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Direct detection: current status

How to extend 
low mass 

reach?

Increased 
exposure

(bigger 
detectors)

Figure: C. O’Hare
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Sub-GeV direct detection

PandaX-4T (2023)
SENSEI (2023)

Migdal effect Electron scattering Low-threshold 
detectors

+ DM absorption, boosted DM, …

Lots of ideas + R&D
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Dark matter detection with superfluid  He4

Lanou, Maris & Seidel ’87
Guo & McKinsey ’13

Ito & Seidel ’13
Hertel+ ‘18

Upcoming experiments using superfluid helium-4 target:  HeRALD, DELight

Primary signal: quantum evaporation

Figure: Herald Collaboration
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Dark matter detection with superfluid  He4

Lanou, Maris & Seidel ’87
Guo & McKinsey ’13

Ito & Seidel ’13
Hertel+ ‘18

Adsorption onto surface amplifies signal

Figure: D. McKinsey

Upcoming experiments using superfluid helium-4 target:  HeRALD, DELight

Primary signal: quantum evaporation

Figure: Herald Collaboration

dark

matter
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Dark matter detection with superfluid  He4

DELight Collaboration

Figure: Herald Collaboration

dark

matter

Initial sensitivity to DM masses of 10s-100s MeV

Ongoing R&D towards lower threshold calorimeters:  HeRALD (transition edge sensors) 
                    DELight (magnetic micro-calorimeter)
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Sub-MeV direct detection: collective excitations
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Sub-MeV direct detection: collective excitations

keV MeV GeV

µm nm pm

dark matter mass

de Broglie wavelength

collective excitations nuclear (or electron) recoils

mm

eV

coherent (wave-like)

Sub-MeV mass DM interacts directly with collective excitations 
       (e.g. phonons)

phononphonon
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Superfluid  He collective modes (phonons/rotons)4

Figure: Matchev et. al ‘21

Long-lived/stable collective excitations
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Superfluid phonon EFT

Low-energy phonons in superfluid described by effective field theory

• Nambu-Goldstone bosons of spontaneously broken 𝑈(1) particle number

chemical 
potential

Son ’02

Nicolis ‘11



• VEV breaks internal 𝑈(1), Lorentz boosts & time translations

• Preserves linear combination
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Superfluid phonon EFT
Most general Lagrangian consistent with shift symmetry:

Son ’02

Nicolis ‘11



Peter Cox - University of Melbourne

Superfluid phonon EFT
Most general Lagrangian consistent with shift symmetry:

is identified as the pressure of the superfluid

Son ’02

Nicolis ‘11

“local chemical potential”
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Superfluid phonon EFT
Most general Lagrangian consistent with shift symmetry:

Nambu-Goldstone phonon:

Sound speed, couplings can be expressed in terms of derivatives of 

Son ’02

Nicolis ‘11
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Acanfora, Esposito, Pelosa ‘19
Dark matter – phonon interactions

Consider spin-independent DM-nucleon interaction

DM couples to He number density
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DM couples to He number density
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Detecting phonons - cavity optomechanics

Basic idea: optomechanical systems can be single phonon detectors



Peter Cox - University of Melbourne

Detecting phonons - cavity optomechanics

Basic idea: optomechanical systems can be single phonon detectors

Toy model:

photonphonon

Optical resonance frequency depends on cavity length
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Detecting phonons - cavity optomechanics

Basic idea: optomechanical systems can be single phonon detectors

Toy model:

photonphonon

optomechanical 
coupling
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Superfluid cavity optomechanics

Figure: Kashkanova+ ‘16

optical 

fibre

superfluid ⁴He filled optical cavity
Mechanical mode: phonons in superfluid

     

Optomechanical interaction due to 
change in refractive index
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Superfluid cavity optomechanics

photons phononoptomechanical 
coupling

Figure: Kashkanova+ ‘16

optical 

fibre

superfluid ⁴He filled optical cavity

Energy-momentum conservation:
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Superfluid cavity optomechanics

Figure: Kashkanova+ ‘16

optical 

fibre

superfluid ⁴He filled optical cavity

Optomechanical interaction converts
~µeV phonons into detectable ~eV photons 

pump laser enhances small 𝑔0 

Energy-momentum conservation:
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Superfluid cavity optomechanics

Figure: Kashkanova+ ‘16

optical 

fibre

superfluid ⁴He filled optical cavity

Optomechanical interaction converts
~µeV phonons into detectable ~eV photons 

Optomechanical systems have demonstrated µeV phonon counting 
(e.g. Patil et. al. ’22) 

pump laser enhances small 𝑔0 

Energy-momentum conservation:
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Narrow-band detection

Superfluid optomechanical systems as dark matter detectors:

✓ exceptional low-energy sensitivity (~µeV)

narrow-band detector (single phonon energy)

 Very low dark matter scattering rate due to restricted phase space
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Narrow-band detection & phonon lasing

Superfluid optomechanical systems as dark matter detectors:

✓ exceptional low-energy sensitivity (~µeV)

narrow-band detector (single phonon energy)

 Very low dark matter scattering rate due to restricted phase space

Solution: Phonon lasing
 
•  Stimulated scattering rate 

(proportional to phonon occupation number)

• Achieved via optomechanical interaction detected
phonon

pumped 
phonon
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Scattering rate

Initial state phonon number density

Acoustic quality factor: 
3-phonon coupling 

resonantly 
enhanced
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Scattering rate

Initial state phonon number density

Acoustic quality factor: 
3-phonon coupling 

Scattering is between specific initial and final phonon states:

I. Scattering is at fixed momentum transfer:

II. Event rate doesn’t scale with detector volume (resolved mode regime)
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Optomechanical detection

Dark matter detector requires optomechanical 
control of two acoustic modes
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Optomechanical detection

Phonon lasing
Lower-energy phonon mode       populated 
via optomechanical interaction

1
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Optomechanical detection

Scattering
Stimulated dark matter scattering excites 
higher energy phonon mode

2
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Optomechanical detection

Conversion & amplification
Optomechanical conversion of       phonon
to higher energy photon

3
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Optomechanical detection

4 Detection
Photon detected by single photon detector 
(SNSPD)

single photon 
detector



Peter Cox - University of Melbourne

ODIN: Optomechanical Dark-matter INstrument

cavity dimensions ~ 30cm x 0.7mm
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ODIN: Optomechanical Dark-matter INstrument

cavity dimensions ~ 30cm x 0.7mm

Main detector backgrounds:

• Thermal phonons

(10−5 Hz at T = 4mK and Q = 1010)

• SNSPD dark counts

(~6 × 10−6 Hz)

• Incomplete filtering of pump lasers

(especially 532nm, supressed with filter cavities)

Expected background rate ~1 event/day
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ODIN: Projected Sensitivity
Initial “baseline” scenario 

“Improved” scenario

Sensitivity determined by:

• Phonon occupation 

• Acoustic Q-factor (phonon width)

• Intrinsic background rate

Sensitive to keV-scale dark matter
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Summary

• Superfluid He is a promising target for light dark matter searches

• Optomechanical detection uses conversion of ~µeV phonons to ~eV photons

• ODIN will be sensitive to ~keV mass dark matter

• Currently exploring improvements to sensitivity – signal modulation?

• Potential application to high frequency gravitational waves

• Proposals to also use optomechanical detectors for ultralight DM
[Manley+ ‘19, Manley+ ‘22, Brady+ ‘22, Murgui+’22].
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Backup
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Optical asymmetry

Optical mode spacing (FSR) can be engineered to select amplification/cooling of acoustic modes:
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