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Figure 1. An overview of potential GWB signals across the frequency spectrum. The light blue
curve shows the prediction for single-field slow-roll inflation with a canonical kinetic term, with tensor-
to-scalar ratio r0.002 = 0.1 [52]. The pink curve shows a GWB from Nambu–Goto cosmic strings, using
“model 2” of the loop network, with a dimensionless string tension of Gµ = 10�11 [53]. The brown curve
shows a GWB from inspiralling supermassive BBHs, with the amplitude and shaded region shown here
corresponding to the common noise process in the NANOGrav 12.5-year data set [54]. The two grey
curves show GWBs generated by first-order phase transitions at the electroweak scale (⇠200 GeV) and
the QCD scale (⇠200 MeV), respectively [55]. The yellow curve shows a GWB generated by stellar-mass
compact binaries, based on the mass distributions and local merger rates inferred by LVK detections [56].
The dashed curves show various observational constraints, as described further in Section 5 (this in-
cludes the PPTA constraint, which intersects the possible NANOGrav SMBBH signal); the dotted curve
shows the integrated constraint from measurements of Neff, which cannot be directly compared with the
frequency-dependent constraint curves but is shown here for indicative purposes.

which is imprinted in the measured strain. Note that this measurement includes non-negligible
selection effects, as qualitatively different backgrounds contribute from different redshift shells
and from different directions.

In this section, we review both astrophysical and cosmological GWBs, providing the
necessary background for the targeted searches discussed in Section 5. We also comment on
the observational properties of the signal which are essential to understand when building an
optimal search method. The various sources are also summarised in Figure 1, which includes
the sensitivity of several GW detection efforts for reference.

3.1. Astrophysical Backgrounds
Astrophysical GWBs are the collection of all GWs generated by astrophysical processes

which are individually unresolved by your GW detector. These can be either individual
subthreshold signals, or they can be so numerous that they add up incoherently and form a
continuous signal in the timestream.

Perhaps the most studied signal in the literature is a background sourced by a collection of
inspiralling and merging compact binary systems. These include black hole binaries, neutron
star binaries, white dwarf binaries, and systems counting a mixed pair of these objects. Black
hole binaries in particular are a vast category of sources, as the mass of each black hole in

Review by Renzini et al, 2202.00178
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Figure 10. The GW spectrums from the phase transition for t
p inflation and (MD-)RD post-inflationary

evolution with H⇤ = 108GeV. The solid line is plotted using p ! 1 or dS inflation and aend/a⇤ = exp(�19)

while the dashed line is for p = 3 and aend/a⇤ = exp(�23). Four di↵erent colors corresponding to di↵erent ⌧r
settings. The upper one is for �/H⇤ = 10 and the lower one is for �/H⇤ = 3.

discussion of this feature and the spectrum. In addition to a first order phase transition, this feature
can also arise in any other instantaneous source. Its discovery can be an unmistakable signal of such
a dramatic event during the inflation.

The cosmological background the gravitational waves have propagated through will also imprint
on the final gravitational wave spectrum we see today. As such, the shape of the GW signal will
also o↵er a new window on the cosmological evolution in the early universe which can be invisible to
CMB, large scale structure, and other observables. In particular, we have demonstrated that if there
are no second inflationary stage during the radiation domination, the IR part of the gravitational
wave spectrum is only sensitive to post inflationary history. The UV part of the gravitational wave
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4.1 Strength of the peak signal

The peak of the GW signal and its corresponding frequency depend on the spectral shape.

From Eq. (2.43) and Eq. (2.45),the signal strength is proportional to
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The dependence on the wave number k of each part of the GW spectrum for di↵erent scenarios

are shown in Table 2. In general, we can parameterize the scale factor a during inflation as tp

with p > 1, and after inflation as tp̃. The spectrum in the UV region can be parameterized as

kiUV , with iUV ⌘ �b � 2[(p � 1)�1 + (1 � p̃)�1], which is always negative. In the intermediate

region, the spectrum is kiOSC , with iOSC ⌘ 3 � 2[(p � 1)�1 + (1 � p̃)�1]. iOSC can be either

positive or negative. In the case of quasi-de Sitter inflation, we have p ! 1. Therefore,

iOSC < 0 if p̃ > 1/3. For example, this would be the case for both MD and RD, as shown in

Table 1. At the same time, we have iOSC = 0 for kination domination. For the IR part of the

spectrum, parameterized as kiIR , we have iIR = 7 � 2(1 � p̃)�1. Therefore, iIR > 0 if p̃ < 5/7.

As we can see from Table 1, this condition is always satisfied in the standard cases discussed

in the literature. Thus, the position of the global maximum of the observed GW spectrum is

determined by iOSC. More specifically,

• If iOSC < 0, the global maximum is at the transition between the IR part and the

oscillatory part, where we have kp ⇡ H?. This is the case shown in Figs. 5,6,8 and 9.

Hence, the height of the global maximum can be estimated by substituting kp = H? to

Eq. (2.43). Then we have
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where the dimensionless function F depends on the details of the evolution of the

Universe from the phase transition to reheating. For the simplest case, quasi-de Sitter

inflation followed by instantaneous reheating, detailed calculation shows that F = 1.
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as a benchmark value for the strength of the GW signal.
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3. ANALYTICAL DESCRIPTION OF THE SPECTRUM

In this section we estimate the complete spectrum of scalar-induced gravitational waves analytically. To simplify
the analysis we neglect anisotropic stress and set Ψ = Φ. In section 4 we evaluate the exact spectrum numerically
including anisotropic stress and show that this gives only a small correction. With Ψ = Φ, the source term of the
equation of motion (18) can be expressed solely by the Bardeen potential Φ,

h′′
k + 2Hh′

k + k2hk = S(Φ(kη)) , (35)

and f(k, k̃, η) in equation (28) is expressed by a single transfer function Φ,

3(1 + w)

4
f(k, k̃, η) = 2(5 + 3w)Φ(|k − k̃|η)Φ(|k̃|η) + 4

(

2ηΦ(|k − k̃|η) + η2Φ′(|k − k̃|η)
)

Φ′(|k̃|η) . (36)

In Appendix B we show that the transfer function for first-order scalar modes can be written in the following form

Φ(kη) =

{

1
1+k2η2 η < ηeq

1
1+k2η2

eq
η > ηeq

(37)

ln(a)
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h = h
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FIG. 2: Evolution of scalar source and induced gravitational waves. Second-order tensors, h, are generated when the
mode k enters the horizon at ak. If horizon entry occurs during the radiation dominated era, then the scalar source decays as
a−γ until matter-radiation equality, aeq. During matter domination the scalar source terms remains at a constant value, S(f).
Gravitational waves redshift like a−1 as long as h > S

(f)/k2, but remain at a constant amplitude maintained by the constant
source term after that, a > a∗

k.

To study the generation of h induced by S we make the approximation that gravitational waves are produced
instantaneously when the relevant mode enters the horizon. The subsequent evolution of the tensor mode is scale-
dependent and determined by the time evolution of the scalar source term (see Figure 2). Scalar-induced gravitational
waves redshift as long as their magnitude is greater than S/k2. After that they freeze at a constant value maintained
by the constant source term during matter domination. We define the transfer function for scalar-induced gravitational
waves, t(k, η), as follows

hk(η) ≡ t(k, η)h(i)
k , (38)

where h(i)
k is the value of hk just after the instantaneous generation of gravitational waves after horizon entry (see

Figure 2). We estimate h(i)
k by dropping time derivatives in the equation of motion (35) (since kη > 1 after horizon

entry)

h(i)
k ∼ 1

k2
S(i) . (39)

Baumann, Steinhardt, Takahashi, hep-th/0703290

Modes enter horizon during RD, starts oscillate, and generates GW
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Figure 4. (a) The kernel function from eq. (74). We note a
clear resonance contribution from t ' 0.7 corresponding to
u + v '

p
3. (b) The transfer function T�. (c) Function

f(p, q, ⌧) as in eq. (69). We see that for the scalar modes
that enter the horizon earlier, with p, q > k, this function is
more suppressed as expected from the behavior of the transfer
function.

With these expressions, we can obtain a physical un-
derstanding of GW generation via eq. (70). The Green
function, given in eq. (76), is an oscillatory function of
time whose frequency is k. The quantity f(p, q, ⌧) is
also an oscillatory and decaying function of time (see
fig. 4c), inheriting these properties from the transfer func-
tion (75). Therefore, the dominant contribution to the
integral (68) is a resonant contribution when the mo-
mentum of the produced GW is of the same order as the
momentum of the scalar modes, i.e., k ⇠ p ⇠ q. In par-
ticular, the resonant point is at u+v '

p
3 [54] as shown

in fig. 4a. GW generation is suppressed in other parts
of the phase space. For example, the source term, which
contains gradients of the curvature perturbation [53], is
suppressed by small derivatives if any of the wavenumbers
p, q of ⇣ is much smaller than k. On the other hand, if
p, q are much larger than k, then the scalar modes would
have decayed significantly after entering the horizon by
the time k ⇠ H, and thus the production of GW with
momentum k gets suppressed.

To obtain the final result for ⌦GW, we note that the
GW comoving wavenumber k is related to the present-
day, redshifted frequency f of the generated GW via

f = f⇤

✓
a⇤
a0

◆
=

k

2⇡
' 1.5 mHz

✓
k

1012 Mpc�1

◆
, (77)

where f⇤ and a⇤ are respectively the frequency and the
scale factor at the time of GW generation. Using these

expressions, we arrive at our final result, shown in Fig. 5,
for the same benchmark choices discussed in Fig. 3. We
see that stochastic e↵ects can naturally give rise to a large
enough SGWB, within the sensitivity range of DECIGO,
BBO, µ-Ares, and Ultimate DECIGO [60–62].

VI. CONCLUSION

In this work, we have discussed an early Universe sce-
nario containing a light spectator field, along with an in-
flaton field. The fluctuations of the inflaton are red-tilted
and explain the observed fluctuations in the CMB and
LSS. On the other hand, the spectator field � naturally
acquires a blue-tilted power spectrum. This blue-tilted
power spectrum is eventually cut-o↵ at very small scales
since when such small-scale modes enter the horizon, the
spectator field contributes subdominantly to the total en-
ergy density. As a consequence, primordial black holes
are not produced in this scenario. Overall, this mecha-
nism of generating a blue-tilted spectrum works for any
generic inflaton potential and does not require any par-
ticular fine-tuning or structure such as an inflection point
or a bump on the potential or an ultra slow-roll phase.

The blue-tilted spectrum gives rise to large curvature
perturbations at small scales. These, in turn, source a
stochastic gravitational wave background (SGWB) when
the perturbations re-enter the horizon. Focusing on some
benchmark choices for the number of e-foldings and spec-
tator field potential, we have shown that this scenario
predicts observable gravitational waves at future detec-
tors operating in 10�5 Hz to 10 Hz range, with strengths
⌦GWh

2 ' 10�20 � 10�15.
There are various interesting future directions. In par-

ticular, we have worked in a regime where � does not
dominate the energy density during the cosmological his-
tory. It would be interesting to explore the consequences
of an early matter-dominated era caused by the � field.
We have also seen that the low-frequency scaling of the
SGWB spectrum depends on the mass and coupling of
� and is generally di↵erent from the f

3-scaling expected
in the context of cosmological PT, or f

2/3-scaling ex-
pected in the context of binary mergers. This di↵erent
frequency dependence can be used to identify the origin
of an SGWB, and distinguish between various cosmolog-
ical or astrophysical contributions. Along these lines, it
would be interesting to carry out a quantitative anal-
ysis to understand how well we can separate any two
frequency dependencies, for example, by doing a Fisher
analysis.

NOTE ADDED

While we were finishing this work, the NANOGrav re-
sult combining 15-year data appeared [63]. Secondary
gravitational waves from the scalar perturbation can in
principle give rise to the signal [64]. Such scalar per-
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1
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(@�)

2 � 1

2
m

2
�
2 � �

4
�
4
. (2.23)

Results: eigenvalues and eigenfunctions + power spectrum

2.3 Cosmological History and Curvature Perturbation

In this subsection we discuss a cosmological scenario in which the curvature perturbation
on large scales is controlled by the inflaton field �. This perturbation is slightly red-tilted,
as required by CMB observations. On the other hand, the curvature perturbation on small
scales is controlled by a spectator field � which gives rise to a blue-tilted spectrum. This
blue-tilted spectrum originates from stochastic fluctuations of �, as we discuss now.

A brief history of the early Universe in our scenario is as follows. Background dynamics
is driven by the inflaton field during inflation and � behaves as a spectator field with subdom-
inant energy density. � acquires stochastic fluctuations during inflation and becomes frozen
with some root mean square equilibrium displacement away from the minimum. After the
end of inflation, inflaton reheats into radiation which dominates the energy density while �

keeps diluting as a cosmological constant. As the Hubble scale falls below the effective mass
of �, it starts oscillating around its potential. Eventually � decays into radiation, following
which the evolution of the Universe becomes standard.

As a concrete example let us consider the model considered in (2.23). At the end of
inflation, the spectator field gets localized to the minimum of its potential, h�ei = 0. However,
it has a non-zero field variance h�2

e i 6= 0. The subscript ‘e’ denotes end of inflation. Total
energy density carried by � at the end of inflation is then given by,

⇢�,e =
1

2
m

2h�2
e i+

�

4
h�4

e i '
1

2
m

2h�2
e i+

�

4
h�2

e i2, (2.24)

where we assume negligible non-Gaussianity in the second equality. [SK: I don’t think we
should make this assumption since we can do the full computation anyways.] Depending on
the relative size of the effective mass [SK: probably need an expression] compared to the
Hubble parameter, the energy density in � redshifts in different ways. In its early stages,
it behaves as a cosmological constant. Subsequently it dilutes as radiation, and finally as
pressure-less dust before decaying into SM radiation,

⇢�(t) =

8
><

>:

⇢�,e , me↵ . H

⇢�,e(a/a1)
�4

, me↵ & H and m .
p

�h�2i/2
⇢�,e(a2/a1)

�4
(a/a2)

�3
, me↵ & H and m &

p
�h�2i/2.

(2.25)

[SK: If we do not use the above and the below equations, may be we can remove them.]
The first transition happens when me↵ = H, i.e. m

2
+ 3�h�2

e i = H
2 which in a radiation

dominated universe implies

a1

ae
=

✓
H

2
e

m2 + 3�h�2
e i

◆1/4

'
✓

H
2
e

3�h�2
e i

◆1/4

(2.26)

For the second equality, we use the fact that self-interaction energy is dominant. The second
transition happens when m =

p
�h�2i/2. We have h�2i / a

�2 during the radiation phase to
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Initial value of field does not matter. Amplitude of field 
dominated by stochastic fluctuation around origin

m2
σ > ϵH2 (ϵ = ·H/H2),



Blue tilt
3

Figure 1. Schematic of the mechanism. The comoving horizon
1/(aH) decreases during inflation and increases after that.
Any k-mode carries a fluctuation of order H/(2⇡) at the time
of mode exit. However, modes with larger k (red) exit the
horizon later and encounters less dilution compared to modes
with smaller k (blue), since t⇤ > t̃⇤. Consequently, modes
with larger k source stronger gravitational waves upon horizon
re-entry (shown via square box). We also depict the fact that
� carries an energy density / H

4 during inflation, and dilutes
as matter (for our benchmark choices) after inflation ends.

tually, � decays into Standard Model radiation, and its
isocurvature perturbations get imprinted onto the curva-
ture perturbation. Di↵erent from the curvaton paradigm,
in our scenario, � does not dominate the energy density of
the Universe, and also the fluctuations of the inflaton are
not negligible. In particular, on large scales, observed via
CMB and LSS, the fluctuations are red-tilted and sourced
by the inflaton, as in ⇤CDM cosmology. On the other
hand, the blue-tilted � fluctuations are subdominant on
those scales, while dominant at smaller scales . Mpc.
These enhanced perturbations can source an SGWB, ob-
servable in future gravitational wave detectors, as we de-
scribe below.

The rest of the work is organized as follows. In sec-
tion II, we describe the evolution of the inflaton field and
� along with some general properties of curvature per-
turbation in our framework. In section III, we compute
the stochastic contributions to � fluctuations to obtain
its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton field
� drives the expansion of the Universe during inflation
and the quantum fluctuations of � generate the density
fluctuations that we observe in the CMB and LSS, as
in standard cosmology. We also assume that there is a
second real scalar field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
1

2
m

2
�
2 +

1

4
��

4
. (1)

The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quartic
interactions dominate, with ��

2 � m
2, ⇢� dilutes like

radiation [29]. Eventually, the amplitude of � decreases
su�ciently, so that ��2 . m

2, following which ⇢� starts
redshifting like matter. We illustrate these behaviors in
Fig. 2.

Similar to the curvaton paradigm [25–28], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [30],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a

2
 �ij (ignoring vector and tensor

perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Since there is no energy transfer
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Consider the mode with physical momentum k(t). The mode exits the horizon when k(t⇤) = H.
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momentum k(t) is exiting the horizon, its amplitude is �(t⇤). At the same time, the amplitude

will decrease (albeit slowly since m� < H) since the field is massive. We take the evolution of the

amplitude obeys the classical equation of motion (assuming free field without self-interaction for
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Figure 1. Schematic of the mechanism. The comoving horizon
1/(aH) decreases during inflation and increases after that.
Any k-mode carries a fluctuation of order H/(2⇡) at the time
of mode exit. However, modes with larger k (red) exit the
horizon later and encounters less dilution compared to modes
with smaller k (blue), since t⇤ > t̃⇤. Consequently, modes
with larger k source stronger gravitational waves upon horizon
re-entry (shown via square box). We also depict the fact that
� carries an energy density / H

4 during inflation, and dilutes
as matter (for our benchmark choices) after inflation ends.

tually, � decays into Standard Model radiation, and its
isocurvature perturbations get imprinted onto the curva-
ture perturbation. Di↵erent from the curvaton paradigm,
in our scenario, � does not dominate the energy density of
the Universe, and also the fluctuations of the inflaton are
not negligible. In particular, on large scales, observed via
CMB and LSS, the fluctuations are red-tilted and sourced
by the inflaton, as in ⇤CDM cosmology. On the other
hand, the blue-tilted � fluctuations are subdominant on
those scales, while dominant at smaller scales . Mpc.
These enhanced perturbations can source an SGWB, ob-
servable in future gravitational wave detectors, as we de-
scribe below.

