

Axion Dark Matter from Inflation

Bingrong Yu (Cornell U. & Korea U.)

BSM Workshop @ Quy Nhon

Jan 12, 2024

To appear soon in collaboration with **Ameen Ismail** and **Seung J. Lee**

Outline

D Motivation

□ Framework

D Phenomenology

Conclusion

Ultralight dark matter

DM models span many orders of magnitude in mass

> Ultralight (wave) DM: $10^{-22} \text{ eV} < m < \text{eV}$

Future atomic-/astro-physics experiments: $m < 10^{-10} \text{eV}$

> Axion: well-motivated ultralight DM (protected by shift symmetry)

$$\ddot{\eta} + 3H\dot{\eta} + m_{\eta}^2 \eta^2 = 0 \qquad \qquad V(\eta) = \Lambda_{\eta}^4 \left[1 - \cos\left(\frac{\eta}{f_{\eta}}\right) \right] \Rightarrow m_{\eta} = \Lambda_{\eta}^2 / f_{\eta}$$

> Axion: well-motivated ultralight DM (protected by shift symmetry)

$$\ddot{\eta} + 3H\dot{\eta} + m_{\eta}^2\eta^2 = 0 \qquad \qquad V(\eta) = \Lambda_{\eta}^4 \left[1 - \cos\left(\frac{\eta}{f_{\eta}}\right)\right] \Rightarrow m_{\eta} = \Lambda_{\eta}^2/f_{\eta}$$

 $\mathbf{2}$

> Misalignment mechanism: axion starts to oscillate when $H \sim m_{\eta}$, and behaves as matter after then, $\rho_{\eta} \sim a^{-3}$

$$\left(\frac{\Omega_{\eta}h^2}{0.12}\right)_{\text{ALP, misalignment}} \sim \left(\frac{m_{\eta}}{10^{-10} \text{ eV}}\right)^{1/2} \left(\frac{f_{\eta}}{10^{14} \text{ GeV}}\right)$$
$$\left(\frac{\Omega_{\eta}h^2}{0.12}\right)_{\text{QCD axion, misalignment}} \sim \left(\frac{10^{-6} \text{ eV}}{m_{\eta}}\right)^{3/2}$$

> Axion: well-motivated ultralight DM (protected by shift symmetry)

$$\ddot{\eta} + 3H\dot{\eta} + m_{\eta}^2\eta^2 = 0 \qquad V(\eta) = \Lambda_{\eta}^4 \left[1 - \cos\left(\frac{\eta}{f_{\eta}}\right)\right] \Rightarrow m_{\eta} = \Lambda_{\eta}^2/f_{\eta}$$

> Misalignment mechanism: axion starts to oscillate when $H \sim m_{\eta}$, and behaves as matter after then, $\rho_{\eta} \sim a^{-3}$

$$\left(\frac{\Omega_{\eta}h^2}{0.12}\right)_{\text{ALP, misalignment}} \sim \left(\frac{m_{\eta}}{10^{-10} \text{ eV}}\right)^{1/2} \left(\frac{f_{\eta}}{10^{14} \text{ GeV}}\right)^2$$
$$\left(\Omega_{\eta}h^2\right) \qquad \qquad \left(10^{-6} \text{ eV}\right)^{3/2}$$

$$\left(\frac{42\eta n}{0.12}\right)_{\text{QCD axion, misalignment}} \sim \left(\frac{10 - CV}{m_{\eta}}\right)$$

> For ALP DM: $f_{\eta} > 10^{14} \text{GeV}$ if $m_{\eta} < 10^{-10} \text{ eV}$ For QCD axion DM: $10^{-6} \text{eV} < m_{\eta} < 10^{-4} \text{ eV}$

Axion: well-motivated ultralight DM (protected by shift symmetry)

$$\ddot{\eta} + 3H\dot{\eta} + m_{\eta}^2\eta^2 = 0 \qquad \qquad V(\eta) = \Lambda_{\eta}^4 \left[1 - \cos\left(\frac{\eta}{f_{\eta}}\right)\right] \Rightarrow m_{\eta} = \Lambda_{\eta}^2/f_{\eta}$$

