

Primordial Black Holes from Axion Walls

BSM @ 50 Years • ICISE

David Dunsky, Marius Kongsore

* Rare, put possible to form enclosed domain walls

- Rare, put possible to form enclosed domain walls
- Walls contract, potentially forming primordial black holes (PBHs)

Time

- Rare, put possible to form enclosed domain walls
- Walls contract, potentially forming primordial black holes (PBHs)

- Rare, put possible to form enclosed domain walls
- Walls contract, potentially forming primordial black holes (PBHs)

Outline

- Cosmology and formation of enclosed axion domain walls
- Enclosed wall dynamics

* Efficiency of PBH formation and relic abundance

Cosmology and Formation of Enclosed Walls

$$\mathcal{L}_{\rm UV} = |\partial_{\mu}\Phi|^2 - V_{\rm PQ}(\Phi)$$

- * At high temperatures, Lagrangian respects $U(1)_{PQ}$ symmetry
- * Below scale f_a , $\langle \Phi \rangle \approx f_a e^{ia/f_a}$ from minimum of $V_{\rm PQ}$

$$\mathcal{L}_{\rm UV} = |\partial_{\mu}\Phi|^2 - V_{\rm PQ}(\Phi)$$

- * At high temperatures, Lagrangian respects $U(1)_{PQ}$ symmetry
- * Below scale f_a , $\langle \Phi \rangle \approx f_a e^{ia/f_a}$ from minimum of V_{PQ}
- * Spontaneous breaking of U(1) cosmic strings

Locus of points in physical space where $\langle \Phi \rangle = 0$

$$\mathcal{L}_{\rm UV} = |\partial_{\mu}\Phi|^2 - V_{\rm PQ}(\Phi)$$

- * At high temperatures, Lagrangian respects $U(1)_{PQ}$ symmetry
- * Below scale f_a , $\langle \Phi \rangle \approx f_a e^{ia/f_a}$ from minimum of $V_{\rm PQ}$
- * Spontaneous breaking of U(1) cosmic strings

Locus of points in physical space where $\langle \Phi \rangle = 0$

* Mass per unit length $\mu \approx V_{PQ}(\Phi = 0)\delta_s^2 \sim f_a^4 \times f_a^{-2} \simeq \pi f_a^2 \ln(f_a L)$

$$\mathcal{L}_{IR} = \frac{1}{2} \partial_{\mu} a \, \partial^{\mu} a - m_a^2(T) f_a^2 \left[1 - \cos \left(\frac{a}{f_a} \right) \right]$$

- * Near $T_{\rm QCD}$, PQ breaking potential from strong dynamics
- * Domain wall is field configuration that interpolates between the (unique) vacuum at $\theta \equiv a/f_a = 0$ back to 2π

Surface of points in physical space where $\theta \equiv a/f_a = \pi$

$$\mathcal{L}_{IR} = \frac{1}{2} \partial_{\mu} a \, \partial^{\mu} a - m_a^2(T) f_a^2 \left[1 - \cos \left(\frac{a}{f_a} \right) \right]$$

- * Near $T_{\rm QCD}$, PQ breaking potential from strong dynamics
- * Domain wall is field configuration that interpolates between the (unique) vacuum at $\theta \equiv a/f_a = 0$ back to 2π $\frac{a}{f}$ from 0 to 2π

Surface of points in physical space where $\theta \equiv a/f_a = \pi$

$$\mathcal{L}_{IR} = \frac{1}{2} \partial_{\mu} a \, \partial^{\mu} a - m_a^2(T) f_a^2 \left[1 - \cos \left(\frac{a}{f_a} \right) \right]$$

- * Near $T_{\rm QCD}$, PQ breaking potential from strong dynamics
- * Domain wall is field configuration that interpolates between the (unique) vacuum at $\theta \equiv a/f_a = 0$ back to 2π $\frac{a}{f}$ from 0 to 2π

Surface of points in physical space where $\theta \equiv a/f_a = \pi$

* Mass per unit area $\sigma \approx V_{\rm QCD}(\theta=\pi)\delta \sim m_a^2 f_a^2 \times m_a^{-1} \simeq 8 m_a f_a^2$