The rest of the work is organized as follows. In sec-
tion II, we describe the evolution of the inflaton field and
� along with some general properties of curvature per-
turbation in our framework. In section III, we compute
the stochastic contributions to � fluctuations to obtain
its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton field
� drives the expansion of the Universe during inflation
and the quantum fluctuations of � generate the density
fluctuations that we observe in the CMB and LSS, as
in standard cosmology. We also assume that there is a
second real scalar field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
1

2
m

2
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2 +

1

4
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4
. (1)

The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quartic
interactions dominate, with ��

2 � m
2, ⇢� dilutes like

radiation [29]. Eventually, the amplitude of � decreases
su�ciently, so that ��2 . m

2, following which ⇢� starts
redshifting like matter. We illustrate these behaviors in
Fig. 2.

Similar to the curvaton paradigm [25–28], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [30],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a

2
 �ij (ignoring vector and tensor

perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Since there is no energy transfer
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Figure 1. Schematic of the mechanism. The comoving horizon
1/(aH) decreases during inflation and increases after that.
Any k-mode carries a fluctuation of order H/(2⇡) at the time
of mode exit. However, modes with larger k (red) exit the
horizon later and encounters less dilution compared to modes
with smaller k (blue), since t⇤ > t̃⇤. Consequently, modes
with larger k source stronger gravitational waves upon horizon
re-entry (shown via square box). We also depict the fact that
� carries an energy density / H

4 during inflation, and dilutes
as matter (for our benchmark choices) after inflation ends.

tually, � decays into Standard Model radiation, and its
isocurvature perturbations get imprinted onto the curva-
ture perturbation. Di↵erent from the curvaton paradigm,
in our scenario, � does not dominate the energy density of
the Universe, and also the fluctuations of the inflaton are
not negligible. In particular, on large scales, observed via
CMB and LSS, the fluctuations are red-tilted and sourced
by the inflaton, as in ⇤CDM cosmology. On the other
hand, the blue-tilted � fluctuations are subdominant on
those scales, while dominant at smaller scales . Mpc.
These enhanced perturbations can source an SGWB, ob-
servable in future gravitational wave detectors, as we de-
scribe below.

The rest of the work is organized as follows. In sec-
tion II, we describe the evolution of the inflaton field and
� along with some general properties of curvature per-
turbation in our framework. In section III, we compute
the stochastic contributions to � fluctuations to obtain
its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton field
� drives the expansion of the Universe during inflation
and the quantum fluctuations of � generate the density
fluctuations that we observe in the CMB and LSS, as
in standard cosmology. We also assume that there is a
second real scalar field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
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The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m
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, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quartic
interactions dominate, with ��
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2, ⇢� dilutes like

radiation [29]. Eventually, the amplitude of � decreases
su�ciently, so that ��2 . m

2, following which ⇢� starts
redshifting like matter. We illustrate these behaviors in
Fig. 2.

Similar to the curvaton paradigm [25–28], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [30],

⇣ = � � H
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⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a
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perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Since there is no energy transfer
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Substituting eq. (2.39) gives

Pf (k) =
X

n

2

⇡
f2

n�

✓
2 � 2

⇤n

H

◆
sin

✓
⇤n⇡

H

◆✓
k

H

◆2⇤n/H

. (2.43)

At long distances, k ⌧ H, the power spectrum (2.43) is also dominated by the leading
term and has the power-law form,

Pf (k) ⇠
2

⇡
Af� [2 � (nf � 1)] sin

✓
⇡(nf � 1)

2

◆✓
k

H

◆
nf�1

⇡ Af (nf � 1)

✓
k

H

◆
nf�1

, (2.44)

where the constants Af and nf are the same as in eq. (2.40), and the last form is valid when
|nf � 1| ⌧ 1. In particular, this shows that nf is the spectral index, commonly defined as

ln Pf (k)

ln k
= nf � 1. (2.45)

3 Example: a massive self-interacting field

3.1 Eigenvalue equation

As an example of the formalism presented in the previous section we will discuss a potential
with quadratic and quartic contributions

V (�) =
1

2
m2�2 +

�

4
�4 , (3.1)

with the assumption m2 > 0. The analysis required for the double well potential, m2 < 0, is
significantly more complicated, which we will investigate in a separate publication [64].

For the potential in eq. (3.1) the eigenvalue equation (2.17) becomes

1

2

⇢
@2

@�2
�

✓
4⇡2

3H4

◆2�
m4�2+2�m2�4+�2�6

�
+

4⇡2

3H4

�
m2+3��2

��
 n(�) = �

4⇡2

H3
⇤n n(�) . (3.2)

It is convenient to introduce a scaled version of the above equation expressed with only
dimensionless parameters

⇢
@2

@x2
� U(↵; x)

�
 n(↵; x) = �8⇡2

⇤n(↵)

�1/2H
 n(↵; x), (3.3)

where

x ⌘
�1/4

H
�, ↵ ⌘

m2

p
�H2

, (3.4)

and

U(↵; x) =

✓
4⇡2

3

◆2

x2
�
↵+ x2

�2
�

4⇡2

3

�
↵+ 3x2

�
. (3.5)

In this form it is apparent that up to an overall scale, the eigenvalues ⇤n and the eigen-
functions  n depend only on one dimensionless parameter ↵. In the next subsection, we will
consider the limits of small and large ↵ using perturbation theory, and the case of an arbitary
↵ numerically. From now on throughout this section we will drop the explicit x dependence
from the eigenfunctions.

– 7 –
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with

N =
2
p

2
p
�

exp
�
m4⇡2

3H4�

�
mK 1

4

�
m4⇡2

3H4�

� . (37)

Here Kn(x) is the modified Bessel function of the sec-
ond kind. The mean displacement of the field can be
computed as,

h�2i =

Z 1
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In the appropriate limits, this can be simplified to,
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, (39)
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2
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matching the standard results [24]. We can also compute
the average energy density of the field as,
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reducing to,
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, (42)

hV (�)i
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m!0

=
3H

4
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. (43)

To ensure that � does not dominate energy density dur-
ing inflation, we require

hV (�)i ⌧ 3H
2
M

2

pl
. (44)

Finally, we compute hV 00(�)i to check the validity of slow-
roll of the � field,
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which reduces to,

hV 00(�)i
����
�!0

= m
2
, (46)

hV 00(�)i
����
m!0

=
3
p

3�(3/4)p
2⇡�(1/4)

p
�H

2 ⇡ 0.4
p
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To ensure slow-roll, we require

hV 00(�)i ⌧ H
2
. (48)

m
2
/H

2
� ⇤2/H g

2
2 ⇤4/H g

2
4

0.2 0.05 0.16 1.99 0.37 0.03
0.2 0.07 0.17 1.98 0.40 0.05
0.2 0.1 0.18 1.98 0.44 0.07
0.25 0.05 0.19 1.99 0.42 0.02
0.25 0.07 0.20 1.99 0.45 0.03
0.25 0.1 0.21 1.98 0.49 0.05
0.3 0.05 0.22 1.99 0.48 0.01
0.3 0.07 0.23 1.99 0.51 0.02
0.3 0.1 0.24 1.99 0.54 0.03

Table I. Eigenvalues for some benchmark parameter choices
corresponding to the potential in eq. (1).

B. Power Spectrum

To obtain isocurvature power spectrum, PS� , we need
to compute the two-point function of �⇢�/⇢�. We can
write this more explicitly as,

�⇢�(x)

⇢�
=
⇢�(x) � h⇢�(x)i

h⇢�(x)i =
⇢�(x)

h⇢�(x)i � 1. (49)

where we can approximate ⇢� ⇡ V (�), since hV (�)i is
approximately frozen, as long as eq. (48) is satisfied. Re-
ferring to eq. (33) and eq. (35), the relevant coe�cient
gn for ⇢� is determined by,

gn =

R
d� n(�)⇢� 0(�)R
d� 0(�)⇢� 0(�)

. (50)

For n > 0, the last term in eq. (49) does not contribute
because of the orthogonality of the eigenfunctions.

The eigenfunctions  n and the eigenvalues ⇤n relevant
for eq. (35) can be obtained by solving the eigensystem
for the potential eq. (1). In terms of variables, z =
�
1/4
�/H and ↵ = m

2
/(

p
�H

2), the eigenvalue eq. (19)
can be written as [35],

@
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 n

@z2
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�
✓

4⇡2

3

◆2

(↵z + z
3)2 +

4⇡2

3
(↵+ 3z

2)

!
 n

= �8⇡2

p
�

⇤n

H
 n.

(51)

Given the potential in eq. (1), the eigenfunctions are odd
(even) functions of � for odd (even) values of n. Since
⇢� is an even function of �, eq. (50) implies g1 = 0,
and therefore, the leading coe�cient is g2 with the eigen-
value ⇤2 determining the first non-zero contribution to
the spectral tilt. We show the numerical results for the
eigenvalues for some benchmark parameter choices in Ta-
ble I.

The curvature power spectrum �2

⇣
depends on both

�2

S�
and f�, as in eq. (7). With the values of gn, ⇤n in

JCAP08(2019)001

Substituting eq. (2.39) gives

Pf (k) =
X

n

2

⇡
f2

n�

✓
2 � 2

⇤n

H

◆
sin

✓
⇤n⇡

H

◆✓
k

H

◆2⇤n/H

. (2.43)

At long distances, k ⌧ H, the power spectrum (2.43) is also dominated by the leading
term and has the power-law form,

Pf (k) ⇠
2

⇡
Af� [2 � (nf � 1)] sin

✓
⇡(nf � 1)

2

◆✓
k

H

◆
nf�1

⇡ Af (nf � 1)

✓
k

H

◆
nf�1

, (2.44)

where the constants Af and nf are the same as in eq. (2.40), and the last form is valid when
|nf � 1| ⌧ 1. In particular, this shows that nf is the spectral index, commonly defined as

ln Pf (k)

ln k
= nf � 1. (2.45)

3 Example: a massive self-interacting field

3.1 Eigenvalue equation

As an example of the formalism presented in the previous section we will discuss a potential
with quadratic and quartic contributions

V (�) =
1

2
m2�2 +

�

4
�4 , (3.1)

with the assumption m2 > 0. The analysis required for the double well potential, m2 < 0, is
significantly more complicated, which we will investigate in a separate publication [64].

For the potential in eq. (3.1) the eigenvalue equation (2.17) becomes

1

2

⇢
@2

@�2
�

✓
4⇡2

3H4

◆2�
m4�2+2�m2�4+�2�6

�
+

4⇡2

3H4

�
m2+3��2

��
 n(�) = �

4⇡2

H3
⇤n n(�) . (3.2)

It is convenient to introduce a scaled version of the above equation expressed with only
dimensionless parameters

⇢
@2

@x2
� U(↵; x)

�
 n(↵; x) = �8⇡2

⇤n(↵)

�1/2H
 n(↵; x), (3.3)

where

x ⌘
�1/4

H
�, ↵ ⌘

m2

p
�H2

, (3.4)

and

U(↵; x) =

✓
4⇡2

3

◆2

x2
�
↵+ x2

�2
�

4⇡2

3

�
↵+ 3x2

�
. (3.5)

In this form it is apparent that up to an overall scale, the eigenvalues ⇤n and the eigen-
functions  n depend only on one dimensionless parameter ↵. In the next subsection, we will
consider the limits of small and large ↵ using perturbation theory, and the case of an arbitary
↵ numerically. From now on throughout this section we will drop the explicit x dependence
from the eigenfunctions.
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its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

Clarifications on the notations. (1) Perturbed FRW

metric. Comment on hij vs
1

2
hij . (2) Fourier transform

convention. Comment on (2⇡)3 vs (2⇡)3/2 in the litera-
ture.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton
field � drives the expansion of the Universe during in-
flation and the quantum fluctuations of � generate the
density fluctuations that we observe in the CMB and
LSS, as in standard cosmology. We also assume that
there is a second field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
1

2
m

2
�
2 +

1

4
��

4
. (1)

The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quar-
tic interactions dominate, with ��

2 � m
2, ⇢� dilutes

like radiation [15]. Eventually, the amplitude of � de-
creases su�ciently, so that ��2 . m

2, following which
⇢� starts redshifting like matter. We illustrate these be-
haviors in fig. 1.

Similar to the curvaton paradigm [11–14], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.
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Figure 1. Time evolution of scalar field energy density ⇢�(t).
In scenarios where the quartic term dominates the initial evo-
lution (dashed red), the field dilutes as radiation (dot-dashed
olive), ⇢�(t) / 1/a(t)4. Eventually, the mass term becomes
important, and the behavior becomes ⇢�(t) / 1/a(t)3. The
benchmark choices in this work will mimic the blue curve
where the evolution of ⇢�(t) is always dominated by the mass
term with a matter-like dilution.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [16],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a2 �ij (ignoring vector and tensor
perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Then there is no energy transfer
between the two sectors and their energy densities evolve
as,

⇢̇r = �4H⇢r , ⇢̇� = �3H⇢�, (3)

where we have focused on the epoch where � dilutes like
matter. For the benchmark parameter choices discussed
below, the matter-like dilution for � onsets soon after
inflation. Similar to eq. (2), we can parametrize gauge
invariant fluctuations in radiation and � with the vari-
ables,

⇣r = � +
1

4

�⇢r

⇢r
, ⇣� = � +

1

3

�⇢�

⇢�
. (4)

In terms of the above variables, we can express eq. (2)
as,

⇣ =
4

4 + 3f�
⇣r +

3f�
4 + 3f�

⇣� = ⇣r +
f�

4 + 3f�
S�. (5)

Here S� ⌘ 3(⇣� � ⇣r) is the isocurvature perturbation
between radiation and � perturbations. In the absence
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its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.
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II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton
field � drives the expansion of the Universe during in-
flation and the quantum fluctuations of � generate the
density fluctuations that we observe in the CMB and
LSS, as in standard cosmology. We also assume that
there is a second field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
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The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m
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, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quar-
tic interactions dominate, with ��

2 � m
2, ⇢� dilutes

like radiation [15]. Eventually, the amplitude of � de-
creases su�ciently, so that ��2 . m

2, following which
⇢� starts redshifting like matter. We illustrate these be-
haviors in fig. 1.

Similar to the curvaton paradigm [11–14], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.
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In scenarios where the quartic term dominates the initial evo-
lution (dashed red), the field dilutes as radiation (dot-dashed
olive), ⇢�(t) / 1/a(t)4. Eventually, the mass term becomes
important, and the behavior becomes ⇢�(t) / 1/a(t)3. The
benchmark choices in this work will mimic the blue curve
where the evolution of ⇢�(t) is always dominated by the mass
term with a matter-like dilution.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [16],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a2 �ij (ignoring vector and tensor
perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Then there is no energy transfer
between the two sectors and their energy densities evolve
as,

⇢̇r = �4H⇢r , ⇢̇� = �3H⇢�, (3)

where we have focused on the epoch where � dilutes like
matter. For the benchmark parameter choices discussed
below, the matter-like dilution for � onsets soon after
inflation. Similar to eq. (2), we can parametrize gauge
invariant fluctuations in radiation and � with the vari-
ables,

⇣r = � +
1

4

�⇢r

⇢r
, ⇣� = � +

1
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⇢�
. (4)

In terms of the above variables, we can express eq. (2)
as,

⇣ =
4

4 + 3f�
⇣r +

3f�
4 + 3f�

⇣� = ⇣r +
f�

4 + 3f�
S�. (5)

Here S� ⌘ 3(⇣� � ⇣r) is the isocurvature perturbation
between radiation and � perturbations. In the absence
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upper bound [1], ⇢end ' Vk/100, motivated by simple
slow-roll inflation models, and w ⇡ 0 [23–25].2 Then
depending on the reheating temperature, we get

N(k) =

(
62, TRH = 6 ⇥ 1015 GeV,

59, TRH = 1011 GeV.
(55)

For the first benchmark, we have assumed an instan-
taneous reheating after inflation, while for the second
benchmark, the reheating process takes place for an
extended period of time. For these two benchmarks,
kend ⇡ 4 ⇥ 1023 Mpc�1 and 1022 Mpc�1, respectively.

To determine �2

⇣
(k), we also need to evaluate f� as a

function of time. We can express the time dependence of
f� in terms of k in the following way. A given k-mode
re-enters the horizon when k = akHk, and assuming ra-
diation domination, we get k/kend = aend/ak. Since f�

increases with the scale factor before � decay, we can ex-
press f�(t) = f�(td)(kd/k), for t < td, where kd and k

are the modes that re-enter the horizon at time td and
t, respectively. Therefore, the final expression for the
curvature power spectrum at the time of mode re-entry
follows from eq. (7),

�2

⇣
(k) =

8
><

>:

�2

⇣r
(k) +

⇣
f�(td)

4+3f�(td)

⌘2

�2

S�
(k), k < kd,

�2

⇣r
(k) +

⇣
f�(td)(kd/k)

4+3f�(td)(kd/k)

⌘2

�2

S�
(k), k > kd.

(56)

To determine the scale kd, we consider the benchmarks
discussed above, along with some additional choices for
other parameters.

a. Benchmark 1. We focus on the first benchmark
in eq. (55). For m

2 = 0.2H2 and � ' 0.05 � 0.1, we get
hV (�)i ⇡ 0.02H4 from eq. (41), implying hV (�)i/Vk ⇡
3⇥10�12 for H = 5⇥1013 GeV. Assuming instantaneous
reheating, and ⇢end ' Vk/100, we see f� ' 1 for a '
(1/3) ⇥ 1010aend. As benchmarks, we assume � decays
when f� = 1 and 1/3. Using kend ⇡ 4 ⇥ 1023 Mpc�1,
we can then evaluate kd ⇡ 1014 Mpc�1 and kd ⇡ 3 ⇥
1014 Mpc�1, respectively. The result for the curvature
power spectrum with these choices is shown in fig. 2.

b. Benchmark 2. We now discuss the second bench-
mark in eq. (55). We again choose m

2 = 0.2H2 and
� ' 0.05 � 0.1, for which we get hV (�)i ⇡ 0.02H4

from eq. (41). This implies hV (�)i/Vk ⇡ 3 ⇥ 10�12 for
H = 5⇥1013 GeV, as before. The rest of the parameters
can be derived in an analogous way, with one di↵erence.
During the reheating epoch, with our assumption w ⇡ 0,
f� does not grow with the scale factor since the dominant
energy density of the Universe is also diluting as mat-
ter. Accounting for this gives kd ⇡ 8 ⇥ 1011 Mpc�1 and
kd ⇡ 3 ⇥ 1012 Mpc�1, for f� = 1 and 1/3, respectively,
with the resulting curvature power spectrum shown in
fig. 3.