> Misalignment mechanism: axion starts to oscillate when $H \sim m_{\eta}$, and behaves as matter after then, $\rho_{\eta} \sim a^{-3}$

$$\left(\frac{\Omega_{\eta}h^2}{0.12}\right)_{\text{ALP, misalignment}} \sim \left(\frac{m_{\eta}}{10^{-10} \text{ eV}}\right)^{1/2} \left(\frac{f_{\eta}}{10^{14} \text{ GeV}}\right)^2$$

$$\left(\frac{\Omega_{\eta}h^2}{0.12}\right)_{\text{QCD axion, misalignment}} \sim \left(\frac{10^{-6} \text{ eV}}{m_{\eta}}\right)^{3/2}$$

> For ALP DM: $f_{\eta} > 10^{14} \text{GeV}$ if $m_{\eta} < 10^{-10} \text{ eV}$ For QCD axion DM: $10^{-6} \text{eV} < m_{\eta} < 10^{-4} \text{ eV}$

Any new windows? Need new mechanism beyond misalignment!

• We assume the PQ symmetry has broken during inflation, $f_{\eta} > H_{\text{inf}}$. Axion is effectively massless during inflation if $m_{\eta}/F < H_{\text{inf}}$

$$\mathcal{S} = \int \mathrm{d}^4 x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) - \frac{1}{2} F^2(\phi) g^{\mu\nu} \partial_\mu \eta \partial_\nu \eta \right] \qquad \begin{array}{c} \phi: \text{ inflaton} \\ \eta: \text{ axion} \end{array}$$

• We assume the PQ symmetry has broken during inflation, $f_{\eta} > H_{\text{inf}}$. Axion is effectively massless during inflation if $m_{\eta}/F < H_{\text{inf}}$

$$\mathcal{S} = \int \mathrm{d}^4 x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) - \frac{1}{2} F^2(\phi) g^{\mu\nu} \partial_\mu \eta \partial_\nu \eta \right] \qquad \begin{array}{l} \phi: \text{ inflaton} \\ \eta: \text{ axion} \end{array}$$

• Kinetic coupling $F(\phi)$ is a general function of inflaton, reduced to unit at the end of inflation: $F(\phi_e) = 1$

• We assume the PQ symmetry has broken during inflation, $f_{\eta} > H_{\text{inf}}$. Axion is effectively massless during inflation if $m_{\eta}/F < H_{\text{inf}}$

$$\mathcal{S} = \int \mathrm{d}^4 x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) - \frac{1}{2} F^2(\phi) g^{\mu\nu} \partial_\mu \eta \partial_\nu \eta \right] \qquad \begin{array}{l} \phi: \text{ inflaton} \\ \eta: \text{ axion} \end{array}$$

- Kinetic coupling $F(\phi)$ is a general function of inflaton, reduced to unit at the end of inflation: $F(\phi_e) = 1$
- Flat FLRW metric

$$ds^{2} = -dt^{2} + a^{2}(t)\delta_{ij}dx^{i}dx^{j} = a^{2}(\tau)\left(-d\tau^{2} + \delta_{ij}dx^{i}dx^{j}\right) \qquad \text{conformal time: } d\tau \equiv \frac{dt}{a}$$

de Sitter background: $a = -\frac{1}{H\tau}$

• We assume the PQ symmetry has broken during inflation, $f_{\eta} > H_{\text{inf}}$. Axion is effectively massless during inflation if $m_{\eta}/F < H_{\text{inf}}$

$$\mathcal{S} = \int \mathrm{d}^4 x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) - \frac{1}{2} F^2(\phi) g^{\mu\nu} \partial_\mu \eta \partial_\nu \eta \right] \qquad \begin{array}{l} \phi: \text{ inflaton} \\ \eta: \text{ axion} \end{array}$$

