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Motivation and Key ldea

+ Standard cosmological picture (high reheat scenario):
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Motivation and Key ldea

* Rare, put possible to form enclosed domain walls

+ Walls contract, potentially forming primordial black holes (PBHs)
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Outhne

+ Cosmology and formation of enclosed axion domain walls
* Enclosed wall dynamics

+ Efficiency of PBH tformation and relic abundance



Cosmology and Formation of Enclosed Walls
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Cosmology of Axion Defects

Luv = [0,P]° — Veq(®)

“ At high temperatures, Lagrangian respects U(1)pq symmetry

+ Below scale f,, (®)~ f,e'*/* from minimum of Vpo
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Cosmology of Axion Defects

Lin = %ﬁua ota — mi(T)fg 1 — cos (; )

* Near Tqcp, PQ breaking potential from strong dynamics

+ Domain wall is field configuration that interpolates between the
(unique) vacuum at § = a/f, = 0 back to 2w 2 from Oto 27 -
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Wall formation



Abundance of Enclosed Walls
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Abundance of Enclosed Walls
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Abundance of Enclosed Walls
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Abundance of Enclosed Walls
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Abundance of Enclosed Walls

+* Method of Sikivie essentially  Corr(6(x1),0(x2)) = {
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Abundance of Enclosed Walls
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Abundance of Enclosed Walls
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Abundance of Enclosed Walls
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Dynamics of Enclosed Walls




Stretching with Hubble Expansion

+ Superhorizon walls initially stretch with expansion
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Collapse atter Horizon Re-entry

+ Expectation: 4roR}y = v4roR? - (Rre/R)% =y
(Nambu-Goto)

Spongebob



Collapse atter Horizon Re-entry

o EXpeCtation: 47TO'R%{E — ’y47TO'R2 — (RRE/R)2 =
(Nambu-Goto)

* Reality: (0  Yelalz] "me(B)F sin <%> — 0

(Euler-Lagrange Equation)

Necessary to capture thick wall effects and axion radiation

Spongebob o



Collapse atter Horizon Re-entry

Axion Field 6

Energy Density [m,2f,*]

Initial wall profile
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Aspherical Walls

+ Been making the spherical ggv wall approximation so far

+ Realistic walls not perfectly spherical
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Aspherical Walls

+ Been making the spherical ggv wall approximation so far ( @
>

+ Realistic walls not perfectly spherical
+ Largest scale asphericities are most important:
1. Hubble damping of scales R <t

2. Small scale asphericities damped, large ones most important®
Widrow 89, Garriga & Vilenkin "91



Aspherical Walls

+ Been making the spherical ggv wall approximation so far ( @
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+ Realistic walls not perfectly spherical
+ Largest scale asphericities are most important:
1. Hubble damping of scales R <t

2. Small scale asphericities damped, large ones most important®
Widrow ‘83, Garriga & Vilenkin "91

+ Model as ellipsoid



Eificiency of PBH Formation and Relic Abundance




IFactors Affecting PBH Abundance

Parameter Effect on PBH Formation
fa Larger fq increases wall mass and reduces Schwarzchild radius
0 Smaller 0 improves compressibility of wall, making it easier to fit in Schwarzschild radius

Larger o increases wall mass due to increased size (including growth during expansion).
a = Ry/to Provides more time for axion mass to turn on, and thinner (Lorentz-contracted) wall thickness.
But lower abundance it PBH forms.

* How to relate all parameters to calculate PBH abundance?



Conditions for PBH Formation

. . E RGHC
* From simulations of collapse, computed [ = é(oo)l)
where the total energy is Flog) = 47TUR12%E o == 8maf§ - 85_1f§
(Wall tension)

8 Demand  R..i< Boww = 2GE(R.nc) = 2GE(c0) f

+ Solve for minimum Rgg/dre to compress enough energy into Schwarzschild radius



Conditions for PBH Formation

Min RRE/(SRE to form PBH




Conditions for PBH Formation

Min RRE/(SRE to form PBH

Increase in wall tension from
temperature dependent axion mass

Superhorizon stretching

Initial enclosed wall properties
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RGHC Abundaﬂce
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(onclusions

Axion cosmology can generate PBHs, abundance largest for large /.

Preliminary, but lensing signal appears slightly out of reach of next
generation Roman space telescope peroccoctar 2

Formalism translates simply to ALPs too

Most excited to apply to GUT variations of this mechanism (Pati-Salam

Left-Right models). Particularly interesting due to (potential) gap near
(10717 — 10~ 1Y M, where PBHs (may) be all of dark matter ca & kuinet 22