2
The precise value of w is model dependent, see, e.g., [26–30]

and [31] for a review.
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Figure 2. The power spectrum of curvature perturbations for
benchmark 1 with various choices for the quartic coupling �

and decay constant f�. We label the momentum kd at which
the spectrum reaches its peak. We can see that the amplitude
of this peak increases with decreasing � and/or increasing f�.
Signals for all choices may be accessible to super-PIXIE, with
maximum signals possibly reaching PTAs.
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Figure 3. The power spectrum of curvature perturbations
for benchmark 2 with the same choices of � and f� as fig. 2.
Crucially, this benchmark lowers the number of e-folds during
inflation in comparison to benchmark 1, and results in signals
with decreased amplitude that are shifted toward lower k,
increasing their visibility to near-future detectors. In partic-
ular, a power spectrum with � ⇡ 0.05 and f� = 1 may be
accessible to PIXIE.

, mode entering the horizon when the scalar decays.kd
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Figure 1. Schematic of the mechanism. The comoving horizon
1/(aH) decreases during inflation and increases after that.
Any k-mode carries a fluctuation of order H/(2⇡) at the time
of mode exit. However, modes with larger k (red) exit the
horizon later and encounters less dilution compared to modes
with smaller k (blue), since t⇤ > t̃⇤. Consequently, modes
with larger k source stronger gravitational waves upon horizon
re-entry (shown via square box). We also depict the fact that
� carries an energy density / H

4 during inflation, and dilutes
as matter (for our benchmark choices) after inflation ends.

tually, � decays into Standard Model radiation, and its
isocurvature perturbations get imprinted onto the curva-
ture perturbation. Di↵erent from the curvaton paradigm,
in our scenario, � does not dominate the energy density of
the Universe, and also the fluctuations of the inflaton are
not negligible. In particular, on large scales, observed via
CMB and LSS, the fluctuations are red-tilted and sourced
by the inflaton, as in ⇤CDM cosmology. On the other
hand, the blue-tilted � fluctuations are subdominant on
those scales, while dominant at smaller scales . Mpc.
These enhanced perturbations can source an SGWB, ob-
servable in future gravitational wave detectors, as we de-
scribe below.

The rest of the work is organized as follows. In sec-
tion II, we describe the evolution of the inflaton field and
� along with some general properties of curvature per-
turbation in our framework. In section III, we compute
the stochastic contributions to � fluctuations to obtain
its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton field
� drives the expansion of the Universe during inflation
and the quantum fluctuations of � generate the density
fluctuations that we observe in the CMB and LSS, as
in standard cosmology. We also assume that there is a
second real scalar field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
1

2
m

2
�
2 +

1

4
��

4
. (1)

The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quartic
interactions dominate, with ��

2 � m
2, ⇢� dilutes like

radiation [29]. Eventually, the amplitude of � decreases
su�ciently, so that ��2 . m

2, following which ⇢� starts
redshifting like matter. We illustrate these behaviors in
Fig. 2.

Similar to the curvaton paradigm [25–28], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [30],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a

2
 �ij (ignoring vector and tensor

perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Since there is no energy transfer
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Figure 3. Power Spectrum of Curvature Perturbation.

inflationary models. Then setting k = a0H0, and H = 5 ⇥ 1013 GeV, consistent with the current

upper bound, we get N(k) ⇡ 62 and kend ⇡ 1023 Mpc�1.

The energy density in � during inflation is given via eq. (40). For m
2 = 0.2H

2 and � =

0.05, we get hV (�)i ⇡ 0.02H
4, implying hV (�)i/V⇤ ⇡ 3 ⇥ 10�12. Now a given k-mode reenters

the horizon when k = aentHent, assuming radiation domination instantly after inflation, we get

k/kend = aend/aent. Choosing k = 1014 Mpc�1 and ⇢end = V⇤/100, we see

f� =
hV (�)i

⇢end
⇥

aent

aend
⇡

1

3
. (53)

The result is shown in Fig. ??.

V. GRAVITATIONAL WAVE SIGNATURE

A. Secondary Gravitational Waves from Scalar Curvature Perturbation

We now review how large primordial curvature perturbations can source GW at the second

order in cosmological perturbation theory. We then evaluate the GW spectrum sourced by P⇣

computed in section IV. We start our discussion with a brief review of the essential relations and

expand the discussion further in appendix A.

We write the GW fluctuations in Fourier space as,

hij(⌧,x) =
X

�=+,⇥
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inflationary models. Then setting k = a0H0, and H = 5 ⇥ 1013 GeV, consistent with the current

upper bound, we get N(k) ⇡ 62 and kend ⇡ 1023 Mpc�1.

The energy density in � during inflation is given via eq. (40). For m
2 = 0.2H

2 and � =

0.05, we get hV (�)i ⇡ 0.02H
4, implying hV (�)i/V⇤ ⇡ 3 ⇥ 10�12. Now a given k-mode reenters

the horizon when k = aentHent, assuming radiation domination instantly after inflation, we get

k/kend = aend/aent. Choosing k = 1014 Mpc�1 and ⇢end = V⇤/100, we see

f� =
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aent
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3
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The result is shown in Fig. ??.
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Figure 5. Gravitational wave spectrum for the benchmarks discussed in Fig. 3. We notice that the number of e-folds after
CMB-observable modes exited the horizon determines the peak frequency of the spectrum, and correspondingly, di↵erent
detectors can be sensitive to the signal. Although a similarly peaked spectrum would appear in the context of cosmological
phase transitions (PT), the low-frequency tail of this GW spectrum is di↵erent from the usual f

3 tail. While in the context
of PT the f

3 scaling originates due to causality and superhorizon behavior of fluctuations, in our scenario, the f -scaling is
determined by � mass. The di↵ering frequency dependence can then be used to discriminate between the two classes of signals.

turbations could be generated in a model similar to the
one considered in this paper. However, the frequency de-
pendence of ⌦GWh

2 determined by the NANOGrav re-
sult is [63] 1.8 ± 0.6. We note that for a free field with
mass m, the frequency dependence of ⌦GWh

2 is given by,
4m

2
/(3H

2). So for the central value, one would naively
infer m

2
/H

2 = 1.4. Therefore to interpret it in terms
of a free field, we require a mass bigger than the Hub-
ble scale. However, since for larger than Hubble-scale
masses, the stochastic e↵ects are not e�cient, one may
have to go beyond the stochastic scenario to explain the
NANOGrav observations. We could instead consider a
regime in which the misalignment contribution is impor-
tant [13, 14]. We will leave a detailed analysis of this
scenario to future work.
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Appendix A: Scalar-induced gravitational waves:
technical details

1. Transfer functions

The equation of motion for the scalar perturbation �
in the absence of isocurvature perturbations is,

�00(⌧,k) + 3(1 + c
2

s
)H�0(⌧,k) + c

2

s
k
2�(⌧,k) = 0 , (A1)

where c
2

s
' w is the sound speed of the fluid. Defin-

ing dimensionless parameter y =
p

wk⌧ , we rewrite this
equation as

d2�(y,k)

dy2
+

6(1 + w)

1 + 3w

1

y

d�(y,k)

dy
+ �(y,k) = 0 . (A2)

A general solution is given by,

�(y,k) = y
�� [C1(k)J�(y) + C2(k)Y�(y)] , (A3)

where J� and Y� are spherical Bessel functions of the first
and second kind, respectively, of order �

� =
3(1 + w)

1 + 3w
� 1 . (A4)

In the radiation dominated era, in which w = 1/3 !
� = 1, we have

�(y,k) =
1

y2


C1(k)

✓
sin y

y
� cos y

◆
+

C2(k)

✓
cos y

y
+ sin y

◆�
. (A5)

We can deduce the initial conditions of this solution by
considering the early-time limit k⌧ ⌧ 1,

sin y

y
� cos y ' y

2

3
and

cos y

y
+ sin y ' 1

y
. (A6)
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Substituting eq. (2.39) gives

Pf (k) =
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At long distances, k ⌧ H, the power spectrum (2.43) is also dominated by the leading
term and has the power-law form,
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, (2.44)

where the constants Af and nf are the same as in eq. (2.40), and the last form is valid when
|nf � 1| ⌧ 1. In particular, this shows that nf is the spectral index, commonly defined as

ln Pf (k)

ln k
= nf � 1. (2.45)

3 Example: a massive self-interacting field

3.1 Eigenvalue equation

As an example of the formalism presented in the previous section we will discuss a potential
with quadratic and quartic contributions

V (�) =
1

2
m2�2 +

�

4
�4 , (3.1)

with the assumption m2 > 0. The analysis required for the double well potential, m2 < 0, is
significantly more complicated, which we will investigate in a separate publication [64].

For the potential in eq. (3.1) the eigenvalue equation (2.17) becomes

1
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⇤n n(�) . (3.2)

It is convenient to introduce a scaled version of the above equation expressed with only
dimensionless parameters
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� U(↵; x)

�
 n(↵; x) = �8⇡2

⇤n(↵)
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where
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, (3.4)

and
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✓
4⇡2

3

◆2

x2
�
↵+ x2
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4⇡2

3

�
↵+ 3x2

�
. (3.5)

In this form it is apparent that up to an overall scale, the eigenvalues ⇤n and the eigen-
functions  n depend only on one dimensionless parameter ↵. In the next subsection, we will
consider the limits of small and large ↵ using perturbation theory, and the case of an arbitary
↵ numerically. From now on throughout this section we will drop the explicit x dependence
from the eigenfunctions.
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⌧c integral. Moreover, for k < ��1
⌧

, there can still be a smearing e↵ect. For example, if the shape of
the source as a function of time is Gaussian like, then the smearing factor is e�k

2�2
⌧/2. If it is square

like, the smearing factor becomes sin(k�⌧ )/(k�⌧ ). For a realistic model, the smearing factor can be
determined from numerical simulation (see [73] for results using envelop approximation and [74, 75]
for results away from envelop approximation).

As a result, the smeared oscillatory part of the spectrum can be generally estimated as

d⇢
osc
GW

d log k
=

2GN |T̃ij(0, 0)|2

⇡V a4(⌧)a2(⌧?)

⇢h
Ẽ i

0(k)G̃
f

0 (k)
i2

k
3 [1 + S(k�⌧ ) cos 2k(⌧? � ⌧0)]

�
, (2.39)

where S is the smearing factor.

2.4 The UV behavior of the GW spectrum

To get the UV behavior, let’s study the case that kp�p � 1. In this case, the discussions in the
Sec. 2.3 still applies. Therefore, the contribution from the oscillating term in Eq. (2.35) is suppressed.
Therefore, in this region, we have
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UV
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⇡V a4(⌧)a2(⌧?)
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k
3

�
. (2.40)

The UV spectrum depends on both the detailed models of inflation, later evolution after inflation, and
the information of the GW source.

2.5 The IR behavior of GW spectrum

We have already shown that in the case of ⌘0 < ⌘A, the Green’s function has an oscillatory feature.
Now, let’s discuss its behavior in the region of ⌘0 > ⌘B . In this case, the Green’s function (2.11) can
be simplified as
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with the initial condition
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The solution to G̃ at ⌘ ! 0 can be written as
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where in the last step the integral variable is changed back to ⌧ and we can see that the factor in [· · · ]
is independent of k. Then compared to the steps in Sec. 2.2, the infrared spectrum can be written as
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One can see that the infrared spectrum is fixed up to the model dependence of the evolution of the
universe after inflation.
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depend on its details. Therefore, with the knowledge of Ẽ
i

0(k) and G̃
f

0 (k) from the measurement
of the the IR and the oscillatory parts of the signal, the UV part can be used to determine the
detailed mechanism of the GW production.

Figure 3. Illustration of the k dependence of di↵erent parts of a typical GW spectrum.

Perhaps the simplest picture of the early universe is a single period of quasi-de Sitter inflation. At
the end of the inflation, there is a a quick reheating followed by radiation dominated (RD) expansion.
However, the actual evolution can be much more complicated. The inflation does not have to be
quasi-de Sitter. In addition, the inflationary epoch can have di↵erent stages, some of them could be
close to quasi-de Sitter but others not. During the reheating, if the conversion from the energy in
the inflaton to the radiation is not very e�cient, the universe will be matter dominated (MD) for a
significant period of time. In the RD period, if there are some long lived matter, it is possible that
they will come dominate the energy density, leading stages of MD. As the universe is cooling down,
there can also be phase transitions which can produce other topologically defects (such as cosmic
strings) which could dominate the energy density for a period of time and alter the evolution. If some
of these new dynamics happen when the CMB modes (or modes which can be probed by other large
scale structure measurements) exit or re-enter the horizon, or during some later epoch such as the big
bang nucleosynthesis (BBN), there could be corresponding observational signals. Otherwise, if these
would happen in a “cosmic dark age” in between, we would have few probes. For example, even in
the simplest scenario with inflation is driven by a slow rolling scalar field which is also responsible for
reheating, we have very little handle on the shape of the inflaton potential for the last ten(s) e-foldings
before reheating.

From the discussion above, it is obvious that the gravitation wave signal discussed in this paper
o↵ers a window in probing the cosmic dark age. As we will demonstrate in detail in this paper, the
shape of the gravitational wave signal, encapsulated in factors G̃

f

0 (k) and Ẽ
i

0(k), depend sensitively on
the evolution of the universe. If gravitational wave with the oscillatory feature described in this paper
is observed, it would o↵er an unmistakable signal for an approximate instantaneous source in the early
universe. At the same time, it would be of great interest to measure its shape in detail which would
give a lot of power in distinguishing di↵erent scenario of the history of the early universe [26].

– 5 –

dρGW

d log k
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Assumption: de Sitter - instant reheating, RD

Example 1: phase transition
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the source as a function of time is Gaussian like, then the smearing factor is e�k

2�2
⌧/2. If it is square

like, the smearing factor becomes sin(k�⌧ )/(k�⌧ ). For a realistic model, the smearing factor can be
determined from numerical simulation (see [73] for results using envelop approximation and [74, 75]
for results away from envelop approximation).

As a result, the smeared oscillatory part of the spectrum can be generally estimated as

d⇢
osc
GW

d log k
=

2GN |T̃ij(0, 0)|2

⇡V a4(⌧)a2(⌧?)

⇢h
Ẽ i

0(k)G̃
f

0 (k)
i2

k
3 [1 + S(k�⌧ ) cos 2k(⌧? � ⌧0)]

�
, (2.39)

where S is the smearing factor.

2.4 The UV behavior of the GW spectrum

To get the UV behavior, let’s study the case that kp�p � 1. In this case, the discussions in the
Sec. 2.3 still applies. Therefore, the contribution from the oscillating term in Eq. (2.35) is suppressed.
Therefore, in this region, we have

d⇢
UV
GW

d log k
=

2GN |T̂ij(k,k)|2

⇡V a4(⌧)a2(⌧?)

⇢h
Ẽ i

0(k)G̃
f

0 (k)
i2

k
3

�
. (2.40)

The UV spectrum depends on both the detailed models of inflation, later evolution after inflation, and
the information of the GW source.

2.5 The IR behavior of GW spectrum

We have already shown that in the case of ⌘0 < ⌘A, the Green’s function has an oscillatory feature.
Now, let’s discuss its behavior in the region of ⌘0 > ⌘B . In this case, the Green’s function (2.11) can
be simplified as

✓
d
2

d⌘2
� d

2
a

ad⌘2

◆
G̃(⌘, ⌘0) = 0 , (2.41)

with the initial condition

G̃(⌘0, ⌘0) = 0 ,
dG̃(⌘, ⌘0)

d⌘

�����
⌘=⌘0

= 1 . (2.42)

The solution to G̃ at ⌘ ! 0 can be written as

G̃f

0 (k) =
G̃(⌘, ⌘0)
a(⌘)

�����
⌘!0

= a(⌘0)

Z 0

⌘0
a
�2(⌘1)d⌘1 = k


a(⌧ 0)

Z 0

⌧ 0
a
�2(⌧1)d⌧1

�
, (2.43)

where in the last step the integral variable is changed back to ⌧ and we can see that the factor in [· · · ]
is independent of k. Then compared to the steps in Sec. 2.2, the infrared spectrum can be written as
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=
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�
. (2.44)

One can see that the infrared spectrum is fixed up to the model dependence of the evolution of the
universe after inflation.
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Depending on 

Time evolution

depend on its details. Therefore, with the knowledge of Ẽ
i

0(k) and G̃
f

0 (k) from the measurement
of the the IR and the oscillatory parts of the signal, the UV part can be used to determine the
detailed mechanism of the GW production.

Figure 3. Illustration of the k dependence of di↵erent parts of a typical GW spectrum.

Perhaps the simplest picture of the early universe is a single period of quasi-de Sitter inflation. At
the end of the inflation, there is a a quick reheating followed by radiation dominated (RD) expansion.
However, the actual evolution can be much more complicated. The inflation does not have to be
quasi-de Sitter. In addition, the inflationary epoch can have di↵erent stages, some of them could be
close to quasi-de Sitter but others not. During the reheating, if the conversion from the energy in
the inflaton to the radiation is not very e�cient, the universe will be matter dominated (MD) for a
significant period of time. In the RD period, if there are some long lived matter, it is possible that
they will come dominate the energy density, leading stages of MD. As the universe is cooling down,
there can also be phase transitions which can produce other topologically defects (such as cosmic
strings) which could dominate the energy density for a period of time and alter the evolution. If some
of these new dynamics happen when the CMB modes (or modes which can be probed by other large
scale structure measurements) exit or re-enter the horizon, or during some later epoch such as the big
bang nucleosynthesis (BBN), there could be corresponding observational signals. Otherwise, if these
would happen in a “cosmic dark age” in between, we would have few probes. For example, even in
the simplest scenario with inflation is driven by a slow rolling scalar field which is also responsible for
reheating, we have very little handle on the shape of the inflaton potential for the last ten(s) e-foldings
before reheating.