- Kinetic coupling $F(\phi)$ is a general function of inflaton, reduced to unit at the end of inflation: $F(\phi_e) = 1$
- Flat FLRW metric

$$ds^{2} = -dt^{2} + a^{2}(t)\delta_{ij}dx^{i}dx^{j} = a^{2}(\tau)\left(-d\tau^{2} + \delta_{ij}dx^{i}dx^{j}\right) \qquad \text{conformal time: } d\tau \equiv \frac{dt}{a}$$

de Sitter background: $a = -\frac{1}{H\tau}$

• Abundance of axion is sufficiently produced through $F(\phi)$ during inflation

$$f(\tau, \mathbf{k}) = \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \left[f_k(\tau) \hat{a}_{\mathbf{k}} e^{\mathrm{i}\mathbf{k}\cdot\mathbf{x}} + f_k^*(\tau) \hat{a}_{\mathbf{k}}^{\dagger} e^{-\mathrm{i}\mathbf{k}\cdot\mathbf{x}} \right]$$

 $f \equiv aF\eta$

• From the action, one obtains the EOM of axion:

$$f_k'' + \left(k^2 - \frac{a''}{a} - \frac{F''}{F}\right)f_k = 0 \qquad \qquad f' \equiv \mathrm{d}f/\mathrm{d}\tau$$

$$f(\tau, \mathbf{k}) = \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \left[f_k(\tau) \hat{a}_{\mathbf{k}} e^{\mathrm{i}\mathbf{k}\cdot\mathbf{x}} + f_k^*(\tau) \hat{a}_{\mathbf{k}}^{\dagger} e^{-\mathrm{i}\mathbf{k}\cdot\mathbf{x}} \right]$$

• From the action, one obtains the EOM of axion:

$$f_k'' + \left(k^2 - \frac{a''}{a} - \frac{F''}{F}\right)f_k = 0$$

• Assume the kinetic coupling: $F(\phi) = (a/a_e)^n$ \leftarrow $F(\phi) \sim e^{-n\phi^2/M_{\rm Pl}^2}$

$$f \equiv aF\eta$$
$$f' \equiv df/d\tau$$

2004.10743 (for dark photon DM)

slow roll

$$\partial_x^2 f_k + \left[1 - \frac{2 + n\left(n+1\right)}{x^2}\right] f_k = 0$$

 $x \equiv -k\tau = k/(aH_{\text{inf}})$

- x < 1: superhorizon
- x > 1: subhorizon

$$f(\tau, \mathbf{k}) = \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \left[f_k(\tau) \hat{a}_{\mathbf{k}} e^{\mathrm{i}\mathbf{k}\cdot\mathbf{x}} + f_k^*(\tau) \hat{a}_{\mathbf{k}}^{\dagger} e^{-\mathrm{i}\mathbf{k}\cdot\mathbf{x}} \right]$$

 \mathbf{T}

• From the action, one obtains the EOM of axion:

$$f_k'' + \left(k^2 - \frac{a''}{a} - \frac{F''}{F}\right)f_k = 0$$

• Assume the kinetic coupling: $F(\phi) = (a/a_e)^n$

$$f \equiv aF \eta$$
$$f' \equiv \mathrm{d}f/\mathrm{d}\tau$$

2004.10743 (for dark photon DM)

 $\label{eq:F} \qquad F(\phi) \sim e^{-n\phi^2/M_{\rm Pl}^2}$ slow roll

 $x \equiv -k\tau = k/(aH_{\text{inf}})$

x < 1: superhorizon

x > 1: subhorizon

$$\partial_x^2 f_k + \left[1 - \frac{2 + n(n+1)}{x^2}\right] f_k = 0$$

Bunch-Davis initial condition:

$$\lim_{k\tau\to-\infty} f_k(\tau) = \frac{1}{\sqrt{2k}} e^{-\mathrm{i}k\tau}$$

•

$$f(\tau, \mathbf{k}) = \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \left[f_k(\tau) \hat{a}_{\mathbf{k}} e^{\mathrm{i}\mathbf{k}\cdot\mathbf{x}} + f_k^*(\tau) \hat{a}_{\mathbf{k}}^{\dagger} e^{-\mathrm{i}\mathbf{k}\cdot\mathbf{x}} \right]$$

• From the action, one obtains the EOM of axion:

$$f_k'' + \left(k^2 - \frac{a''}{a} - \frac{F''}{F}\right)f_k = 0$$

• Assume the kinetic coupling: $F(\phi) = (a/a_e)^n$

$$\partial_x^2 f_k + \left[1 - \frac{2 + n(n+1)}{x^2}\right] f_k = 0$$

$$f \equiv aF\eta$$
$$f' \equiv df/d\tau$$

2004.10743 (for dark photon DM)

