Physics of ultra-peripheral collisions from the perspective of STAR experiment

Jaroslav Adam

Czech Technical University in Prague

May 20, 2024

3. Česko-slovenský ALICE workshop

Ultra-peripheral heavy-ion collisions

- An ultra-peripheral collision (UPC) is a collision at impact parameter greater than the sum of the nuclear radii
- Electromagnetic field of protons and ions behaves like a beam of quasi-real photons
- Photoproduction in γp and γA interactions
- Diffraction in pp or AA processes
- QED processes in $\gamma\gamma$ interactions

Hadron collider is turned to a photon-hadron or photon-photon collider

Field of virtual photons by the Weizsäcker-Williams concept

- Electromagnetic field of a relativistic charge creates the flux of equivalent photons which hit the target
- Lorentz contraction to the perpendicular direction, energy spectrum by Fourier transform:

$$I(\omega,b) = rac{1}{4\pi} |oldsymbol{E}(\omega) imes oldsymbol{B}(\omega)|$$

• Putting in field of uniformly moving charge, we have flux of photons per unit of area:

$$N(\omega, b) = \frac{Z_1^2 \alpha_{\rm em} \omega^2}{\pi^2 \gamma_L^2 v^2} \left[K_1^2(x) + \frac{1}{\gamma_L^2} K_0^2(x) \right]$$

 Modified Bessel function K²₁(x) of argument x = ωb/γ_Lv gives leading contribution of transversal photons in ultra-relativistic limit

Intensity of the photons is proportional to the charge squared, Z^2

Origin of diffraction in hadronic collisions in analogy with optics

Optics

• Electromagnetic wave as solution to Helmholtz equation

 $(\nabla^2+k^2)U=0$

• Wave number $k = 2\pi/\lambda$

- Every point in a hole of radius, *R*, is a source of spherical wave
- Diffraction in light intensity at a distance, *D*, when $kR^2/D \ll 1$

Ion or proton collisions

• Wave function as solution to Schröedinger equation

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r})+V(\mathbf{r})\psi(\mathbf{r})=E\psi(\mathbf{r})$$

• Scattering is described as an outgoing spherical wave

- Typically $R \sim 1$ fm, $D \gtrsim 1$ cm and $k \sim \sqrt{s} \sim 200$ GeV
- Optical condition is satisfied

Physics processes studied in ultra-peripheral collisions

Light vector mesons

- Photon-pomeron coupling to target nucleus
- ρ^0 is the only produced particle

- Perturbative QCD, coupling via a gluon pair
- *J*/ψ is the only produced particle

Nuclei typically leave intact, but may be excited by electromagnetic field to emit neutrons

Photoproduction of vector mesons

 Photon coupling is coherent (to entire nucleus) or incoherent (to a single nucleon)

- Light vector mesons probe Fock states of the photon and soft-Pomeron approach to the process
- Cross section of heavy meson photoproduction is sensitive to gluon density

Coherent cross section is sensitive to nuclear effects of gluon density at intermediate and low-x

Two-photon pair production, $\gamma\gamma \rightarrow e^+e^-$

- Probe to fundamental QED and cross check to vector meson results
- Calculations factorize photon flux emitted by nuclei and γγ → e⁺e[−] process itself
- Similar factorization is used also for vector meson models
- Mechanism for neutron emission is the same as with vector mesons

Experimental realization of energy to matter conversion

RHIC collider

- Relativistic Heavy Ion Collider
- Located at Brookhaven National Laboratory (BNL), Long Island
- Nuclei up to Au, polarized protons
- Various beam energies up to $\sqrt{s_{\rm NN}}$ = 200 GeV, 510 GeV for pp

Two more years to go, then conversion to Electron Ion Collider (EIC)

The STAR experiment at RHIC (Solenoidal Tracker At RHIC)

• Central tracking and particle identification, forward counters and neutron detection

- Time Projection Chamber: tracking and identification in $|\eta| < 1$
- Time-Of-Flight: multiplicity trigger, particle identification and pile-up track removal
- Barrel ElectroMagnetic Calorimeter: topology trigger and pile-up track removal
- Beam-Beam Counters: scintillator counters in 2.1 < $|\eta|$ < 5.2, forward veto
- Zero Degree Calorimeters: detection of very forward neutrons, $|\eta| > 6.6$

Jaroslav Adam (CTU Prague)

Physics of ultra-peripheral collisions

Selection criteria for UPC events

Just two tracks from a low- p_T vector meson, forward neutrons, and nothing else

• Rapidity acceptance for J/ψ or ρ^0 is |y| < 1

- Dedicated trigger for limited activity and topology in TOF or BEMC
- Showers in both ZDCs
 - Energy deposition to be consistent with selected breakup case
 - Full efficiency to a single neutron
- Veto from both BBCs against any other hadron activity

Detectors are not in scale in the illustration

News on J/ψ and $\gamma\gamma \rightarrow e^+e^-$ UPCs in AuAu

• Recent PRL and PRC submissions, arXiv:2311.13637 and arXiv:2311.13632 • Coherent and incoherent J/ψ photoproduction and $\gamma\gamma \rightarrow e^+e^$ cross section