From the discussion above, it is obvious that the gravitation wave signal discussed in this paper
o↵ers a window in probing the cosmic dark age. As we will demonstrate in detail in this paper, the
shape of the gravitational wave signal, encapsulated in factors G̃

f

0 (k) and Ẽ
i

0(k), depend sensitively on
the evolution of the universe. If gravitational wave with the oscillatory feature described in this paper
is observed, it would o↵er an unmistakable signal for an approximate instantaneous source in the early
universe. At the same time, it would be of great interest to measure its shape in detail which would
give a lot of power in distinguishing di↵erent scenario of the history of the early universe [26].
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Figure 6. On the left panel, we can compare a few more complicated scenarios. MD-RD with di↵erent

transition time. RD-DS-RD. On the right panel, we plot the conformal horizon as a function of conformal

time in this scenario.

at the end of the inflation of the universe is converted into the form of non-relativistic matter first.
Then, the total energy density decays as a

�3. And then, after reheating, this amount of energy is
converted into the form of radiation. Therefore, compared to the immediate RD scenario, the redshift
of the total energy density of the universe is less severe. As the result, the relative strength of the GW
signal ⌦GW becomes smaller.

3.3.4 RD-t
p̃
-RD transition in post-inflationary evolution

The post inflationary evolution of the universe can be more complicated. For example, during the
radiation domination era, if the particle content contains a long lived particle (with lifetime much
longer than Hubble scale at the temperature roughly equal to the mass of this particle), the universe
will undergo a temporary matter domination era between two radiation domination era. During the
cooling, the universe may also undergo a second order phase transition. As a result, the universe may
dominated by topological defects, such as cosmic strings or domain walls. Both of these cases can be
generically described by a RD-tp̃-RD scenario. For example, p̃ = 2/3 describes the existence of a heavy
long lived particle and p̃ = 1 describes the case of long lived cosmic string domination. The values of
p̃ for di↵erent models is shown in Table 1. Therefore, In this subsection, we discuss the case where
the post inflationary scenario is composed of three periods, the radiation domination, followed by a
t
p̃ evolution, and then back to radiation domination. [Maybe we cite Anson’s paper somewhere else.]

Here we consider the phase transition happening during inflation and discuss the gravitational wave
signals with this type of generalized post inflationary stage. Here we summarize the result, the details
of the derivation can be found in Appendix A.2.2. The conformal time ⌧R1 , ⌧R2 denotes the starting
and ending conformal time of the intermediate t

p̃ stage and we define a new parameter !̃ = p̃/(1 � p̃)
for simplicity.

The GW modes may reenter horizon either during the second radiation domination, (see for
example the left panel of Figure 7), the first radiation domination (see for example the right panel of
Figure 7), or the period where modes reenter horizon at the epoch which is dominated by matter with
general equation of state.

In the left panel of Figure 8, we show the case where the gravitational wave signal with character-
istic size 1/|⌧⇤| re-enters horizon at the second radiation dominated epoch (see the red lines in the left
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Example 2: Secondary GW

Scalar perturbation 𝒮(k) GW

Sensitive to evolution after re-entry

The result presented earlier assumes radiation domination.

If there is a MD⇒RD transition, answer can be different.
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Figure 5. Gravitational wave spectrum for the benchmarks discussed in Fig. 3. We notice that the number of e-folds after
CMB-observable modes exited the horizon determines the peak frequency of the spectrum, and correspondingly, di↵erent
detectors can be sensitive to the signal. Although a similarly peaked spectrum would appear in the context of cosmological
phase transitions (PT), the low-frequency tail of this GW spectrum is di↵erent from the usual f

3 tail. While in the context
of PT the f

3 scaling originates due to causality and superhorizon behavior of fluctuations, in our scenario, the f -scaling is
determined by � mass. The di↵ering frequency dependence can then be used to discriminate between the two classes of signals.

turbations could be generated in a model similar to the
one considered in this paper. However, the frequency de-
pendence of ⌦GWh

2 determined by the NANOGrav re-
sult is [63] 1.8 ± 0.6. We note that for a free field with
mass m, the frequency dependence of ⌦GWh

2 is given by,
4m

2
/(3H

2). So for the central value, one would naively
infer m

2
/H

2 = 1.4. Therefore to interpret it in terms
of a free field, we require a mass bigger than the Hub-
ble scale. However, since for larger than Hubble-scale
masses, the stochastic e↵ects are not e�cient, one may
have to go beyond the stochastic scenario to explain the
NANOGrav observations. We could instead consider a
regime in which the misalignment contribution is impor-
tant [13, 14]. We will leave a detailed analysis of this
scenario to future work.
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Appendix A: Scalar-induced gravitational waves:
technical details

1. Transfer functions

The equation of motion for the scalar perturbation �
in the absence of isocurvature perturbations is,

�00(⌧,k) + 3(1 + c
2

s
)H�0(⌧,k) + c

2

s
k
2�(⌧,k) = 0 , (A1)

where c
2

s
' w is the sound speed of the fluid. Defin-

ing dimensionless parameter y =
p

wk⌧ , we rewrite this
equation as

d2�(y,k)

dy2
+

6(1 + w)

1 + 3w

1

y

d�(y,k)

dy
+ �(y,k) = 0 . (A2)

A general solution is given by,
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�� [C1(k)J�(y) + C2(k)Y�(y)] , (A3)

where J� and Y� are spherical Bessel functions of the first
and second kind, respectively, of order �
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In the radiation dominated era, in which w = 1/3 !
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We can deduce the initial conditions of this solution by
considering the early-time limit k⌧ ⌧ 1,
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3
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cos y
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+ sin y ' 1
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Assumption: Gravitational wave generated during RD.

Spectator decays right before it dominates. 

Otherwise, there is an RD ⇒ MD ⇒ RD transition.
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Appendix A: Scalar-induced gravitational waves:
technical details

1. Transfer functions

The equation of motion for the scalar perturbation �
in the absence of isocurvature perturbations is,

�00(⌧,k) + 3(1 + c
2

s
)H�0(⌧,k) + c

2

s
k
2�(⌧,k) = 0 , (A1)

where c
2

s
' w is the sound speed of the fluid. Defin-

ing dimensionless parameter y =
p

wk⌧ , we rewrite this
equation as

d2�(y,k)

dy2
+

6(1 + w)

1 + 3w

1

y

d�(y,k)

dy
+ �(y,k) = 0 . (A2)

A general solution is given by,

�(y,k) = y
�� [C1(k)J�(y) + C2(k)Y�(y)] , (A3)
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We can deduce the initial conditions of this solution by
considering the early-time limit k⌧ ⌧ 1,
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Assumption: Gravitational wave generated during RD.

Spectator decays right before it dominates. 

Otherwise, there is an RD ⇒ MD ⇒ RD transition.

More generic!



Secondary GW

Figure 1: Time dependences of the scale factor, the energy densities, normalized by their
values at ⌘ = ⌘eq, and the equation-of-state parameter. aapp is given by Eq. (2.2) with
⌘R = 0.83⌘eq and wfit is given by Eq. (3.8). Note that ⇢m,eq = ⇢r,eq by definition.
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Figure 2: Time dependences of the gravitational potential and the energy density pertur-
bations. �fit is given by Eq. (3.10).

Eq. (3.7), � can be approximated to be k2� ' 3
2H

2
⇣

⇢m
⇢tot

�m + ⇢r
⇢tot

�r
⌘

in the subhorizon limit.

For modes with k � 1/⌘eq, during 1/k ⌧ ⌘ ⌧ ⌘eq, �m grows but �r does not. Therefore,
even after ⌘eq, the evolution of � is dominated by ⇢m�m for a while. During this phase, ⇢m
decays exponentially and then we can expect � is proportional to ⇢m. Radiation density
perturbations ⇢r�r also decay following the decay of � around this phase. After a while,
the evolution of � is dominated by ⇢r�r and then � starts to oscillate. Neglecting this
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Early matter domination ⇒ Radiation
Inomata, Kohri, Nakama, Terada 1904.12878, 1904.12879

For modes entering in MD,  
no oscillation until RD

Grav. potential approx 
constant in MD. Decay in 
transition. 

Gradual transition, transition time: H ∼ Γσ
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FIG. 4. Numerical results for the evolutions of the gravi-
tational potential � and the triggeron ⌧ , normalized by M .
We also plot the analytical formula of �, given by Eq. (7),
with the black dotted line. We take � = 0.1, c = 0.1, and
⌧0 = 1000M .

Let us present the time evolution of the gravitational
potential � to show how this model works. Figure 4
shows the evolution of � in addition to that of the field
⌧ . For �, we use the equations for perturbations that are
used in our accompanying paper [39] to take into account
the decay of � to �. This figure shows that the analytical
expression of �, given in Eq. (8), is satisfactorily accurate
in sudden-reheating scenarios.

Since � and ⌧ are independent degrees of freedom, fluc-
tuations in ⌧ will introduce additional curvature pertur-
bations and non-Gaussianity due to the modulated re-
heating mechanism [58–62]. To estimate those quantities,
let us first note that the time evolution of the triggeron is
given by ⌧ = ⌧0 sin(mt)/(mt). The time when it reaches
the minimum (⌧ = 0) is mt = ⇡, but it reaches the critical
value slightly before. The decay time is thus estimated
to be

mt =⇡

✓
1 � ⌧c

⌧0

◆
. (A5)

As discussed e.g. in Ref. [63], the e-folding number is
related to the decay time as

e
N / t

1/6
. (A6)

Thus, we can calculate N
0 = (1/6)t0/t and N

00 =
(1/6)(t00/t � (t0/t)2) where the prime denotes di↵eren-
tiation with respect to ⌧0, and t is evaluated at the decay
time. Explicitly,

N
0 ' ⌧c

6⌧
2
0

, N
00 ' � ⌧c

3⌧
3
0

, (A7)

noting ⌧c ⌧ ⌧0. Using these values, we obtain

P⇣(⌧) =(N 0
�⌧0)

2 ' 1

36

✓
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◆2 ✓
Hinf
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, (A8)

fNL =
5

6
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◆2
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00

(N 0)2
' �10

✓P⇣(⌧)

P⇣

◆2
⌧0

⌧c
, (A9)

where ⇣ represents the total curvature perturbation, and
⇣
(⌧) is the contribution to ⇣ from ⌧ . Note that fNL ap-

pears to contain a large factor ⌧0/⌧c, but the above ex-
pression implicitly contains the inverse of this factor with
a higher power. Hence, fNL can be su�ciently small. We
conclude that non-Gaussianity can be small enough to
be consistent with observations provided that ⌧0 � ⌧c is
satisfied.

Let us interpret the above model. It is quite natural
that the decay of a field is prohibited by some symmetry.
For example, the lightest particle charged under some
unbroken symmetry is absolutely stable. This is usually
applied to dark matter model building to explain its sta-
bility [64]. Thus, we assume that � is charged under some
symmetry. If the scalar field is real, as in the above toy
model, the possible charge assignment is limited, and so
the scalar fields will be complex in a more realistic situ-
ation. In this context, ⌧ must be assumed to be a singlet
(non-charged) with respect to the symmetry that pro-
tects �’s stability because otherwise its initial nonzero
expectation value spontaneously breaks the symmetry.
� can be interpreted as some charged particle, initially
heavier than � due to its ⌧ -dependent mass. However,
it subsequently becomes lighter than �, which triggers
the � decay. For example, we can assign � charge +2
and � charge �1. Or, we can assign � and � the same
charge and introduce a chargeless field �

0 with an interac-
tion such as ��

†
�

0. In this way, various generalizations
of our simple model would be possible. The produced
relativistic � particles and antiparticles are assumed to
produce a thermal bath containing Standard Model par-
ticles through scattering and annihilation, which reheats
the Universe.

Alternatively, we may interpret ⌧ as some symmetry
breaking field. When a symmetry is broken, it is often
the case that charged fields (corresponding to �) become
massive. For example, the Higgs mechanism makes gauge
bosons massive. In the Standard Model, it also makes
fermions massive through Yukawa interactions. One of
the flat directions in the minimal supersymmetric stan-
dard model [65] would be a good candidate for this pur-
pose since most of the fields in the theory (corresponding
to �) can be massive when it obtains a finite expectation
value. In this case, all the possible decay channels of �

must be kinematically blocked or su�ciently suppressed.

2. Another sudden-reheating scenario realized by a
field that experiences a first order phase transition

Suppose that � is protected by a symmetry from decay-
ing, without any decay channels of � to lighter particles.
Let us further assume that ⌧ is charged under the sym-
metry and is too heavy for � to decay into. There may
be an interaction term of the form

L = c⌧��� + . . . , (A10)

Sudden transition

Inomata, Kohri, Nakama, Terada 1904.12878, 1904.12879

Sudden transition time: H ≫ Γσ

Enhanced in comparison with the gradual transition case
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Figure 4: Spectrum of induced GWs at ⌘ = ⌘c associated with a gradual transition from
an eMD era to the RD era. For all the plots, kmax = 450/⌘R is assumed and the primordial
power spectrum used is given in Eq. (4.1). Our results for ⌦GW are shown by the thick black
solid line. It is the sum of each component: ⌦GW,eMD (blue solid), ⌦GW,RD (blue dotted),
and ±⌦GW,cross (blue dashed/red dot-dashed). The thick brown dotted line shows the result
using Ref. [10], additionally taking into account the factor 1/4 mentioned in footnote 4, with
the same assumptions as in Refs. [26], under which � = 1 until ⌘ = ⌘R and there is no GW
production for ⌘ > ⌘R (IRD = 0). Reduction from the brown dotted line to the black solid
line shows the e↵ects of the gradual transition.

perturbations, the behavior of xI can be interpreted as follows. During an eMD era, since
the source term in Eq. (2.6) is almost constant, the amplitude of the tensor perturbation is
given as h�

k ' 4S�
k/k2 in the subhorizon limit [3, 26]. Here, we consider a gradual transition

from an eMD era to the RD era and therefore the amplitude of the tensor perturbations
decays on subhorizon scales, following the gradual decay of the source during the transition,
which corresponds to the decay of xI around ⌘ ⇠ ⌘R. After a while, the tensor perturbations
decouple from the source and behave as freely propagating GWs, which corresponds to the
oscillation of xI for ⌘ > O(1)⌘R.

Note that, also to obtain Fig. 5, we use the approximation formula �fit for � and neglect
the oscillation behavior of � after its exponential decay. This also implies that the oscillation
behavior of xI in Fig. 5 (already present before ⌘ = 2.5⌘eq ' 3.0⌘R) has nothing to do with
the oscillation behavior of � in Fig. 2 (appearing after ⌘ = 2.5⌘eq in k > 30/⌘eq), and the
contributions from the oscillations of � can be neglected because of its small amplitude if we
consider k > 30/⌘eq, as we have already mentioned.

5 Discussion

In this paper, we have revisited the e↵ects of an eMD era on the GWs induced by the
scalar perturbations. We have considered a case where the energy density in the eMD era
is dominated by the field decaying to radiation with a constant decay rate, which leads
to a gradual transition to the RD era. We have taken into account the evolution of the
gravitational potential � during the transition and found that the existence of an eMD era
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FIG. 5. Comparison of the analytic and numerical results
for the induced GWs. The blue solid line shows the numer-
ical result. The orange dotted, greed dashed, and red dot-
dashed lines show the large-scale approximation [Eq. (B5)],
the resonant contribution [Eq. (B7)], and their sum, respec-
tively. We take the power spectrum given in Eq. (16) with
kmax = 450/⌘R and ns = 1.

where

s0(xR) =

8
><

>:

1 xR  2xmax,R

1+
p

3

2xmax,R

xR
�

p
3 2xmax,R

1+
p

3
 xR  2xmax,Rp

3

0 2xmax,Rp
3

 xR

.

(B8)

In the first equality in Eq. (B7), we have changed the
integration variable from t to y with the Jacobian factor
2
p

3/xR. This integration is for the spiky part, and so
we limit the integration region to |y| < 1. The choice of

the integration boundary here is somewhat arbitrary, but
this uncertainty can also be absorbed by the fudge factor
Y . We determine the value of Y by comparing Eq. (B7)
with the numerical result. We find that Y = 2.3 is a
good fit, so we set Y = 2.3 throughout this work.

The total spectrum is approximated by the contribu-
tion produced after the reheating transition, ⌦GW '
⌦GW,RD, which is given by the sum of Eqs. (B5) and
(B7):

⌦GW,RD ' ⌦(LS)
GW,RD + ⌦(res)

GW,RD. (B9)

This is compared with the numerical result in Fig. 5.
From this figure, we can see that those approximate an-
alytic formulas fit the numerical result very well.

The k dependence of ⌦GW is summarized as follows.
It is proportional to k

3, neglecting a logarithmic factor,
for k . 1/⌘R, then it scales as k for k & 1/⌘R. The
slope of the resonant contribution is k

7, which peaks at
k ' 2kmax/

p
3. Finally, it decrease sharply, and vanishes

at k = 2kmax. This behavior is summarized in Eq. (18).