 $\label{eq:F} \qquad F(\phi) \sim e^{-n\phi^2/M_{\rm Pl}^2}$ slow roll

$$x \equiv -k\tau = k/(aH_{\text{inf}})$$

- x < 1: superhorizon
- x > 1: subhorizon

$$\lim_{k\tau\to-\infty} f_k(\tau) = \frac{1}{\sqrt{2k}} e^{-ik\tau}$$

• Solution of axion field during inflation:

$$f_k(\tau) = \frac{\sqrt{\pi}}{2} \sqrt{-\tau} H_{\nu}^{(1)}\left(-k\tau\right)$$

$$\nu \equiv \frac{1}{2}\sqrt{4n^2 + 4n + 9}$$

Axion produced during inflation

• Energy density:
$$T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta S_{\eta}}{\delta g^{\mu\nu}}$$
 $x \equiv -k\tau$
 $\rho_{\eta} = T_{00} = \frac{1}{2a^4} \left[\left(f' + \frac{1+n}{\tau} f \right)^2 + (\partial_i f)^2 \right]$ $\nu \equiv \frac{1}{2}\sqrt{4n^2 + 4n + 9}$
 $\langle \rho_{\eta} \rangle \equiv \langle 0 | \rho_{\eta} | 0 \rangle = \frac{H_{\inf}^4}{16\pi} \int_0^\infty dx \, x^2 \left[\left| x H_{\nu-1}^{(1)}(x) + \left(n + \frac{3}{2} - \nu \right) H_{\nu}^{(1)}(x) \right|^2 + x^2 \left| H_{\nu}^{(1)}(x) \right|^2 \right]$

Axion produced during inflation

• Energy density:
$$T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta S_{\eta}}{\delta g^{\mu\nu}}$$
 $x \equiv -k\tau$
 $\rho_{\eta} = T_{00} = \frac{1}{2a^4} \left[\left(f' + \frac{1+n}{\tau} f \right)^2 + (\partial_i f)^2 \right]$ $\nu \equiv \frac{1}{2}\sqrt{4n^2 + 4n + 9}$
 $\langle \rho_{\eta} \rangle \equiv \langle 0|\rho_{\eta}|0 \rangle = \frac{H_{\text{inf}}^4}{16\pi} \int_0^\infty \mathrm{d}x \, x^2 \left[\left| x H_{\nu-1}^{(1)}(x) + \left(n + \frac{3}{2} - \nu \right) H_{\nu}^{(1)}(x) \right|^2 + x^2 \left| H_{\nu}^{(1)}(x) \right|^2 \right]$

• The spectrum is red and peaked at super-horizon mode if $\nu > 3/2$ (i.e., n > 0 or n < -1):

$$\langle \rho_{\eta} \rangle \approx \frac{H_{\inf}^4}{16\pi^3} 2^{2\nu} \left(n + \frac{3}{2} - \nu \right)^2 \Gamma^2(\nu) \int_{-k_{\min}\tau}^{\mathrm{UV}} \frac{\mathrm{d}x}{x} x^{3-2\nu} \qquad \nu = 3/2: \text{ scale-invariant spectrum}$$

IR cutoff set by the initial horizon: $k_{\rm min} \propto -1/\tau_{\rm i} \propto a_{\rm i} H_{\rm inf}$

Axion produced during inflation

- Energy density: $T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta S_{\eta}}{\delta g^{\mu\nu}}$ $x \equiv -k\tau$ $\rho_{\eta} = T_{00} = \frac{1}{2a^4} \left[\left(f' + \frac{1+n}{\tau} f \right)^2 + (\partial_i f)^2 \right]$ $\nu \equiv \frac{1}{2}\sqrt{4n^2 + 4n + 9}$ $\langle \rho_{\eta} \rangle \equiv \langle 0 | \rho_{\eta} | 0 \rangle = \frac{H_{\inf}^4}{16\pi} \int_0^\infty dx \, x^2 \left[\left| x H_{\nu-1}^{(1)}(x) + \left(n + \frac{3}{2} - \nu \right) H_{\nu}^{(1)}(x) \right|^2 + x^2 \left| H_{\nu}^{(1)}(x) \right|^2 \right]$
- The spectrum is red and peaked at super-horizon mode if $\nu > 3/2$ (i.e., n > 0 or n < -1):

$$\langle \rho_{\eta} \rangle \approx \frac{H_{\inf}^4}{16\pi^3} 2^{2\nu} \left(n + \frac{3}{2} - \nu \right)^2 \Gamma^2(\nu) \int_{-k_{\min}\tau}^{\mathrm{UV}} \frac{\mathrm{d}x}{x} x^{3-2\nu} \qquad \nu = 3/2: \text{ scale-invariant spectrum}$$

