental constraints on

 

Correction to 
Theoretical 
prediction of ratio

Dominant 
measurement error 
on ratio



❑ Experimental uncertainties
❑ The experimental constraints on

❑ Theory<Experiment (Measured g-2 very consistent with SM)

❑ Gives a constraint on      for a given   
 

Being 
Conservative



❑ The dark photon field is virialized by the gravitational interactions

❑ Leads to stochastic electric field

 

Much shorter than 
age of universe

If coherent we have relation to E field

Broken by 
decoherence 



❑ The IR cut off is set by the particle the dark photon interacts with not experiment
 

❑ The occupation number of the dark matter 

❑ Contribution to anomalous magnetic moment scales as

❑ Furthermore, can solve for propagator in constant electric field of electron
❑ Contribution comes from near pole 
❑ Near pole propagator same so that IR divergences cancel

 

Cut off by 
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