3. Approximate analytic formulas for induced GWs
from power-law primordial spectra

We can generalize our calculations to power-law pri-
mordial spectra with a cuto↵ [see Eq. (16)]. We can use

the formulas of I2
RD obtained above. Using the large t

approximation and assuming ns > �3/2, we obtain the
following expression:

⌦(LS)
GW,RD '

3
⇣
4Ci

�
xR
2

�2
+
�
⇡ � 2Si

�
xR
2

��2⌘
A

2
sx

8
max,R

217+2ns ⇥ 625(3 + 2ns)

✓
2xmax,R

xR
� 1

◆2ns
✓

xR

x⇤,R

◆2(ns�1)

⇥
⇣
e⌦(LS,1)

GW,RD⇥(xmax,R � xR) + e⌦(LS,2)
GW,RD⇥(xR � xmax,R)

⌘
⇥(2xmax,R � xR), (B10)

where

e⌦(LS,1)
GW,RD =

1

(2 + ns)(3 + ns)(4 + ns)(5 + 2ns)(7 + 2ns)
⇥
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2
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2
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3
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s )ek5 + (7392 + 10992ns + 5784n

2
s + 1248n

3
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s )ek6

� (2784 + 3904ns + 1960n
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3
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s )ek8
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1

A , (B11)

e⌦(LS,2)
GW,RD =2(2 � ek)4�(4 + 2ns)

 
ek4

�(5 + 2ns)
� 4ek2(2 � ek)2

�(7 + 2ns)
+

24(2 � ek)4

�(9 + 2ns)

!
, (B12)

Sudden transition

Open question: better approximation in the gradual transition case needed

Inomata, Kohri, Nakama, Terada 1904.12878, 1904.12879
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turbation contributions. Similar enhancements of the
higher-order contributions have been studied in the infla-
tion models with sharp features, which cause the sudden
change of the slow-roll parameters [65–67]. We have nu-
merically confirmed that the case of d = 0.05 marginally
remains in the linear regime, but the case of d = 0.01
marginally does not. Because of this, we take d = 0.05 as
a benchmark value. See SM for the technical details of
the evaluation of the nonlinearity.

Second, the density perturbations that enter the hori-
zon long before the second RD era may become non-
perturbative. This is because the subhorizon density
perturbation of the axion rotation, �, grows as / ln ⌘
during the first RD era, / ⌘2 during the MD era, and
/ ⌘1/2 during the KD era, up to its oscillations. Since
this growth begins after the horizon entry of the modes,
the perturbations on the smallest scale kmax first reaches
|�| = 1 if the MD era lasts long enough. If the density
perturbation becomes |�| > 1, the cosmological perturba-
tion theory is no longer reliable. On the other hand, once
the induced GWs enter the horizon, they are decoupled
from the source terms and freely propagating [55]. Owing
to this, we can safely calculate the induced GWs on the
scales that enter the horizon before the smallest-scale
perturbations become |�| > 1. Technical details on our
choice of kmax can be seen in SM.

Results. Figure 2 shows the induced GW spectra in our
setup. We can see that the induced GWs can be probed
by the future observations. The peak scale is around
k⇤ ⌘ min[kmax, 1/⌘eq,1]. The analytical estimate of the
GW spectrum in k < k⇤ is given by

⌦GWh2 ' 2 ⇥ 10�11A2Q4B(k)
⌘2
kin

⌘2
eq,1

k5
⇤k⌘6

kin, (11)

where Q corresponds to the amplitude of the normalized
� on k⇤ at ⌘kin (up to the oscillations), and B(k) is 1 for
k > 4/⌘kin and 0.535 ⇥ (k⌘kin) for k < 4/⌘kin. The factor
⌘2
kin/⌘2

eq,1 > 1 in Eq. (11) is a redshift factor, which comes
from the fact that the energy density of the rotating axion
field and the induced GW are / a�6 and a�4, respectively.
See SM for the derivation of this analytical estimate and
how to numerically calculate the induced GWs, where we
also extend the analyses to a general value of w.

Figure 3 shows the regions in the (mS , fa) plane that
can be probed by the future GW experiments for given
Y✓/Y✓,max. We can see that the future observations
can investigate O(10�1)GeV . mS . O(107)GeV and
O(102) GeV . fa . O(108) GeV, depending on the value
of Y✓/Y✓,max. Note that these parameter regions are
testable even if the axion is not coupled to the photon.

Figure 4 shows the observable regions in the (ma, fa)
plane for given mS when the axion DM is produced from
the rotation. The horizontal and vertical cuts in the
observable regions come from the constraints fa > mS

and Y✓ < Y✓,max, respectively. The black dot-dashed
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FIG. 2. The induced GW spectrum and the sensitivities of
the future and current experiments [68]. The shaded regions
are excluded by the current observations. The black and gray
lines are the GW spectrum with d = 0.05, ⌘eq,2 = 2 ⇥ 106 s,
and di↵erent ⌘kin/⌘eq,1. The curvature power spectrum is
given by Eq. (10). The green dashed line shows the analytical
estimate, Eq. (11), for the black-line case. The black and
gray dotted lines show the region f < 1/(100⌘kin), which are
superhorizon modes when the smallest-scale perturbations
become nonlinear, � ' O(1). For comparison, the spectra for
di↵erent values of d with ⌘kin/⌘eq,1 = 500 are shown with the
red dotted lines.

line is the prediction of the QCD axion and the region
below the dark-cyan dot-dashed line is the prediction of
the scenario where the matter-antimatter asymmetry of
the universe is generated by the axion rotation and the
electroweak sphaleron process, called ALP cogenesis [21].

Summary and discussion. In this letter, we have
pointed out that axion rotation can produce strong GWs
by the Poltergeist mechanism through the sudden transi-
tion from a MD era to a KD era. The produced GWs may
be abundant enough to be detected by future GW obser-
vations. These GW signals do not rely on the coupling of
the axion to the Standard Model particles and therefore
enable us to investigate the uncharted parameter region of
axion models. The mass of the U(1) symmetry-breaking
field is given by supersymmetry breaking, and GW obser-
vations can probe supersymmetry-breaking scale as high
as 107 GeV.

The Poltergeist mechanism in our setup is realized
by the approximately homogeneous one-component fluid
(i.e., the axion rotation) whose equation of state changes
rapidly. This is advantageous compared to the existing
examples of the Poltergeist mechanism, which are based
on the simultaneous evaporation of localized objects such
as black holes. In such cases, the distributions of mass
and spin must be su�ciently narrow [45]. Our scenario is
free from this issue and thus more robust against cosmo-
logical/astrophysical uncertainties.

We also mention possible extensions of this work. 1)
We neglected the contributions from nonlinear density

8
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FIG. 2. The GW spectrum with A = 8 ⇥ 10�3 and f⇤ = 10�7 Hz. The gray violins are from the NANOGrav results [7]. The
lowest frequency of the black line corresponds to fend with Tend = 10 MeV.

To discuss these points quantitatively, we introduce some more formulas in the following. The PBH energy density
fraction at their formation, which can also be interpreted (up to the factor �) as the PBH formation probability in
each Hubble patch, can be calculated with Carr’s formula (the Press-Schechter formalism) [84]

�(M) ⌘ ⇢PBH(M)

⇢tot

����
form

= �

Z 1

�c

d�p
2⇡�(M)

exp

✓
� �

2

2�2(M)

◆

=
�

2
Erfc

✓
�cp

2�(M)

◆
, (28)

where the subscript ‘form’ denotes the value at the PBH formation, ⇢PBH(M) is the energy density of PBHs per log
M bin, � ⇡ c

3

s
with cs being the sound speed is the fraction of the horizon mass that goes into a PBH, �(M) is the

coarse-grained density perturbations, and Erfc is the complementary error function. In the era with w(= cs) = 1,

� ⇡ 1. Although the dependence of �(M) on P⇣(k) could be approximated as �(M) ⇠ �

p
P⇣(k(M))p

2⇡�c
exp

⇣
� �

2
c

2P⇣(k(M))

⌘

with a rough relation �
2(M) ⇠ P⇣(k(M)), we calculate �

2(M) with a more specific formula in this paper:

�
2(k) =

4

9

Z
dq

q

⇣
q

k

⌘4

W
2

⇣
q

k

⌘
T 2

✓
q,

1

2k

◆
P⇣(q), (29)

where W (z) is a window function and T (q, 1/(2k)) ⌘ T (q/(2k)) (see Eq. (12)) is the transfer function in the kination
era evaluated at the Horizon reentry k = H. For the window function, we take the real space top-hat window function,
whose form in Fourier space is given by

W (qr) = 3
sin(qr) � (qr) cos(qr)

(qr)3
, (30)

where r is the smoothing scale and we substitute r = 1/k. In Eq. (29), we have used the relation between the density
perturbations and the curvature perturbations in comoving slices, � = (8/3)(k⌘)2T (k⌘)⇣ (see also Ref. [101] for the
expression in the superhorizon limit). From the appearance of �c and P⇣ in the exponential factor in Eq. (28), we
confirm the above two reasons why the PBH abundance is suppressed significantly.

Harigaya, Inomata, Terada 2305.14242, 2309.00228



Conclusions
GW will be a great tool in probing early universe, 
especially for epochs “invisible” through other means. 


Long term prospect. Probably the only way to get 
these information.


Inflation stage is a plausible place for interesting and 
observable GW signal can be generated.


Both primary and secondary GW.


Discovery and study its shape very informative.
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3

barrier and roll to the global minimum where VPT =
0, nucleating true vacuum bubbles. For simplicity, we
assume this classical rolling after barrier crossing to be
instantaneous.

The bubble nucleation rate during the PT is directly
dictated by the potential parameters. We thus choose
VPT such that Eq. 1 is fulfilled, ensuring a slow PT and
implying that the physical volume of space where � is
“stuck” in the unstable minimum increases with time.
Once the inflaton decays, regions of false vacuum may
dominate the energy density and lead to an unwanted
eternal inflation within our Hubble patch, driven by �.
To evade such a catastrophe, one may either assume that
the reheating temperature is larger than the energy den-
sity in the false vacuum and its e↵ect drives to destabi-
lize it, or even simpler, that the nucleation rate is larger
than the value of Hubble in the false vacuum so that
rapid nucleation and percolation becomes possible after
the inflaton decays1. With this, the PT suddenly and in-
stantaneously completes everywhere and inflation truly
ends at least within our visible universe.

The process of horizon exit and re-entry is illustrated
in Fig. 2. The bubbles are either created small and
rapidly expand to horizon size, as in the case of CdL,
or created exactly at horizon size, as in the case of HM.
Either way, once at the horizon, the comoving radius is
completely frozen. After the end of inflation, the phase
transition completes everywhere but the imprint on the
curvature power spectrum remains. Upon horizon re-
entry, the inhomogeneities produce GWs from secondary
e↵ects. Independent of the fine details of the model, the
dynamics are governed by merely three parameters: the
tunneling rate per unit volume �/V , the vacuum energy
di↵erence �VPT between the false and true vacuum, and
the time t0 at which the transition commences (shortly
after � reaches the false vacuum). With this simplified
description we now turn to calculate the GW spectrum
produced by such inflationary incomplete PTs and arrive
at predictions for future experiments.

IV. SCALAR CURVATURE SPECTRUM

We now move to calculate the scalar spectrum. To
this end, we first find the energy-momentum tensor Tµ⌫ ,
neglecting the energy density in the bubble wall. This is
justified because the ratio of energy in the interior volume
over the wall energy scales as a (the metric scale factor),
and grows as the universe rapidly expands. Given the
above, we omit the spatial derivatives of � and �, which
are localized in the bubble walls, and write the energy

1 We will ignore the GW from this final stage of the PT, as these
occur not far from the reheating time, and the frequency range
is likely beyond any near-future experiment.
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inflation
ends

phase transition 
starts

gravitational  waves
are createdhorizon sized 

bubbles

FIG. 2: The process of bubble formation and GW production
on comoving scales. Bubbles are formed equally at all times
from the beginning of the phase transition and until the end
of inflation. These bubbles quickly grow to horizon size and
freeze in the case of Coleman-de Luccia tunneling, or form
frozen at horizon size through Hawking-Moss tunneling. In
either case, when inflation ends, the transition completes due
to the reduced expansion rate or increased temperature. The
inhomogeneity introduced by the bubbles remains, generating
GWs upon horizon re-entry.

density and pressure after the PT starts, at t � t0,

⇢(t, ~x) =
1

2
�̇
2 + Vinf(�(t)) + [1� ✓(t� t~x)]�VPT ,(4)

p(t, ~x) =
1

2
�̇
2
� Vinf(�(t))� [1� ✓(t� t~x)]�VPT .(5)

Here t~x is the time when the transition occurred at point
~x, and ✓ is the Heaviside step function. Using a step func-
tion is justified under the assumption of a rapid roll to
the true vacuum once � tunnels out of the false minimum.
Furthermore, the kinetic energy stored in � around the
true minimum is quickly dissipated and is therefore ne-
glected. All other components of the energy-momentum
tensor can be neglected.
The main e↵ect of the PT on the curvature spectrum

is through the change in the Hubble constant due to the
shift in the vacuum energy. We use the linearized Ein-
stein equations in Newtonian gauge to calculate this in-
duced curvature perturbation to first order. To this end,
we need to find the inhomogeneous part of Tµ⌫ :

⇢(t, ~x) = ⇢̄(t) + �⇢(t, ~x) , �⇢ ⌧ ⇢ , (6)

and similarly for p. The homogeneous background is
taken to be

⇢̄(t) =
1

2
�̇
2 + Vinf(�(t)) + [1� ✓(t� ht~xi)]�VPT , (7)

p̄(t) =
1

2
�̇
2
� Vinf(�(t))� [1� ✓(t� ht~xi)]�VPT , (8)

while the perturbations are given by

�⇢(t, ~x) = �VPT[✓(t� ht~xi)� ✓(t� t~x)] , (9)

Barir, Geller, Sun, Volansky, 2203.00693
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We emphasize that the power spectrum is sensitive not
only to the spectator field which drives the PT, but also
to the inflationary dynamics themselves, and its shape
records the entire inflationary history from the begin-
ning of the PT to the onset of reheating. Consequently,
a measurement of the spectral shape can reveal detailed
information about the dynamics of inflation. So far, we
have assumed that the slow-roll parameter and scale of
inflation are constant (see Eqs. (14) and (15)). Relax-
ing this assumption strongly a↵ects the spectrum as is
demonstrated by the blue and orange dashed-dotted lines
in Fig. 3, which assume a sudden change in the value of
H

�̇2 occurring at time tdrop. For a detailed derivation of

R(~x) in this case, we refer the reader to App. B.
Figure 3 further shows constraints from the overclosure

due to primordial black hole (PBH) abundance (red line),
and distortions to the CMB black-body spectrum (red re-
gion). We note that the PBH constraint, taken from [19],
assumes a Gaussian PR. The line shown in Fig 3 is there-
fore only a rough estimation. To derive the exact bound
of PBH abundance on the spectrum, a model-specific cal-
culation, which considers the non-Gaussian statistics of
the phase transition, is required and goes beyond the
scope of this paper.

V. GRAVITATIONAL WAVE SPECTRUM

After horizon re-entry, the curvature perturbations
produce GWs through second order e↵ects. A general
prescription for calculating GWs induced during the ra-
diation dominated era is derived in [43], where the inho-
mogeneity was assumed to be Gaussian. This allows the
use of Wick’s theorem to reduce the four-point correla-
tion functions of R into products of two-point correla-
tions, i.e. the power spectrum PR. Although the phase
transition spectrum is very far from Gaussianity, we have
found that the result [43] still applies, because the ”con-
nected” part of the four-point correlation function does
not induce GWs. This point is further explained and
proven in App. C. In the following we briefly review the
relevant result of [43], before applying it to the spectrum
derived in the previous section.

The GW energy density parameter is given by

d⌦GW

d log k
(⌘, k) ⌘

1

⇢tot

d⇢GW

d log k
=

1

24

✓
k

a(⌘)H(⌘)

◆2

Ph(⌘, k) ,

(17)
where ⌘ is the conformal time and Ph(⌘, k) is the time
averaged tensor spectrum, given by

Ph(⌘, k) = 4

Z
1

0

dv

Z
1+v

|1�v|

du

 
4v2 �

�
1 + v

2
� u

2
�2

4vu

!2

Ĩ2(v, u, k⌘)PR(kv)PR(ku) .

(18)

FIG. 4: The GW energy density induced by the scalar spec-
tra shown in Fig. 3, multiplied by the square of the scal-
ing factor of the Hubble expansion rate, h. The amplitude
is quadratically dependent on the dimensionless parameter

�PT ⌘ 1
H4

�
V

⇣
�VPT

�̇2

⌘2
, which is assumed to be constant. The

momentum scale of the horizon at the beginning of the phase
transition, k0 ⌘ Ha(t0), acts as a minimal scale, below which
the spectrum is strongly suppressed. The scale of reheating
kre ⌘ Ha(treheating) was fixed at 4 · 1022Mpc�1. The black
dash-dotted, dashed, and dotted lines correspond to the
parameter choices k0 = 2 · 104, 8 · 109, 2 · 1014 Mpc�1 and
�PT = 5 ·10�7

, 10�6
, 10�4, respectively. The dashed-dotted

blue and orange lines show the spectrum for an alterna-
tive scenario where the value of H

�̇2 changes by a factor of

1/10 at time tdrop. We define kdrop ⌘ Ha(tdrop) and take
its value to be kdrop = 108, 1013 Mpc�1 for the blue and or-
ange lines respectively. We further choose k0 = 2 · 104 and
�PT = 7 ·10�6

, 2 ·10�6 to ensure that the peaks align, thereby
demonstrating the e↵ect of the drop in H

�̇2 on the spectral

shape. Current constraints and future detector sensitivity re-
gions are shown with solid, and semi-transparent colored
regions respectively. The detector sensitivity curves for SKA
[51], LISA [3] [52], TianQin [4], Ligo [2], and Ligo A+, are
taken from [53]. The green violin plots represent the free-
spectrum fit to the NANOGrav data [13][54]. The red region
and pale red line are CMB distortion and primodrial black
hole constraints derived from those in Fig. 3

.