Wall formation

θ_2	θ_1	θ_3	θ_1	θ_2	θ_3	θ_2	θ_2	θ_3	θ_2	θ_1
θ_2	θ_1	θ_2	θ_3	θ_3	θ_1	θ_3	θ_2	θ_1	θ_2	θ_2
θ_2	θ_2	θ_1	θ_2	θ_3	θ_3	θ_2	θ_3	θ_1	θ_3	θ_3
θ_3	θ_1	θ_2	θ_3	θ_1	θ_2	θ_2	θ_3	θ_3	θ_2	θ_1
θ_1	θ_2	θ_3	θ_1	θ_1	θ_2	θ_3	θ_1	θ_2	θ_1	θ_3
θ_2	θ_1	θ_2	θ_2	θ_1	θ_3	θ_3	θ_2	θ_3	θ_3	θ_3
θ_1	θ_2	θ_3	θ_1	θ_2	θ_1	θ_1	θ_3	θ_3	θ_3	θ_1

θ_2	θ_1	θ_3	θ_1	θ_2	θ_3	θ_2	θ_2	θ_3	θ_2	θ_1
θ_2	θ_1	θ_2	θ_3	θ_3	θ_1	θ_3	θ_2	θ_1	θ_2	θ_2
θ_2	θ_2	θ_1	θ_2	θ_3	θ_3	θ_2	θ_3	θ_1	θ_3	θ_3
θ_3	θ_1	θ_2	θ_3	θ_1	θ_2	θ_2	θ_3	θ_3	θ_2	θ_1
θ_1	θ_2	θ_3	θ_1	θ_1	θ_2	θ_3	θ_1	θ_2	θ_1	θ_3
θ_2	θ_1	θ_2	θ_2	θ_1	θ_3	θ_3	θ_2	θ_3	θ_3	θ_3 θ_3
θ_1	θ_2	θ_3	θ_1	θ_2	θ_1	θ_1	θ_3	θ_3	θ_3	θ_1

~1 enclosed wall
per 1000 correlation volumes
(~horizon)

Distribution of enclosed wall sizes

Can be larger than horizon

* Method of Sikivie essentially $Corr(\theta(\mathbf{x_1}), \theta(\mathbf{x_2})) = \begin{cases} 1 & |\mathbf{x_1} - \mathbf{x_2}| < L \\ 0 & |\mathbf{x_1} - \mathbf{x_2}| > L \end{cases}$

* Continuum random field $Corr(\theta(\mathbf{x_1}), \theta(\mathbf{x_2})) = exp\left(-\frac{|\mathbf{x_1} - \mathbf{x_2}|^2}{L^2}\right)$

Continuum random field
$$Corr(\theta(\mathbf{x_1}), \theta(\mathbf{x_2})) = exp\left(-\frac{|\mathbf{x_1} - \mathbf{x_2}|^2}{L^2}\right)$$

Surface of constant $\theta = \pi$

Continuum random field

Surface of constant
$$\theta = \pi$$

$$Corr(\theta(\mathbf{x_1}), \theta(\mathbf{x_2})) = \exp\left(-\frac{|\mathbf{x_1} - \mathbf{x_2}|^2}{L^2}\right)$$

Enclosed walls

~1 enclosed wall
per 1000 correlation volumes
(~horizon)

Dynamics of Enclosed Walls

Stretching with Hubble Expansion

Superhorizon walls initially stretch with expansion

$$R_0 = \alpha t_0$$

Formation

$$R(t) = R_0 \frac{a(t)}{a(t_0)}$$

Stretching

$$R(t_{
m RE}) pprox egin{cases} lpha R_0 & {
m RE} \ lpha^2 R_0 & {
m ME} \end{cases}$$

Horizon re-entry

Collapse

Collapse after Horizon Re-entry

* Expectation: $4\pi\sigma R_{\rm RE}^2 = \gamma 4\pi\sigma R^2 \to (R_{\rm RE}/R)^2 = \gamma$ (Nambu-Goto)