Use of forward neutrons to determine photon-nucleus center-of-mass energy

Neutron tagging by ZDCs

- Single-neutron at 50 ADC, full range up to ~80 neutrons
- Separation between no activity and at least one neutron (dashed line)
- Classes for neutron emission corrected for migrations:

No signal in ZDCs

0n0n

Additional class all n as a sum of all, 0n0n, 0nXn and XnXn (meaning no requirement on ZDC)

Mass and p_T of selected dielectron candidates

- Coherent enriched sample below p_T = 0.15 GeV
- No requirement on ZDC (*all n*)
- Fit by MC templates folded by complete detector simulation

The templates include: coherent J/ψ and ψ(2S), incoherent J/ψ w/o dissociation, feed-down from ψ(2S)→J/ψ+X and QED γγ → e⁺e⁻

Fit results are used to extract signal of individual processes

J/ψ photoproduction cross section in -t ($\approx p_T^2$)

- Mid-rapidity |y| < 1, average $W_{\gamma N} = 25 \text{ GeV}$
- Momentum transfer squared at target nucleus is related to p_T of the J/ψ as $-t \approx p_T^2$
- Better agreement with data is found for Sartre and LTA calculations in data/MC ratios

Coherent peak at low p_T^2 , incoherent photoproduction at larger p_T^2 (decreasing exponential)

Additional 10% luminosity uncertainty is not shown

arXiv:2311.13632

Jaroslav Adam (CTU Prague)

Interference in J/ψ photoproduction

- Bins in rapidity, *all n* neutron category
- Suppression by more than 0.5 in the lowest p_T^2 bin

Interference due to the symmetry of Au+Au collisions

arXiv:2311.13632, drawing adapted from Phys.Today 70 (2017) 10, 40-47

Coherent and incoherent 0nXn neutron class

- Neutron emission in one side, no ZDC hit in the other (0nXn class)
- Positive rapidity y is defined along the direction of produced neutron(s)
- No effect of neutron direction to coherent process (independent Coulomb nuclear excitation)

Increase in incoherent production in the neutron direction (nuclear breakup directly in incoherent process)

Coherent J/ψ photoproduction vs. photon-nucleus CM energy $W_{\gamma N}$

- Values for σ_{coherent} are obtained after solving photon source-target ambiguity by making use of the forward neutrons (0n0n, 0nXn, XnXn)
- LTA with weak shadowing describes the data

Significant suppression w.r.t. the Impulse Approximation (IA) is observed

Nuclear suppression factor

- Coherent suppression $S_{\rm coh}^{\rm Au}$ is determined relative to the IA
- Incoherent suppression S^{Au}_{incoh} is a ratio of all n cross section to HERA parametrization for free protons
- Bands for LTA model span between weak and strong shadowing
- CGC is shown at its kinematic limit for x > 0.01

Stronger incoherent suppression is found than in the coherent case

Coherent $\psi(2S)$ photoproduction vs. rapidity

- Coherent ψ(2S) and J/ψ cross section in bins of |y| and their ratio
- Case of all n neutron category
- The ratio is correctly predicted by STARlight

J/ψ photoproduction off deuterons

 Au is more likely the photon source due to Z^2 proportionality in the flux

Coherent and incoherent cross section on deuterons with neutron tagging

Phys.Rev.Lett. 128 (2022) 12, 122303

Jaroslav Adam (CTU Prague)

ZDC ADC

Cross section of J/ψ photoproduction in d-Au UPC

- Results vs. momentum transfer squared at the deuteron *-t*
- Direct incoherent measurement with neutron tagging (neutron in the direction of deuteron)

Sensitive to deuteron gluon distribution and breakup process, baseline for EIC

Phys.Rev.Lett. 128 (2022) 12, 122303

Jaroslav Adam (CTU Prague)

ρ^0 photoproduction in AuAu UPC

Clean sample of ρ^0 photoproduction events

Phys.Rev.C 96 (2017) 5, 054904

Jaroslav Adam (CTU Prague)

Results on ρ^0 photoproduction in AuAu UPC

- Cross section as a function of squared momentum transfer at target nucleus $-t = p_T^2$
- Single-neutron and more-neutron categories
- Interference between source and target nuclei at very low -t
- Diffractive minima consistent with Au size

Observation of the minima indicates the onset of black disk regime

Phys.Rev.C 96 (2017) 5, 054904

Jaroslav Adam (CTU Prague)

22/24

Cross section of $\gamma\gamma \rightarrow e^+e^-$ pair production in AuAu UPC

- Cross section as a function of dielectron mass
- Individual neutron emission categories
- New data up to m_{ee} of 6 GeV, addition to previous results at lower masses

Models are consistent with data in all neutron categories, confirming relation between photon flux and neutron emission in mutual Coulomb excitation

arXiv:2311.13632

Jaroslav Adam (CTU Prague)

Summary

UPCs are a clean probe to diffraction phenomena, mechanisms of gluon shadowing and saturation, and fundamental QED

More STAR data to come (some of):

- J/ψ in pp UPC with protons detected in Roman Pots
- Combined samples for J/ψ in AuAu, question of diffractive dips in *t* dependence

• Strangeness in UPC events