Here the quantity Ĩ2(v, u, k⌘) is defined in Eq. (C4).
d⌦GW/d log k approaches a constant value during ra-

diation domination because the GWs redshift like radia-
tion. The density during radiation domination can thus
be related to the density today through

d⌦GW (⌘0, k)

d log k
= ⌦r(⌘0)

⌦GW (⌘c, k)

d log k
, (19)

where d⌦GW (⌘c, k)/d log k is the constant value reached
during the radiation dominated era, and ⌦r(⌘0) ⇡ 10�4

is the energy fraction of radiation today.
Integrating Eq. (18) numerically, we obtain the GW

spectrum shown in Fig. 4 for the parameters discussed
in Sec. IV. Since the scalar spectrum is almost scale-
invariant over a wide range of momenta, the induced

Large bubble does not percolate, generate large curvature perturbations

⇒ secondary gravitational wave at re-entry
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In terms of these polarization tensors, the projection tensor in (6) and (11) is

T̂ lm
ij Slm =

∫

d3k

(2π)3/2
eik·x

[

eij(k)elm(k) + ēij(k)ēlm(k)
]

Slm(k) , (16)

where

Slm(k) =

∫

d3x′

(2π)3/2
e−ik·x′

Slm(x′) . (17)

In Fourier space, the equation of motion for the gravitational wave amplitude h (for either polarization h or h̄) becomes

h′′
k + 2Hh′

k + k2hk = S(k, η) , (18)

where the source term, S, is a convolution of two first-order scalar perturbations at different wavenumbers,

S(k, η) = −4e
lm(k)Slm(k) (19)

= 4

∫

d3k̃

(2π)3/2
e
lm(k)k̃lk̃m

[
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7 + 3w

3(1 + w)
− 2c2

s

w

}
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(η)Φ
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(η) +
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sk̃

2

3wH2

)

Ψ
k̃
(η)Ψ
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(η)

+
2c2

s

w

(

1 +
k̃2

3H2

)

Φ
k̃
(η)Ψ

k−k̃
(η) +

{

8

3(1 + w)
+

2c2
s

w

}

1

HΦ
k̃
(η)Ψ′

k−k̃
(η)

− 2c2
s

wHΨ
k̃
(η)Ψ′

k−k̃
(η) +

4

3(1 + w)H2
Ψ′

k̃
(η)Ψ′

k−k̃
(η)

]

. (20)

Equation (20) reduces to the expression in [12] in the limit Ψ → Φ, w → 1/3 and c2
s → 1/3. The limit Ψ → Φ, w → 0

and c2
s → 0 was discussed in [11].

2.2. Power Spectrum

The power spectrum of tensor metric perturbations, Ph(k, η), is defined as follows

〈hk(η)hK(η)〉 =
2π2

k3
δ(k + K)Ph(k, η) . (21)

We now derive an expression for the power spectrum of second-order gravitational waves by solving equation (18).
It is convenient to remove the Hubble damping term in (18) by defining ahk ≡ vk, where vk satisfies the following
equation of motion

v′′k +
(

k2 − a′′

a

)

vk = aS . (22)

The particular solution of (18) is then found by the Green’s function method

hk(η) =
1

a(η)

∫

dη̃ gk(η; η̃)
[

a(η̃)S(k, η̃)
]

, (23)

where

g′′k +
(

k2 − a′′

a

)

gk = δ(η − η̃) . (24)

Exact solutions to (24) for both matter and radiation domination are derived in Appendix A. Substituting the solution
(23) into the expression for the tensor power spectrum (21) we find

〈hk(η)hK(η)〉 =
1

a2(η)

∫ η

η0

dη̃2

∫ η

η0

dη̃1 a(η̃1)a(η̃2)gk(η; η̃1)gK(η; η̃2) 〈S(k, η̃1)S(K, η̃2)〉 . (25)
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Figure 3. Power spectrum of curvature perturbations for the benchmarks discussed above. Stochastic e↵ects lead to a blue-
tilted spectrum of �, with larger m and � corresponding to larger tilts, leading to faster decay as k gets smaller. The blue-tilt
is eventually cut o↵ at kd, the k-mode that reenters the horizon at the time of � decay. For k larger than kd, the fractional
energy density in � at the time of mode-reentry is smaller. Correspondingly, �2

⇣ gets suppressed. Eventually, for very large k,
the e↵ects of � become negligible, and �2

⇣ reverts back to its standard, slightly red-tilted behavior. A smaller value of f�(kd),
the fractional energy density at the time � decay, suppresses the e↵ect of � to �2

⇣ , and hence leads to a suppressed peak.
This mechanism predicts signatures in CMB spectral distortion measurements [47], especially in Super-PIXIE [48], along with
Pulsar Timing Array (PTA) probes for enhanced DM substructure [49], and precision astrometry probes (AstroM) [50]. We
also show constraints from FIRAS [51] and non-observation of primordial black holes (PBH) [5].

V. GRAVITATIONAL WAVE SIGNATURE

A. Secondary Gravitational Waves from Scalar
Curvature Perturbation

We now review how large primordial curvature pertur-
bations can source GW at the second order in perturba-
tion theory [52, 53] (for a review see [4]). We then eval-
uate the GW spectrum sourced by �2

⇣
computed in sec-

tion IV. We start our discussion with a brief review of
the essential relations and expand the discussion further
in appendix A.

We can write a tensor perturbation in Fourier space
as,

hij(⌧,x) =
X

�=+,⇥

Z
d3

k

(2⇡)3
e
ik·x

✏
�

ij
(k)h�(⌧,k) , (57)

where ✏
�={+,⇥}
ij

(k) are polarization tensors:

✏
+

ij
(k) =

1p
2

(e1,i(k)e1,j(k) � e2,i(k)e2,j(k)) , (58)

✏
⇥
ij

(k) =
1p
2

(e1,i(k)e2,j(k) + e2,i(k)e1,j(k)) , (59)

with e1,2 the orthonormal bases spanning the plane trans-
verse to k. The equation of motion determining the gen-
eration and evolution of GW is given by

h
00
�
(⌧,k) + 2Hh

0
�
(⌧,k) + k

2
h�(⌧,k) = 4S�(⌧,k), (60)

where 0 denotes derivative with respect to the conformal
time ⌧ and H = a

0
/a is the conformal Hubble parame-

ter. The second-order (in scalar metric perturbation �)

source term is given by5

S�(⌧,k) =

Z
d3

q

(2⇡)3
Q�(k,q)

3(1 + w)


2(5 + 3w)�p �q

+ ⌧
2(1 + 3w)2�0

p �0
q + 2⌧(1 + 3w)(�p �0

q + �p �0
q)

�
.

(62)

We have defined p ⌘ k � q, �k ⌘ �(⌧,k), and a projec-
tion operator Q�(k,q):

Q�(k,q) ⌘ ✏
ij

�
(k)qiqj . (63)

The metric perturbation �(⌧,k) can be written in terms
of the primordial curvature perturbation ⇣(k),

�(⌧,k) =
3 + 3w

5 + 3w
T�(k⌧)⇣(k) , (64)

via a transfer function T�(k⌧) which depends on w. With
the above quantities, one can now solve eq. (60) using the
Green function method,6

h�(⌧,k) =
4

a(⌧)

Z
⌧

⌧0

d⌧̄Gk(⌧, ⌧̄)a(⌧̄)S�(⌧̄ ,k) . (65)

5
We parametrize the scalar metric fluctuations, for vanishing

anisotropic stress, as

ds2 = � (1 + 2�) dt2 + a2 (1� 2�) �ijdx
i
dxj

(61)

6
Scale factors appearing in the I integral as a(⌧̄)/a(⌧) are the

artifact of Gk(⌧, ⌧̄) being Green’s function of the new variable

v(⌧,k) = ah(⌧,k) and not h� itself; see Appendix A 2.
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Figure 5. Gravitational wave spectrum for the benchmarks discussed in Fig. 3. We notice that the number of e-folds after
CMB-observable modes exited the horizon determines the peak frequency of the spectrum, and correspondingly, di↵erent
detectors can be sensitive to the signal. Although a similarly peaked spectrum would appear in the context of cosmological
phase transitions (PT), the low-frequency tail of this GW spectrum is di↵erent from the usual f

3 tail. While in the context
of PT the f

3 scaling originates due to causality and superhorizon behavior of fluctuations, in our scenario, the f -scaling is
determined by � mass. The di↵ering frequency dependence can then be used to discriminate between the two classes of signals.

turbations could be generated in a model similar to the
one considered in this paper. However, the frequency de-
pendence of ⌦GWh

2 determined by the NANOGrav re-
sult is [63] 1.8 ± 0.6. We note that for a free field with
mass m, the frequency dependence of ⌦GWh

2 is given by,
4m

2
/(3H

2). So for the central value, one would naively
infer m

2
/H

2 = 1.4. Therefore to interpret it in terms
of a free field, we require a mass bigger than the Hub-
ble scale. However, since for larger than Hubble-scale
masses, the stochastic e↵ects are not e�cient, one may
have to go beyond the stochastic scenario to explain the
NANOGrav observations. We could instead consider a
regime in which the misalignment contribution is impor-
tant [13, 14]. We will leave a detailed analysis of this
scenario to future work.
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Appendix A: Scalar-induced gravitational waves:
technical details

1. Transfer functions

The equation of motion for the scalar perturbation �
in the absence of isocurvature perturbations is,

�00(⌧,k) + 3(1 + c
2

s
)H�0(⌧,k) + c

2

s
k
2�(⌧,k) = 0 , (A1)

where c
2

s
' w is the sound speed of the fluid. Defin-

ing dimensionless parameter y =
p

wk⌧ , we rewrite this
equation as

d2�(y,k)

dy2
+

6(1 + w)

1 + 3w

1

y

d�(y,k)

dy
+ �(y,k) = 0 . (A2)

A general solution is given by,

�(y,k) = y
�� [C1(k)J�(y) + C2(k)Y�(y)] , (A3)

where J� and Y� are spherical Bessel functions of the first
and second kind, respectively, of order �

� =
3(1 + w)

1 + 3w
� 1 . (A4)

In the radiation dominated era, in which w = 1/3 !
� = 1, we have

�(y,k) =
1

y2


C1(k)

✓
sin y

y
� cos y

◆
+

C2(k)

✓
cos y

y
+ sin y

◆�
. (A5)

We can deduce the initial conditions of this solution by
considering the early-time limit k⌧ ⌧ 1,

sin y

y
� cos y ' y

2

3
and

cos y

y
+ sin y ' 1

y
. (A6)
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in sudden-reheating scenarios.

II. FORMULAS FOR INDUCED
GRAVITATIONAL WAVES

In the following, we briefly review the equations to
calculate induced GWs (see Ref. [10] for more details).
We assume that an eMD era ended abruptly with the
Universe entering into the RD era at a conformal time
⌘ = ⌘R. Then the scale factor and the conformal Hubble
parameter are given by

a(⌘)

a(⌘R)
=

8
<

:

⇣
⌘

⌘R

⌘2

2 ⌘
⌘R

� 1
, H(⌘) =

(
2
⌘ (⌘  ⌘R)

1
⌘�⌘R/2 (⌘ > ⌘R)

.

(1)

We also assume that the curvature perturbations follow a
Gaussian distribution1 and adopt the conformal Newto-
nian gauge2 for simplicity. Since we focus on the e↵ects
of an eMD era, relevant to very small-scale fluctuations
(k � keq = 0.0103 Mpc�1 [44]), in this paper we do not
consider the enhancement of the induced GWs during the
late MD era (z . 3400) [5, 45].

The energy density parameter of GWs per logarithmic
interval in k is given by

⌦GW(⌘, k) =
⇢GW(⌘, k)

⇢tot(⌘)

=
1

24

✓
k

a(⌘)H(⌘)

◆2

Ph(⌘, k), (2)

where Ph(⌘, k) is the time averaged power spectrum of
GWs. It can be evaluated from the power spectrum P⇣

of the curvature perturbations by [10]

Ph(⌘, k) = 4

Z 1

0
dv

Z 1+v

|1�v|
du

✓
4v

2 � (1 + v
2 � u

2)2

4vu

◆2

⇥ I2(u, v, k, ⌘, ⌘R)P⇣(uk)P⇣(vk).
(3)

Here, I(u, v, k, ⌘, ⌘R), describing the time dependence of
GWs, is given by

I(u, v, k, ⌘, ⌘R) =

Z x

0
dx̄

a(⌘̄)

a(⌘)
kGk(⌘, ⌘̄)f(u, v, x̄, xR),

(4)

where x and xR are defined as x ⌘ k⌘ and xR ⌘ k⌘R.
In this equation, Gk is the Green’s function being the
solution of

G
00
k(⌘, ⌘̄) +

✓
k

2 � a
00(⌘)

a(⌘)

◆
Gk(⌘, ⌘̄) = �(⌘ � ⌘̄), (5)

where a prime denotes di↵erentiation with respect to ⌘,
not ⌘̄. Note that the concrete expression of Gk depends
on the background evolution of the Universe, which is
an eMD era or the RD era in our problem. In addition,
f(u, v, x̄, xR) is the source function defined as

f(u, v, x̄, xR) =
3
�
2(5 + 3w)�(ux̄)�(vx̄) + 4H�1(�0(ux̄)�(vx̄) + �(ux̄)�0(vx̄)) + 4H�2�0(ux̄)�0(vx̄)

�

25(1 + w)
, (6)

where ! = P/⇢ is the equation-of-state parameter with
P and ⇢ being the pressure and the energy density, re-
spectively. � is the transfer function of the gravitational
potential, which satisfies �(x ! 0, xR) ! 1, and a prime
denotes di↵erentiation with respect to the conformal
time, that is, �0(ux̄) ⌘ @�(ux̄)/@⌘̄ = uk @�(ux̄)/@(ux̄).
The second argument of � is abbreviated in Eq. (6) for
compact notation. �(ux̄) actually means �(ux̄, ux̄R),
and �(vx̄) should be understood similarly.

The evolution equation for � is [46]

�00 + 3(1 + w)H�0 + wk
2� = 0. (7)

1 GWs induced by the curvature perturbations with non-
Gaussianity are discussed in Refs. [11, 14, 40, 41]

2 The gauge dependence of induced GWs is discussed in Refs. [42,
43].

By solving this equation, we find

�(x, xR) =

(
1 (for x  xR),

A(xR)J (x) + B(xR)Y(x) (for x � xR),

(8)

where we have dropped the decaying mode for ⌘ < ⌘R. In
this expression, J (x) and Y(x) are defined from the first
and second spherical Bessel functions, j1(x) and y1(x),
as

J (x) =
3
p

3 j1

⇣
x�xR/2p

3

⌘

x � xR/2
, (9)

Y(x) =
3
p

3 y1

⇣
x�xR/2p

3

⌘

x � xR/2
, (10)

and the coe�cients A(xR) and B(xR) are determined so

where the subscripts “m” and “r” represent matter and radiation, respectively. The equations
for perturbations in Fourier space are given by [36]

�0m = �✓m + 3�0 � a��, (3.3)

✓0m = �H✓m + k2�, (3.4)

�0r = �4

3
(✓r � 3�0) + a�

⇢m
⇢r

(�m � �r + �), (3.5)

✓0r =
k2

4
�r + k2� � a�

3⇢m
4⇢r

✓
4

3
✓r � ✓m

◆
, (3.6)

where � and ✓ denote the energy density perturbation and the velocity divergence [36, 38],
respectively, and we have neglected the anisotropic stress of radiation. In addition, the
derivative of � is given by [39],

�0 = �
k2� + 3H2� + 3

2H
2
⇣

⇢m
⇢tot

�m + ⇢r
⇢tot

�r
⌘

3H , (3.7)

where ⇢tot = ⇢m + ⇢r.
Figure 1 shows the numerical results for the evolutions of the background quantities,

such as a, ⇢m, ⇢r, and w. We define ⌘eq as the conformal time when ⇢m = ⇢r. Note that there
is one-to-one correspondence between � and ⌘eq and hence this and the subsequent figures
do not depend on the specific choice of �. We also plot the approximation formula Eq. (2.2)
with ⌘R = 0.83⌘eq, as well as the following fitting formula:

wfit =
1

3

 
1 � exp

 
�0.7

✓
⌘

⌘eq

◆3
!!

. (3.8)

Both the formulas fit the numerical results very well. We will explain the reason why we take
⌘R = 0.83⌘eq shortly. The fact that the approximation formula for the scale factor fits the
numerical result well may indicate that using the exact solutions for the Green’s functions
during an eMD era and the RD era is a good approximation, noting the Green’s functions
are determined by the scale factor (see Eq. (2.12)).

Figure 2 shows the numerical results of the evolutions of the perturbations. Here, we
have assumed the following adiabatic initial conditions [39]:6

�m,ini = �2�ini, �r,ini =
4

3
�m,ini, ✓m,ini = ✓r,ini =

k2⌘

3
�ini. (3.9)

Note that we study the linear regime, and thus the overall normalization of perturbations
does not matter in the figures, hence we take �ini = 1, or equivalently we plot the transfer
function. In Fig. 2, we can see that for perturbation modes that entered the horizon well
before the transition (k � 1/⌘eq), the gravitational potential � exponentially decays soon
after the equality time, and after a while, � starts to oscillate due to radiation pressure, with
the amplitude decaying less rapidly (/ ⌘�2).

Here, we explain how to derive an approximation formula of � which describes its
exponential decay. The formula will be used to calculate the induced GWs. First, from

6
Strictly speaking, in Ref. [39], the initial conditions for ✓m/r are not discussed. Howerver, we can easily

derive the initial conditions for them substituting the initial condition for �m into Eq. (3.4).
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FIG. 4. Numerical results for the evolutions of the gravi-
tational potential � and the triggeron ⌧ , normalized by M .
We also plot the analytical formula of �, given by Eq. (7),
with the black dotted line. We take � = 0.1, c = 0.1, and
⌧0 = 1000M .

Let us present the time evolution of the gravitational
potential � to show how this model works. Figure 4
shows the evolution of � in addition to that of the field
⌧ . For �, we use the equations for perturbations that are
used in our accompanying paper [39] to take into account
the decay of � to �. This figure shows that the analytical
expression of �, given in Eq. (8), is satisfactorily accurate
in sudden-reheating scenarios.