IR cutoff set by the initial horizon: $k_{\rm min} \propto -1/\tau_{\rm i} \propto a_{\rm i} H_{\rm inf}$

• Energy density at the end of inflation:

$$\langle \rho_{\eta} \rangle_{\tau_{\rm e}} \approx \frac{H_{\rm inf}^4}{16\pi^3} \frac{2^{2\nu} \left(n + 3/2 - \nu\right)^2 \Gamma^2(\nu)}{2\nu - 3} \frac{1}{\left(-k_{\rm min}\tau_{\rm e}\right)^{2\nu - 3}} \propto H_{\rm inf}^4 \left(\frac{\tau_{\rm i}}{\tau_{\rm e}}\right)^{2\nu - 3} \propto H_{\rm inf}^4 e^{(2\nu - 3)N}$$

Bingrong Yu

Framework

• Axion is relativistic when produced, with the peaked mometum at:

$$q_{\rm e} = k_{\rm min}/a_{\rm e} \propto e^{-N} H_{\rm inf}$$

• Axion is relativistic when produced, with the peaked mometum at:

$$q_{\rm e} = k_{\rm min}/a_{\rm e} \propto e^{-N} H_{\rm inf}$$

• Axion becomes NR before matter-radiation equality

$$q_{\rm NR} = m_{\eta} = q_{\rm e} T_{\rm NR} / T_{\rm reh} \Rightarrow T_{\rm NR} = \frac{m_{\eta}}{H_{\rm inf}} \frac{T_{\rm reh}}{(-k_{\rm min}\tau_{\rm e})} = \frac{m_{\eta}}{H_{\rm inf}} T_{\rm reh} e^N > T_{\rm eq}$$

• Axion is relativistic when produced, with the peaked mometum at:

$$q_{\rm e} = k_{\rm min}/a_{\rm e} \propto e^{-N} H_{\rm inf}$$

• Axion becomes NR before matter-radiation equality

$$q_{\rm NR} = m_{\eta} = q_{\rm e} T_{\rm NR} / T_{\rm reh} \Rightarrow T_{\rm NR} = \frac{m_{\eta}}{H_{\rm inf}} \frac{T_{\rm reh}}{(-k_{\rm min}\tau_{\rm e})} = \frac{m_{\eta}}{H_{\rm inf}} T_{\rm reh} e^N > T_{\rm eq}$$

• Axion relic abundance today:

$$\langle \rho_{\eta} \rangle_{t_{0}} = \langle \rho_{\eta} \rangle_{t_{e}} \left(\frac{a_{e}}{a_{NR}} \right)^{4} \left(\frac{a_{NR}}{a_{0}} \right)^{3} \qquad \nu \equiv \frac{1}{2} \sqrt{4n^{2} + 4n + 9} > 3/2$$

$$\Omega_{\eta} h^{2} = \frac{\langle \rho_{\eta} \rangle_{t_{0}}}{\rho_{c}} h^{2} = \frac{1}{4320\pi} \left(\frac{90}{\pi^{2}} \right)^{1/4} g_{*NR}^{1/4} g_{*eq}^{3/4} g_{*reh}^{-1/4} \frac{T_{0}^{3} m_{\eta} H_{inf}^{3/2}}{M_{Pl}^{7/2} H_{0}^{2} / h^{2}} \frac{2^{2\nu} \left(n + 3/2 - \nu \right)^{2} \Gamma^{2}(\nu)}{2\nu - 3} \frac{1}{\left(-k_{\min} \tau_{end} \right)^{2\nu - 2}}$$