Spongebob

Collapse after Horizon Re-entry

* Expectation: $4\pi\sigma R_{\rm RE}^2 = \gamma 4\pi\sigma R^2 \to (R_{\rm RE}/R)^2 = \gamma$ (Nambu-Goto)

Reality: $(\partial_t^2 - \nabla^2)a(x) + m_a^2(T)f_a\sin\left(\frac{a}{f_a}\right) = 0$

(Euler-Lagrange Equation)
Necessary to capture thick wall effects and axion radiation

Spongebob

Collapse after Horizon Re-entry

Max Energy Fraction Enclosed

 $\propto R^3$

Arises from constant energy density at small radii

$$\propto \delta_{\min}^3 \approx \left[\delta_{\rm RE} \left(\frac{\delta_{\rm RE}}{R_{\rm RE}} \right)^{2/3} \right]^3$$
 Arises from minimum (Lorentz contracted) wall thickness

Aspherical Walls

* Been making the spherical cow wall approximation so far

* Realistic walls not perfectly spherical

Aspherical Walls

* Been making the spherical cow wall approximation so far

- * Realistic walls not perfectly spherical
- * Largest scale asphericities are most important:
 - 1. Hubble damping of scales $R \lesssim t$
 - 2. Small scale asphericities damped, large ones most important*

Widrow '89, Garriga & Vilenkin '91

Aspherical Walls

* Been making the spherical cow wall approximation so far

- Realistic walls not perfectly spherical
- * Largest scale asphericities are most important:
 - 1. Hubble damping of scales $R \lesssim t$
 - 2. Small scale asphericities damped, large ones most important*

Widrow '83, Garriga & Vilenkin '91

Model as ellipsoid

Efficiency of PBH Formation and Relic Abundance

Factors Affecting PBH Abundance

Parameter	Effect on PBH Formation
f_a	Larger f_a increases wall mass and reduces Schwarzchild radius
δ	Smaller δ improves compressibility of wall, making it easier to fit in Schwarzschild radius
$lpha \equiv R_0/t_0$	Larger α increases wall mass due to increased size (including growth during expansion). Provides more time for axion mass to turn on, and thinner (Lorentz-contracted) wall thickness. But lower abundance if PBH forms.

* How to relate all parameters to calculate PBH abundance?

Conditions for PBH Formation

* From simulations of collapse, computed $f \equiv \frac{E(R_{\text{encl}})}{E(\infty)}$

where the total energy is
$$E(\infty) = 4\pi\sigma R_{\rm RE}^2$$
 $\sigma = 8m_a f_a^2 = 8\delta^{-1} f_a^2$ (Wall tension)

* Demand $R_{\rm encl} < R_{\rm schw} = 2GE(R_{\rm encl}) = 2GE(\infty)f$

* Solve for minimum $R_{\rm RE}/\delta_{\rm RE}$ to compress enough energy into Schwarzschild radius

Conditions for PBH Formation

Conditions for PBH Formation

Relic Abundance

$$\rho_{\rm BH} = M_{\rm PBH} n_{\rm PBH}$$

$$M_{\mathrm{PBH}} \approx 4\pi R_{\mathrm{RE}}^2 \sigma$$

$$\sigma \simeq 8m_a(t_c) f_a^2$$

$$n_{\mathrm{PBH}} = n_{\mathrm{encl}}(R_0) \left(\frac{a(t_0)}{a(t)}\right)^3$$

 $\times \Theta(R_{\mathrm{RE}}/\delta_{\mathrm{RE}} - \mathrm{Min} \ R_{\mathrm{RE}}/\delta_{\mathrm{RE}})$

Conclusions

- * Axion cosmology can generate PBHs, abundance largest for large f_a
- Preliminary, but lensing signal appears slightly out of reach of next generation Roman space telescope DeRocco et al '23
- Formalism translates simply to ALPs too
- * Most excited to apply to GUT variations of this mechanism (Pati-Salam Left-Right models). Particularly interesting due to (potential) gap near $(10^{-17}-10^{-11})M_{\odot}$ where PBHs (may) be all of dark matter *Carr & Kuhnel '22*