Since � and ⌧ are independent degrees of freedom, fluc-
tuations in ⌧ will introduce additional curvature pertur-
bations and non-Gaussianity due to the modulated re-
heating mechanism [58–62]. To estimate those quantities,
let us first note that the time evolution of the triggeron is
given by ⌧ = ⌧0 sin(mt)/(mt). The time when it reaches
the minimum (⌧ = 0) is mt = ⇡, but it reaches the critical
value slightly before. The decay time is thus estimated
to be

mt =⇡

✓
1 � ⌧c

⌧0

◆
. (A5)

As discussed e.g. in Ref. [63], the e-folding number is
related to the decay time as

e
N / t

1/6
. (A6)

Thus, we can calculate N
0 = (1/6)t0/t and N

00 =
(1/6)(t00/t � (t0/t)2) where the prime denotes di↵eren-
tiation with respect to ⌧0, and t is evaluated at the decay
time. Explicitly,

N
0 ' ⌧c

6⌧
2
0

, N
00 ' � ⌧c

3⌧
3
0

, (A7)

noting ⌧c ⌧ ⌧0. Using these values, we obtain

P⇣(⌧) =(N 0
�⌧0)

2 ' 1

36

✓
⌧c

⌧0

◆2 ✓
Hinf

2⇡⌧0

◆2

, (A8)

fNL =
5

6

✓P⇣(⌧)

P⇣

◆2
N

00

(N 0)2
' �10

✓P⇣(⌧)

P⇣

◆2
⌧0

⌧c
, (A9)

where ⇣ represents the total curvature perturbation, and
⇣
(⌧) is the contribution to ⇣ from ⌧ . Note that fNL ap-

pears to contain a large factor ⌧0/⌧c, but the above ex-
pression implicitly contains the inverse of this factor with
a higher power. Hence, fNL can be su�ciently small. We
conclude that non-Gaussianity can be small enough to
be consistent with observations provided that ⌧0 � ⌧c is
satisfied.

Let us interpret the above model. It is quite natural
that the decay of a field is prohibited by some symmetry.
For example, the lightest particle charged under some
unbroken symmetry is absolutely stable. This is usually
applied to dark matter model building to explain its sta-
bility [64]. Thus, we assume that � is charged under some
symmetry. If the scalar field is real, as in the above toy
model, the possible charge assignment is limited, and so
the scalar fields will be complex in a more realistic situ-
ation. In this context, ⌧ must be assumed to be a singlet
(non-charged) with respect to the symmetry that pro-
tects �’s stability because otherwise its initial nonzero
expectation value spontaneously breaks the symmetry.
� can be interpreted as some charged particle, initially
heavier than � due to its ⌧ -dependent mass. However,
it subsequently becomes lighter than �, which triggers
the � decay. For example, we can assign � charge +2
and � charge �1. Or, we can assign � and � the same
charge and introduce a chargeless field �

0 with an interac-
tion such as ��

†
�

0. In this way, various generalizations
of our simple model would be possible. The produced
relativistic � particles and antiparticles are assumed to
produce a thermal bath containing Standard Model par-
ticles through scattering and annihilation, which reheats
the Universe.

Alternatively, we may interpret ⌧ as some symmetry
breaking field. When a symmetry is broken, it is often
the case that charged fields (corresponding to �) become
massive. For example, the Higgs mechanism makes gauge
bosons massive. In the Standard Model, it also makes
fermions massive through Yukawa interactions. One of
the flat directions in the minimal supersymmetric stan-
dard model [65] would be a good candidate for this pur-
pose since most of the fields in the theory (corresponding
to �) can be massive when it obtains a finite expectation
value. In this case, all the possible decay channels of �

must be kinematically blocked or su�ciently suppressed.

2. Another sudden-reheating scenario realized by a
field that experiences a first order phase transition

Suppose that � is protected by a symmetry from decay-
ing, without any decay channels of � to lighter particles.
Let us further assume that ⌧ is charged under the sym-
metry and is too heavy for � to decay into. There may
be an interaction term of the form

L = c⌧��� + . . . , (A10)

Sudden transition

Inomata, Kohri, Nakama, Terada 1904.12878, 1904.12879
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its power spectrum. We then use these results in sec-
tion IV to determine the full shape of the curvature power
spectrum, both on large and small scales. The small-
scale enhancement of the curvature power spectrum leads
to an observable SGWB and we evaluate the detection
prospects in section V in the context of µ-Hz to Hz-scale
gravitational wave detectors. We conclude in section VI.
We include some technical details relevant to the compu-
tation of SGWB in appendix A.

Clarifications on the notations. (1) Perturbed FRW

metric. Comment on hij vs
1

2
hij . (2) Fourier transform

convention. Comment on (2⇡)3 vs (2⇡)3/2 in the litera-
ture.

II. COSMOLOGICAL HISTORY AND
CURVATURE PERTURBATION

We now describe in detail the cosmological evolution
considered in this work. We assume that the inflaton
field � drives the expansion of the Universe during in-
flation and the quantum fluctuations of � generate the
density fluctuations that we observe in the CMB and
LSS, as in standard cosmology. We also assume that
there is a second field � which behaves as a subdominant
spectator field during inflation, as alluded to above. We
parametrize its potential as,

V (�) =
1

2
m

2
�
2 +

1

4
��

4
. (1)

The � field does not drive inflation but nonetheless ob-
tains quantum fluctuations during inflation. In partic-
ular, � obtains stochastic fluctuations around the mini-
mum of its potential, as we compute in section III. After
the end of inflation, the inflaton is assumed to reheat
into radiation with energy density ⇢r, which dominates
the expansion of the Universe.

On the other hand, the evolution of the � field de-
pends on its mass m, interaction �, and its frozen (root
mean squared) displacement �0 during inflation. As long
as the ‘e↵ective’ mass of �: m

2 + 3��2

0
, is smaller than

the Hubble scale, � remains approximately frozen at �0.
However, after the Hubble scale falls below the e↵ective
mass, � starts oscillating around its potential. The evo-
lution of its energy density ⇢�, during this oscillatory
phase depends on the values of m and �. If the quar-
tic interactions dominate, with ��

2 � m
2, ⇢� dilutes

like radiation [15]. Eventually, the amplitude of � de-
creases su�ciently, so that ��2 . m

2, following which
⇢� starts redshifting like matter. We illustrate these be-
haviors in fig. 1.

Similar to the curvaton paradigm [11–14], during the
epoch ⇢� is diluting as matter, its fractional energy den-
sity, f�(t) ⌘ ⇢�(t)/⇢r(t), increases linearly with the scale
factor a(t). For our benchmark parameter choices, we
assume � to decay into SM radiation while f�(td) ⇠ 1,
where td denotes the time of � decay. After td, the evolu-
tion of the Universe coincides with standard cosmology.

100 101 102 103

t

10�2

10�1

� �
(t

)a
(t

)3

m2/H2 = 0.005, � = 1

m2/H2 = 0.2, � = 0.05

Radiation

Figure 1. Time evolution of scalar field energy density ⇢�(t).
In scenarios where the quartic term dominates the initial evo-
lution (dashed red), the field dilutes as radiation (dot-dashed
olive), ⇢�(t) / 1/a(t)4. Eventually, the mass term becomes
important, and the behavior becomes ⇢�(t) / 1/a(t)3. The
benchmark choices in this work will mimic the blue curve
where the evolution of ⇢�(t) is always dominated by the mass
term with a matter-like dilution.

With this cosmology in mind, we can track the evo-
lution of various cosmological perturbations using the
gauge invariant quantity ⇣, the curvature perturbation
on uniform-density hypersufaces [16],

⇣ = � � H
�⇢

⇢̇
. (2)

Here  is a fluctuation appearing in the spatial part of the
metric as, �gij = �2a2 �ij (ignoring vector and tensor
perturbations), �⇢ denotes a fluctuation around a homo-
geneous density ⇢, and an overdot denotes a derivative
with respect to physical time t. We assume that the de-
cay products of � do not interact with � during their
cosmological evolution. Then there is no energy transfer
between the two sectors and their energy densities evolve
as,

⇢̇r = �4H⇢r , ⇢̇� = �3H⇢�, (3)

where we have focused on the epoch where � dilutes like
matter. For the benchmark parameter choices discussed
below, the matter-like dilution for � onsets soon after
inflation. Similar to eq. (2), we can parametrize gauge
invariant fluctuations in radiation and � with the vari-
ables,

⇣r = � +
1

4

�⇢r

⇢r
, ⇣� = � +

1

3

�⇢�

⇢�
. (4)

In terms of the above variables, we can express eq. (2)
as,

⇣ =
4

4 + 3f�
⇣r +

3f�
4 + 3f�

⇣� = ⇣r +
f�

4 + 3f�
S�. (5)

Here S� ⌘ 3(⇣� � ⇣r) is the isocurvature perturbation
between radiation and � perturbations. In the absence
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2 �ij , and �⇢ denotes a fluctuation around a homogeneous density ⇢. We assume that

the SM radiation coming from � and � do not interact with each other during their cosmological

evolution. Then there is no energy transfer between the two fluids and the energy densities evolve

as,

⇢̇r = �4H⇢r , ⇢̇� = �3(1 + w)H⇢�, (30)

where we have used a generic equation of state parameter w for � since it dilutes di↵erently at

di↵erent epochs as the Universe evolves.

We assume instantaneous transitions between di↵erent equations of state and consider the epoch

when � is diluting as matter. Thus we have

⇣ = � � H
�⇢

⇢̇
= (1 � f�)⇣r + f�⇣� = ⇣r +

f�

3
S� (31)

where

⇣r = � +
1

4

�⇢r

⇢r
, ⇣� = � +

1

3

�⇢�

⇢�
, f� =

3⇢�

4⇢r + 3⇢�
, S� =

�⇢�

⇢�
�

3

4

�⇢r

⇢r
= 3(⇣� � ⇣r). (32)

Here S� is the isocurvature perturbation between SM radiation (r) and �. The quantities ⇣r and

⇣� are gauge invariant perturbations capturing the fluctuations in radiation and �, respectively.

In the absence of any energy transfer, ⇣r and ⇣� are each conserved at super-horizon scales. As a

result, the evolution of ⇣ is entirely determined by the time-dependent relative energy density of

between radiation and �, f�. Assuming that ⇣r and S� are uncorrelated, the power spectrum for

curvature perturbation is determined by,

P⇣ = P⇣r +

✓
f�

3

◆
2

PS�
. (33)

We consider scenarios where the SM radiation energy density ⇢r originates from the inflaton, and

therefore, P⇣r will have the standard red-tilted dependence on scales. On the other hand, � acquires

stochastic fluctuations to give rise to a blue-tilted power spectrum PS�
.
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1

3
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3
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Table I, we can compute the dimensionless power spec-
trum �2

S�
using eq. (35), where we can evaluate the fac-

tor of aH at the end of inflation. Furthermore, for our
benchmark parameter choices, only the eigenvalue ⇤2 is
relevant. Therefore, eq. (35) can be simplified as,

�2

S�
(k) ⇡ 2g

2

2

⇡
�

✓
2 � 2⇤2

H

◆
sin

✓
⇡⇤2

H

◆✓
k

kend

◆2⇤2/H

,

(52)

where kend = aendHend.
The precise value of kend depends on the cosmological

history after the CMB-observable modes exit the horizon.
It is usually parametrized as the number of e-foldings
N(k) ⌘ ln(aend/ak), where ak is the scale factor when
a k-mode exits the horizon during inflation, defined by
k = akHk. Assuming an equation of state parameter w

between the end of inflation and the end of the reheating
phase, we can derive the relation [36, 37],

k

a0H0

=

✓ p
⇡

901/4
T0

H0

◆
e
�N(k)

 
V

1/2

k

⇢
1/4

end
Mpl

!✓
⇢RH

⇢end

◆ 1�3w
12(1+w)

⇥
g
1/3

⇤,s,0g
1/4

⇤,RH

g
1/3

⇤,s,RH

.

(53)

Here g⇤,RH and g⇤,s,RH are the e↵ective number of degrees
of freedom in the energy density and entropy density,
respectively, at the end of the reheating phase; Vk is the
inflationary energy density when the k-mode exits the
horizon; ⇢end and ⇢RH are the energy densities at the
end of inflation and reheating, respectively. Plugging in
the CMB temperature T0 and the present-day Hubble
parameter H0, we arrive at

N(k) ⇡ 67 � ln

✓
k

a0H0

◆
+ ln

 
V

1/2

k

⇢
1/4

end
Mpl

!

+
1 � 3w

12(1 + w)
ln

✓
⇢RH

⇢end

◆
+ ln

 
g
1/4

⇤,RH

g
1/3

⇤,s,RH

!
.

(54)

Significant sources of uncertainty in N(k) comes from Vk,
⇢end, ⇢RH, and w. Furthermore, eq. (54) assumes a stan-
dard cosmological history where following reheating, the
Universe becomes radiation dominated until the epoch of
matter-radiation equality. We now consider some bench-
mark choices with which we can evaluate N(k). We set

k = a0H0, assume V
1/4

k
= 1016 GeV, close to the current

upper bound [2], ⇢end ' Vk/100, motivated by simple
slow-roll inflation models, and w ⇡ 0 [38–40].4 Then
depending on the reheating temperature, we get

N(k) =

(
62, TRH = 6 ⇥ 1015 GeV,

59, TRH = 1011 GeV.
(55)

4
The precise value of w is model dependent, see, e.g., [41–45]

and [46] for a review.

For the first benchmark, we have assumed an instan-
taneous reheating after inflation, while for the second
benchmark, the reheating process takes place for an
extended period of time. For these two benchmarks,
kend ⇡ 4 ⇥ 1023 Mpc�1 and 1022 Mpc�1, respectively.

To determine �2

⇣
(k), we also need to evaluate f� as a

function of time. We can express the time dependence of
f� in terms of k in the following way. A given k-mode
re-enters the horizon when k = akHk, and assuming ra-
diation domination, we get k/kend = aend/ak. Since f�

increases with the scale factor before � decay, we can ex-
press f�(t) = f�(td)(kd/k), for t < td, where kd and k

are the modes that re-enter the horizon at time td and
t, respectively. Therefore, the final expression for the
curvature power spectrum at the time of mode re-entry
follows from eq. (7),

�2

⇣
(k) =

8
><

>:

�2

⇣r
(k) +

⇣
f�(td)

4+3f�(td)

⌘2
�2

S�
(k), k < kd,

�2

⇣r
(k) +

⇣
f�(td)(kd/k)

4+3f�(td)(kd/k)

⌘2
�2

S�
(k), k > kd.

(56)

To determine the scale kd, we consider the benchmarks
discussed above, along with some additional choices for
other parameters.

a. Benchmark 1. We focus on the first benchmark
in eq. (55). For m

2 = 0.2H
2 and � ' 0.05 � 0.1, we get

hV (�)i ⇡ 0.02H
4 from eq. (41), implying hV (�)i/Vk ⇡

3⇥10�12 for H = 5⇥1013 GeV. Assuming instantaneous
reheating, and ⇢end ' Vk/100, we see f� ' 1 for a '
(1/3) ⇥ 1010aend. As benchmarks, we assume � decays
when f� = 1 and 1/3. Using kend ⇡ 4 ⇥ 1023 Mpc�1,
we can then evaluate kd ⇡ 1014 Mpc�1 and kd ⇡ 3 ⇥
1014 Mpc�1, respectively. The result for the curvature
power spectrum with these choices is shown in Fig. 3
(left).

b. Benchmark 2. We now discuss the second bench-
mark in eq. (55). We again choose m

2 = 0.2H
2 and

� ' 0.05 � 0.1, for which we get hV (�)i ⇡ 0.02H
4

from eq. (41). This implies hV (�)i/Vk ⇡ 3 ⇥ 10�12 for
H = 5⇥1013 GeV, as before. The rest of the parameters
can be derived in an analogous way, with one di↵erence.
During the reheating epoch, with our assumption w ⇡ 0,
f� does not grow with the scale factor since the dominant
energy density of the Universe is also diluting as mat-
ter. Accounting for this gives kd ⇡ 8 ⇥ 1011 Mpc�1 and
kd ⇡ 3 ⇥ 1012 Mpc�1, for f� = 1 and 1/3, respectively,
with the resulting curvature power spectrum shown in
Fig. 3 (center).

c. Benchmark 3. This is same as the first bench-
mark discussed above, except we focus on m

2 = 0.25H
2

and 0.3H
2 along with f� = 1. The result is shown in

Fig. 3 (right).
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Figure 3. Power spectrum of curvature perturbations for the benchmarks discussed above. Stochastic e↵ects lead to a blue-
tilted spectrum of �, with larger m and � corresponding to larger tilts, leading to faster decay as k gets smaller. The blue-tilt
is eventually cut o↵ at kd, the k-mode that reenters the horizon at the time of � decay. For k larger than kd, the fractional
energy density in � at the time of mode-reentry is smaller. Correspondingly, �2

⇣ gets suppressed. Eventually, for very large k,
the e↵ects of � become negligible, and �2

⇣ reverts back to its standard, slightly red-tilted behavior. A smaller value of f�(kd),
the fractional energy density at the time � decay, suppresses the e↵ect of � to �2

⇣ , and hence leads to a suppressed peak.
This mechanism predicts signatures in CMB spectral distortion measurements [47], especially in Super-PIXIE [48], along with
Pulsar Timing Array (PTA) probes for enhanced DM substructure [49], and precision astrometry probes (AstroM) [50]. We
also show constraints from FIRAS [51] and non-observation of primordial black holes (PBH) [5].

V. GRAVITATIONAL WAVE SIGNATURE

A. Secondary Gravitational Waves from Scalar
Curvature Perturbation

We now review how large primordial curvature pertur-
bations can source GW at the second order in perturba-
tion theory [52, 53] (for a review see [4]). We then eval-
uate the GW spectrum sourced by �2

⇣
computed in sec-

tion IV. We start our discussion with a brief review of
the essential relations and expand the discussion further
in appendix A.

We can write a tensor perturbation in Fourier space
as,

hij(⌧,x) =
X

�=+,⇥

Z
d3

k

(2⇡)3
e
ik·x

✏
�

ij
(k)h�(⌧,k) , (57)

where ✏
�={+,⇥}
ij

(k) are polarization tensors:

✏
+

ij
(k) =

1p
2

(e1,i(k)e1,j(k) � e2,i(k)e2,j(k)) , (58)

✏
⇥
ij

(k) =
1p
2

(e1,i(k)e2,j(k) + e2,i(k)e1,j(k)) , (59)

with e1,2 the orthonormal bases spanning the plane trans-
verse to k. The equation of motion determining the gen-
eration and evolution of GW is given by

h
00
�
(⌧,k) + 2Hh

0
�
(⌧,k) + k

2
h�(⌧,k) = 4S�(⌧,k), (60)

where 0 denotes derivative with respect to the conformal
time ⌧ and H = a

0
/a is the conformal Hubble parame-

ter. The second-order (in scalar metric perturbation �)

source term is given by5

S�(⌧,k) =

Z
d3

q

(2⇡)3
Q�(k,q)

3(1 + w)


2(5 + 3w)�p �q

+ ⌧
2(1 + 3w)2�0

p �0
q + 2⌧(1 + 3w)(�p �0

q + �p �0
q)

�
.