• Axion is relativistic when produced, with the peaked mometum at:

$$q_{\rm e} = k_{\rm min}/a_{\rm e} \propto e^{-N} H_{\rm inf}$$

• Axion becomes NR before matter-radiation equality

$$q_{\rm NR} = m_{\eta} = q_{\rm e} T_{\rm NR} / T_{\rm reh} \Rightarrow T_{\rm NR} = \frac{m_{\eta}}{H_{\rm inf}} \frac{T_{\rm reh}}{(-k_{\rm min}\tau_{\rm e})} = \frac{m_{\eta}}{H_{\rm inf}} T_{\rm reh} e^N > T_{\rm eq}$$

• Axion relic abundance today:

$$\langle \rho_{\eta} \rangle_{t_{0}} = \langle \rho_{\eta} \rangle_{t_{e}} \left(\frac{a_{e}}{a_{NR}} \right)^{4} \left(\frac{a_{NR}}{a_{0}} \right)^{3} \qquad \nu \equiv \frac{1}{2} \sqrt{4n^{2} + 4n + 9} > 3/2$$

$$\Omega_{\eta} h^{2} = \frac{\langle \rho_{\eta} \rangle_{t_{0}}}{\rho_{c}} h^{2} = \frac{1}{4320\pi} \left(\frac{90}{\pi^{2}} \right)^{1/4} g_{*NR}^{1/4} g_{*eq}^{3/4} g_{*reh}^{-1/4} \frac{T_{0}^{3} m_{\eta} H_{\inf}^{3/2}}{M_{Pl}^{7/2} H_{0}^{2} / h^{2}} \frac{2^{2\nu} \left(n + 3/2 - \nu \right)^{2} \Gamma^{2}(\nu)}{2\nu - 3} \frac{1}{\left(-k_{\min} \tau_{end} \right)^{2\nu - 2}}{\left(-k_{\min} \tau_{end} \right)^{2\nu - 2}}$$

$$\left(\frac{\Omega_{\eta} h^{2}}{0.12} \right) = 9.5 \times 10^{-27} e^{N(2\nu - 2)} \left(\frac{m_{\eta}}{10^{-15} \text{ eV}} \right) \left(\frac{H_{\inf}}{10^{13} \text{ GeV}} \right)^{3/2} \times \frac{2^{2\nu} \left(n + 3/2 - \nu \right)^{2} \Gamma^{2}(\nu)}{2\nu - 3} \left(\frac{1}{n^{2} + n + 2} \right)^{\nu - 1}$$

• Axion is relativistic when produced, with the peaked mometum at:

$$q_{\rm e} = k_{\rm min}/a_{\rm e} \propto e^{-N} H_{\rm inf}$$

• Axion becomes NR before matter-radiation equality

$$q_{\rm NR} = m_{\eta} = q_{\rm e} T_{\rm NR} / T_{\rm reh} \Rightarrow T_{\rm NR} = \frac{m_{\eta}}{H_{\rm inf}} \frac{T_{\rm reh}}{(-k_{\rm min}\tau_{\rm e})} = \frac{m_{\eta}}{H_{\rm inf}} T_{\rm reh} e^N > T_{\rm eq}$$

• Axion relic abundance today:

$$\langle \rho_{\eta} \rangle_{t_{0}} = \langle \rho_{\eta} \rangle_{t_{e}} \left(\frac{a_{e}}{a_{NR}} \right)^{4} \left(\frac{a_{NR}}{a_{0}} \right)^{3} \qquad \nu \equiv \frac{1}{2} \sqrt{4n^{2} + 4n + 9} > 3/2$$

$$\Omega_{\eta} h^{2} = \frac{\langle \rho_{\eta} \rangle_{t_{0}}}{\rho_{c}} h^{2} = \frac{1}{4320\pi} \left(\frac{90}{\pi^{2}} \right)^{1/4} g_{*NR}^{1/4} g_{*eq}^{3/4} g_{*reh}^{-1/4} \frac{T_{0}^{3} m_{\eta} H_{\inf}^{3/2}}{M_{Pl}^{7/2} H_{0}^{2} / h^{2}} \frac{2^{2\nu} \left(n + 3/2 - \nu \right)^{2} \Gamma^{2}(\nu)}{2\nu - 3} \frac{1}{\left(-k_{\min} \tau_{end} \right)^{2\nu - 2}}{\left(-k_{\min} \tau_{end} \right)^{2\nu - 2}}$$

$$\overline{\left(\frac{\Omega_{\eta} h^{2}}{0.12} \right)} = 9.5 \times 10^{-27} e^{N(2\nu - 2)} \left(\frac{m_{\eta}}{10^{-15} \text{ eV}} \right) \left(\frac{H_{\inf}}{10^{13} \text{ GeV}} \right)^{3/2} \times \frac{2^{2\nu} \left(n + 3/2 - \nu \right)^{2} \Gamma^{2}(\nu)}{2\nu - 3} \left(\frac{1}{n^{2} + n + 2} \right)^{\nu - 1}$$

Constraints

• Back-reaction constraint

$$\begin{split} \ddot{\phi} + 3H_{\rm inf}\dot{\phi} + \frac{\partial V}{\partial \phi} + F \frac{\partial F}{\partial \phi} g^{\mu\nu} \partial_{\mu} \eta \partial_{\nu} \eta = 0 & \text{axion dynamics should not affect inflaton dynamics (single-field inflation)} \\ \left| F \frac{\partial F}{\partial \phi} \langle g^{\mu\nu} \partial_{\mu} \eta \partial_{\nu} \eta \rangle \right| \ll \left| 3H_{\rm inf} \dot{\phi} \right| & \langle \rho_{\eta} \rangle \ll 3M_{\rm Pl}^2 H_{\rm inf}^2 \\ \Rightarrow \frac{1}{-k_{\rm min} \tau_e} = e^N \ll \left[\frac{6\pi}{|n|} \frac{2\nu - 3}{2^{2\nu} (n + 3/2 - \nu)^2 \Gamma^2 (\nu)} A_{\rm s}^{-1} \right]^{\frac{1}{2\nu - 3}} & \nu \equiv \frac{1}{2} \sqrt{4n^2 + 4n + 9} > 3/2 \\ A_{\rm s} \equiv H_{\rm inf}^2 / \left(8\pi^2 \epsilon_V M_{\rm Pl}^2 \right) = 2.2 \times 10^{-9} \end{split}$$

v should be close to 3/2 to keep small enough back-reaction (i.e., *n* close to 0 or -1)

Constraints

Back-reaction constraint

$$\begin{split} \ddot{\phi} + 3H_{\rm inf}\dot{\phi} + \frac{\partial V}{\partial \phi} + F \frac{\partial F}{\partial \phi} g^{\mu\nu} \partial_{\mu} \eta \partial_{\nu} \eta = 0 & \text{axion dynamics should not affect inflation} \\ \left| F \frac{\partial F}{\partial \phi} \langle g^{\mu\nu} \partial_{\mu} \eta \partial_{\nu} \eta \rangle \right| \ll \left| 3H_{\rm inf} \dot{\phi} \right| & \langle \rho_{\eta} \rangle \ll 3M_{\rm Pl}^2 H_{\rm inf}^2 \\ \Rightarrow \frac{1}{-k_{\rm min} \tau_e} = e^N \ll \begin{bmatrix} \frac{6\pi}{|n|} \frac{2\nu - 3}{2^{2\nu} (n + 3/2 - \nu)^2 \Gamma^2(\nu)} A_{\rm s}^{-1} \end{bmatrix}^{\frac{1}{2\nu - 3}} & \nu \equiv \frac{1}{2} \sqrt{4n^2 + 4n + 9} > 3/2 \\ A_{\rm s} \equiv H_{\rm inf}^2 / \left(8\pi^2 \epsilon_V M_{\rm Pl}^2 \right) = 2.2 \times 10^{-9} \end{split}$$

 ν should be close to 3/2 to keep small enough back-reaction (i.e., n close to 0 or -1)

• Isocurvature bound

Longest axion wavelength produced during inflation: $k_{\rm n}^{-}$

$$\frac{1}{\min} = \frac{1}{\sqrt{2 + n(n+1)}} \frac{e^N}{H_{\inf}} \frac{a_0}{a_e}$$