(62)

We have defined p ⌘ k � q, �k ⌘ �(⌧,k), and a projec-
tion operator Q�(k,q):

Q�(k,q) ⌘ ✏
ij

�
(k)qiqj . (63)

The metric perturbation �(⌧,k) can be written in terms
of the primordial curvature perturbation ⇣(k),

�(⌧,k) =
3 + 3w

5 + 3w
T�(k⌧)⇣(k) , (64)

via a transfer function T�(k⌧) which depends on w. With
the above quantities, one can now solve eq. (60) using the
Green function method,6

h�(⌧,k) =
4

a(⌧)

Z
⌧

⌧0

d⌧̄Gk(⌧, ⌧̄)a(⌧̄)S�(⌧̄ ,k) . (65)

5
We parametrize the scalar metric fluctuations, for vanishing

anisotropic stress, as

ds2 = � (1 + 2�) dt2 + a2 (1� 2�) �ijdx
i
dxj

(61)

6
Scale factors appearing in the I integral as a(⌧̄)/a(⌧) are the

artifact of Gk(⌧, ⌧̄) being Green’s function of the new variable

v(⌧,k) = ah(⌧,k) and not h� itself; see Appendix A 2.
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1. INTRODUCTION

Arguably the most striking prediction of inflationary cosmology [1] is the causal generation of nearly scale-invariant
spectra of both scalar (energy density) and tensor (gravitational wave, GW) perturbations. The natural prediction is
that the scalar and tensor amplitudes are comparable within one or two orders of magnitude of one another by virtue
of the fact that both are created by the same de Sitter quantum process. The existence of a scalar spectrum is now
firmly established by measurements of the cosmic microwave background (CMB) [2] and large scale structure [3], and
its amplitude is well-determined. Tensor fluctuations, on the other hand, have yet to be detected, although current
measurements have only begun to probe the expected range of amplitudes.

Detecting primordial tensor fluctuations is an important milestone because it rules out a whole class of alterna-
tive cosmological scenarios, like the ekpyrotic [4] and cyclic models [5], which produce virtually the identical scalar
spectrum as inflation but a completely different tensor spectrum. In particular, the primordial tensor contribution in
ekpyrotic/cyclic models is exponentially smaller and more blue [6]. Detection of a primordial tensor signal is therefore
widely regarded as a smoking gun signature of inflation. However, failing to detect the tensor modes at the expected
level does not necessarily rule out inflation. The inflationary tensor signal can be suppressed by extra fine-tuning of
the inflationary model and/or the addition of extra fields (e.g. hybrid inflation [7]) so that the background equation
of state of the Universe, instead of changing smoothly during the final stages of inflation, undergoes a sequence of
jerks and gyrations [8]. A number of studies have discussed the limits to how far a search for the tensor spectrum can
go based on detector sensitivity and foregrounds [9].
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FIG. 1: Spectra of first- and second-order gravitational waves: This schematic illustrates the conjectured form of
ΩGW(k), the fraction of the critical density in gravitational waves per log-interval of wavenumber k, as derived in section 3.
The topmost curve represents the typical first-order inflationary tensor spectrum. With fine-tuning, it can be suppressed below
the level of the second-order, scalar-induced tensor perturbations (bottom curves). The bottom curves represent a sequence of
times: matter-radiation equality (aeq), redshift z = 100, and today (a0). The scalar-induced tensor spectra shown here are for
a perfectly scale-invariant scalar input spectrum (ns = 1). If the scalar spectrum is blue (ns > 1) the induced tensor spectrum
is enhanced on small scales (large k), while a red spectrum (ns < 1) suppresses tensor fluctuations on small scales (see section
5 for cautionary remarks about extrapolating spectra to very small scales using the large-scale power law form of the scalar
spectrum). ΩGW is of course ill-defined on superhorizon scales. On superhorizon scales (dashed lines) we therefore formally
define the rescaled tensor power spectrum, k2Ph(k), but do not interpret it as an energy density of gravitational waves (see
section 3).

At second order in perturbation theory the observed scalar spectrum sources the generation of secondary tensor
modes [10]. In this paper, we analyze the stochastic spectrum of second-order gravitational waves induced by the
first-order scalar perturbations. Since the scalar spectrum is already measured, this contribution to the tensor
spectrum must exist and must be the same for both inflationary and ekpyrotic models because their predictions for
the scalar spectrum match. For inflation, this second-order contribution is generically negligible, orders of magnitude
smaller than the first-order contribution except for models with extreme fine-tuning. For ekpyrotic and cyclic models,
the scalar-induced second-order contribution computed here is actually the dominant contribution on astrophysical
and cosmological scales, because the first-order tensor spectrum is always exponentially small compared to the scalar
spectrum. Hence, the calculation here supersedes previous predictions of the tensor spectrum for ekpyrotic and

12

while k2h(i)
k ∼ S estimates the initial amplitude on the horizon scale. Hence, the initial power spectrum, P (i)

h , on
superhorizon scales is simply (k/H)4 times the spectrum on the horizon scale

P (i)
h (k) ∝

(

k

H

)4

× ∆4
R(k0)

keq

k
∝ k3 , k < khor ≤ keq . (70)

Although the tensor power spectrum, Ph, is a well-defined gauge-invariant object on super-horizon scales, Ω(2)
GW is not.

In particular, equation (41) is only defined on subhorizon scales. Nevertheless, we formally define Ω(2)
GW ∝ k2P (i)

h ∝ k5

on superhorizon scales, but do not attribute physical meaning to it. This definition is useful, since all our results

are presented in terms of Ω(2)
GW and the shape of the superhorizon spectrum gives a simple consistency check for the

numerical analysis.

4. NUMERICAL RESULTS FOR THE EXACT SPECTRUM

The spectrum of scalar-induced gravitational waves that we derived in §2 and discussed analytically in §3 can be
evaluated exactly using standard numerical methods. The time evolution of the first-order perturbation variables
necessary to compute the spectrum, Φ(kη) and Ψ(kη), is obtained from publicly available Einstein-Boltzmann codes
such as CMBFAST [16] or CAMB [17]. We first store the time evolution of Φ and Ψ in k-space, then convolve
them according to equation (32). In practice, the range of k is taken be [10−5 Mpc−1, 500 Mpc−1] and variables are
evaluated at 50 uniformly spaced points per log-interval of k. We have checked that our results are stable under
variations of the k-space boundaries and the discretization.
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ΩGW
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FIG. 3: Numerical spectra of scalar-induced gravitational waves (lower curves) and the scale-invariant primordial tensor
spectrum for an inflationary model with tensor-to-scalar ratio r = 0.1 (upper curve). The scalar-induced spectra are shown
at three different epochs, z + 1 = 3400, 100, and 1. Each curve has been extended, for pedagogical reasons, to modes with
small wavenumbers k that lie outside the horizon at the given epoch (dotted range of the three lower curves). Note that
current (z + 1 = 1) scalar-induced contributions cross the primordial inflationary contribution at intermediate wavelengths, as
suggested by the schematic in Figure 1. The simulation assumes a flat ΛCDM cosmology with the following model parameters:
∆2

R(k0 = 0.002 Mpc−1) = 2.4 × 10−9, ns = 1, nt = 0, r = 0.1, Ωbh
2 = 0.022, Ωmh2 = 0.11, h = 0.7.

In the numerical analysis it is possible to incorporate the difference between Φ and Ψ resulting from anisotropic
stress of the fluid because the Boltzmann equations of photons and neutrinos are solved explicitly in the code by
expanding their distribution functions into multipole moments. (Neglecting anisotropic stress from neutrinos implies
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Figure 2. Di↵erential spectra of the secondary GW induced by first-order phase transition during inflation for di↵erent param-
eters as shown in the plot. Two choices of the model parameters are shown as examples. They give the right amplitude to
account for the data set collected by the NANOGrav collaboration. They can also fit the spectral shape of the observed data,
in particular in the region f < 3⇥ 10�8 Hz. As a comparison, the corresponding primary GWs are also shown by the dashed
curves. In the interesting parameter region, the magnitude of the primary GWs is smaller than the secondary GWs by a few
orders of magnitude.

SUMMARY AND OUTLOOK

The main result of this work is shown in Fig. 2. As
a benchmark, we compare them with data from the
NANOGrav collaboration. The observations from the
other PTA collaborations are in broad agreement. The
secondary GW signal considered in this work can have
the same magnitude to account for the observation. They
can also fit the spectral shape of the observed data, in
particular in the region f < 3 ⇥ 10�8 Hz. Hence, we
conclude that the mechanism of GW production studied
in this paper provides a promising explanation for the
observations made at the PTA collaborations.

The observed signal in the higher frequency range
f > 3⇥ 10�8 Hz seems to indicate an even higher ampli-
tude. Additional data and the combination of the data
from all PTA collaborations can shed more light on this
region. In our scenario, we could, in principle, consider
slightly later phase transitions (smaller Ne) to have the
signal peak towards higher frequencies. We can also ad-
just other parameters, such as L, ✏, and �, to a higher
amplitude. However, as already evident in Fig. 1, higher
amplitudes of curvature perturbation will inevitably lead
to copious production of primordial black holes and be
in tension with observations. This is a generic limit for
any mechanism of secondary GW production.

We expect significant PBH production in the region
with large curvature perturbations considered in this
work, even if they have not been excluded yet. This could
o↵er a correlated signal to verify the secondary GW pro-
duction mechanism. We leave a detailed study of this
question for future work.
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Appendix

In this appendix, we present the details of the phase
transition used in the numerical simulation, the lattice
simulation method, and the analysis of the form factor
F2.
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Impact on spectrum

Figure 4. The left figure shows the slope in the UV regime of the GW spectrum for di↵erent p values with

⌧r = |⌧⇤| and �/H⇤ = 20. The right figure shows the slope in the IR regime with ⌧r = 20|⌧⇤| and �/H⇤ = 10.

Both figures are plotted using H⇤ = 108GeV and a⇤/a1 = exp(�15) under the t
p ⇥MD-RD scenario.

density would become smaller which seems to raise the final ⌦GW value. However this enhancement
would be cancelled by the suppression of GW power spectrum. The lower Hubble value, the later
for certain mode exiting the horizon and it would experience more damping thus eventually leave a
weaker power spectrum. In the limit p ! 1 and setting ar = a1, Hr = H1, ⌧r = ⌧1 we recover the
dS⇥RD result

h
Ẽ i

0(k)G̃
f

0 (k)
i2 ✓a⇤

a1

◆4

=

✓
a⇤H⇤
k

◆4

=
1

(k⌧⇤)4
(5.11)

It should be emphasized that the absolute value of the Hubble parameter when phase transition
take place is not important. Only the relative ratio kp/H⇤ matters which divided the spectrum profile
into three regions, IR, oscillatory and UV part. In the following we focus on the slope of the GW
signal in di↵erent region. The source k

3
p
Tij(kp,kp)T ⇤

ij
(kp,kp) can provide two distinct region. For

modes k < kpeak, the IR part is approximately proportional to k
3 while for modes k > kpeak the signal

goes like k
�1. The signals are given as in the following tables. We summarize the tilt of the UV part

of the gravitational wave spectrum in Table 2, the tilt of the intermediate part of the gravitational
wave spectrum in Table 3 and the tilt of the IR part of the gravitational wave spectrum in Table 4.
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Table 2. The slope of the gravitational wave spectrum in the UV regime which scales as
h
Ẽi
0(k)G̃f

0 (k)
i2

k
�1.

Here
h
Ẽi
0(k)G̃f

0 (k)
i2

encodes the UV e↵ect from the propagation of the gravitational wave. k�1 is contributed

by the UV part of the source.

In the tables, the rows show di↵erent inflationary scenarios while the columns refer to the di↵erent
stages when the modes re-enter the horizon. The slope here is in the near small region of the k mode.
The k mode re-enters the horizon and starts to oscillate at certain era like matter dominated or
radiation dominated stage. Afterwards it would never exit the horizon under the assumption that
there is no extra inflationary stage as the universe continues to expand. In the ”deep” IR part, the low
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Table 3. The slope of the gravitational wave spectrum in the intermediate regime which scales
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Ẽi
0(k)G̃f

0 (k)
i2

encodes the UV e↵ect from the propagation of the gravitational

wave. k3 is contributed by the IR part of the source.

RD MD t
p̃

dS k
3

k
1

k
5+2 p̃

p̃�1

t
p

k
3

k
1

k
5+2 p̃

p̃�1

Table 4. The slope of the gravitational wave spectrum in the IR regime which scales as
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2 is the contribution from the Green’s function which encodes the IR e↵ect from the propagation of

the gravitational wave. k3 is contributed by the IR part of the source.

enough k-modes do not becomes subhorizon until the universe enters the final radiation-dominated
stage where SM particles have been thermalized and its signal still behave like k

3 as expected.
In Fig 4, we emphasize the slopes in the UV and IR regime of the GW spectrum under the t

p⇥
MD-RD scenario. Apart form the k

3 behaviour in deep IR, the other slope values are p-dependent
as expected. In Fig 5 we show the explicit current observed GW spectrum from the phase transition
happened during the t

p inflation and followed by later MD-RD evolution. Cases with two p values
and four di↵erent ⌧r values are displayed. The solid line is for p = 10 while the dashed line is with
p = 3. ⌧r = ⌧1 refers to the instantaneous reheating which could serve as the limiting case for very
short reheating process. For the other three settings we vary the ratio ⌧2/|⌧⇤| to be 0.1, 1 and 10. As
we have seen from Eq (5.10), when we vary the value of a⇤/a1 and H⇤, the signal strength would be
una↵ected. This means the spectrum profile is just moved left or right horizontally in this plot when
phase transition happens at di↵erent moments or with di↵erent Hubble values. Hence it is likely some
parts of such signal profile enter into the sensitivity regime of di↵erent GW observatories especially
like SKA, BBO1 and BBO2 which can probe weaker GW signal strength.

5.2 dS ⇥ RD-dS-RD

We consider this combination evolution as an interesting extension. The factor Ẽ i

0(k) has been calcu-
lated in Sec. 2.2. Inserting these expressions we get
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In the last equation we have inserted the explicit expressions and write down the final result in terms
of the dS-RD result and the ratio which is only dependent on k/(a⇤H1) or k⌧⇤, the ratios of ⌧2, ⌧r to
⌧⇤ but no ⌧1. Of course while ⌧r ! ⌧2, the ratio R ! 1 and we recover the simple dS-RD result. In
Fig 6 we show the observed GW spectrum under two di↵erent ⌧r/⌧2 settings and the corresponding
four ⌧2 values. Compared to the single RD signal profile, the larger ⌧2/⌧⇤ leads to the modification
to deeper IR modes which may hardly be detected even in the future BBO2. For ⌧r = 1.9⌧2, the UV
part is considerably altered which may serve as the characteristic to distinguish. If the parameters are
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Ẽi
0(k)G̃f

0 (k)
i2

k
3. Here

h
Ẽi
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3 behaviour in deep IR, the other slope values are p-dependent
as expected. In Fig 5 we show the explicit current observed GW spectrum from the phase transition
happened during the t

p inflation and followed by later MD-RD evolution. Cases with two p values
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we have seen from Eq (5.10), when we vary the value of a⇤/a1 and H⇤, the signal strength would be
una↵ected. This means the spectrum profile is just moved left or right horizontally in this plot when
phase transition happens at di↵erent moments or with di↵erent Hubble values. Hence it is likely some
parts of such signal profile enter into the sensitivity regime of di↵erent GW observatories especially
like SKA, BBO1 and BBO2 which can probe weaker GW signal strength.
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In the last equation we have inserted the explicit expressions and write down the final result in terms
of the dS-RD result and the ratio which is only dependent on k/(a⇤H1) or k⌧⇤, the ratios of ⌧2, ⌧r to
⌧⇤ but no ⌧1. Of course while ⌧r ! ⌧2, the ratio R ! 1 and we recover the simple dS-RD result. In
Fig 6 we show the observed GW spectrum under two di↵erent ⌧r/⌧2 settings and the corresponding
four ⌧2 values. Compared to the single RD signal profile, the larger ⌧2/⌧⇤ leads to the modification
to deeper IR modes which may hardly be detected even in the future BBO2. For ⌧r = 1.9⌧2, the UV
part is considerably altered which may serve as the characteristic to distinguish. If the parameters are
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Figure 1. Illustration of the k dependence of di↵erent parts of a typical GW spectrum.

none of these scenarios can produce features in the GW spectrum similar to first order phase transition
during inflation.

In the appendix of Ref. [20], we provide simple models that first order phase transition can happen
and finish during inflation. Possible scenarios are also studied in Ref. [69], where first order phase
transition in the thermal plasma is assumed to present at the beginning of inflation, and in Ref. [70],
where the inflation starts from a first order phase transition. Some results about the features of the
GW spectrum from first order phase transition are also studied in Ref. [71].

The rest of the paper is organized as the following. In Sec. 2, we show that the oscillation feature
is generic for instantaneous sources happen during the accelerating expansion era of the universe. In
Sec. 3, we discuss how to use the oscillation pattern to distinguish di↵erent inflation models. In Sec. 4,
we discuss the influence on the oscillation pattern from later evolutions of the universe after inflation.
In Sec. 5, we present examples of inflation models that first order phase transition can happen and
generate GW signals large enough to be observed by future detectors. We summarize our results in
Sec. 6.

2 Generic features

The metric of our expanding universe can be written as

ds
2 = �dt

2 + a
2(t)(�ij + hij)dx

i
dx

j
, (2.1)

where a is the scale factor, and the transverse traceless part of hij parameterizes the GW degrees of
freedom. If the expansion of the universe is accelerating we have ä > 0. Here the dot is defined as
derivatives with respect to t. The conformal time is defined as d⌧ = a

�1(t)dt, then the metric can be
written as

ds
2 = a

2(⌧)
⇥
�d⌧

2 + (�ij + hij)dx
i
dx

j
⇤
. (2.2)

It is well-known that if the expansion of the universe accelerates, there will be a future event horizon,
which means in the comoving coordinate system, the range of the conformal time, ⌧ , has an upper
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