To avoid possible isocurvature bound, we require $k_{\min}^{-1} < k_*^{-1}$ $k_* \equiv 0.05 \text{ Mpc}^{-1}$: pivot scale $\Rightarrow N \lesssim 56 + \frac{1}{2} \log \left[2 + n \left(n + 1\right)\right] + \frac{1}{2} \log \left(\frac{H_{\text{inf}}}{10^{13} \text{ GeV}}\right)$

measured by Planck

larger number of e-folds can be probed by future isocurvature measurement

Bingrong Yu

Phenomenology

Parameter space for DM

viable power index of kinetic coupling $F(\phi) = (a/a_e)^n$:

$$0 < n \lesssim 0.5 \text{ or } -1.4 \lesssim n < -1$$

Minimum mass of axion to be DM

Probed by future experiments

Probed by future experiments

Comparison with misalignment

Axion dark matter	Inflationary fluctuation	Misalignment
Production mechanism	kinetic coupling to inflaton	oscillation due to Hubble friction
Production era	during inflation	much later, when $H \sim m_{\eta}$
Kinematics	relativistic when produced	NR when produced
Power spectrum	red spectrum, peaked at super-horizon scale	nearly scale-invariant spectrum
Relic abundance	insensitive to breaking scale $\Omega_\eta \propto m_\eta H_{\rm inf}^{3/2}$	depend on breaking scale $\Omega_\eta \propto m_\eta^{1/2} f_\eta^2$
Parameter space (ALP DM)	for sub-eV axion, $f_{\eta} > H_{\rm inf} > 10^4 {\rm GeV}$	for sub-eV axion, $f_\eta > 10^{12} {\rm GeV}$
Parameter space (QCD axion DM)	$10^{-6} \mathrm{eV} < m_{\eta} < \mathrm{eV}$	$m_\eta \sim 10^{-6} { m eV}$

Thank you!

Q&A

Backup slides

Origin of kinetic coupling

$$\mathcal{L}_{\mathrm{kin}} = -rac{1}{2}F^2(\phi)g^{\mu
u}\partial_\mu\eta\partial_
u\eta$$

• Realization of kinetic coupling: $F(\phi) = (a/a_e)^n$

$$\mathbf{\widehat{f}} \quad \text{slow-roll approximation}$$
$$F(\phi) = \exp\left[-\frac{n}{M_{\text{Pl}}^2} \int_{\phi_{\text{e}}}^{\phi} \mathrm{d}\phi' \frac{V\left(\phi'\right)}{V_{\phi}\left(\phi'\right)}\right]$$

• Slow-roll with quadratic potential: $V(\phi) = m_{\phi}^2 \phi^2/2$

$$F(\phi) = \exp\left[-\frac{n}{4M_{\rm Pl}^2} \left(\phi^2 - \phi_{\rm e}^2\right)\right]$$

= $1 - \frac{n}{4M_{\rm Pl}^2} \left(\phi^2 - \phi_{\rm e}^2\right) + \frac{n^2}{32M_{\rm Pl}^4} \left(\phi^2 - \phi_{\rm e}^2\right)^2 + \cdots$

resummation of effective operators coupled to inflaton

Kinetic coupling from effective operator

• Exponential enhancement could also be realized from effecive operator

$$F(\phi) = 1 + \frac{C_5}{M_{\rm Pl}} (\phi - \phi_{\rm e})$$
 $|C_5\phi| < M_{\rm Pl}$ $V(\phi) = m_{\phi}^2 \phi^2/2$

• EOM of axion during inflation depends only on F''/F

$$f_k'' + \left(k^2 - \frac{a''}{a} - \frac{F''}{F}\right)f_k = 0 \qquad a''/a = 2/\tau^2$$

• For
$$F = (a/a_e)^n$$
: $F''/F = n(n+1)/\tau^2$
For $F = 1 + C_5 (\phi - \phi_e) / M_{\text{Pl}}$: $\frac{F''}{F} = -\sqrt{\frac{2}{3}} C_5 \frac{m_\phi}{H_{\text{inf}}} \frac{1}{\tau^2}$

The effective Wilson coefficient $C_5 m_{\phi}/H_{inf}$ plays the role of *n* Similar conclusion valid for higher-ordered effective operators

Bingrong Yu

Backup