Charged-particle jet trigger in Run 3

Filip Křížek ÚJF AV ČR

3. Česko-slovenský ALICE workshop, Danišovce 2023

courtesy S. Piano

ALICE data selection strategy in Run 3

$Jets \equiv$ bunch of collimated particles \approx hard partons

\mathbf{J}

anti-k_⊤ algorithm

$d_{ij} = \min(\bar{p}_{T,i}^2, \bar{p}_{T,j}^2) \frac{\Delta_{ij}^2}{R^2}$ and $d_{iB} = \bar{p}_{T,i}^2$ $R \approx$ cone radius 2) Find minimal d_{ii} , d_{iB} 3) If d_{ii} is the minimum \rightarrow merge i + j and go to 1) 4) d_{iB} is the minimum \rightarrow remove *i* from the list (final jet) and go to 1) particle 1 particle 2 particle 3 Final jet particle 4 particle 5 time flow of jet algorithm

anti-k,, R=1 p, [GeV] 25 20 15 10 5 4 φ 2 0

JHEP 0804 (2008) 063

3

1) For all particles *i*, *j* evaluate

Considerations about the charged jet trigger

Observables:

- Inclusive jets (AKT jets R = 0.4 $|\eta_{jet}| < 0.5$, R = 0.2 $|\eta_{jet}| < 0.7$)
- jet substructure
- b jets, ...
- Having a separate trigger for each of them does not seem optimal
- Trigger on inclusive jets with $p_{T,jet} > threshold$
- Use PYTHIA to test how different trigger designs affect spectra of jets

Example: Performance of the trigger AKT jets R=0.4, $|\eta_{jet}| < 0.5 \& p_{T,jet} > 30 \text{ GeV threshold}$

Example: Performance of the trigger AKT jets R=0.4, $|\eta_{jet}| < 0.5 \& p_{T,jet} > 30 \text{ GeV threshold}$

Example: Performance of the trigger AKT jets R=0.4, $|\eta_{jet}| < 0.5 \& p_{T,jet} > 30$ GeV threshold

Further thoughts about the charged jet trigger

We want selection which provides unbiased jet sample for wide range of jet R

- Large R jets contain small R jets in their core ⇒
 Offline selection should decide based on large jet R
- Small jets can be closer to acceptance boarder than large R jets ⇒ Application of the usual fiducial cut on jet should be avoided

Batio of *p*^T spectra in triggered and minimulas events

Inpact of different trigger conditions on spectra of jets and jets

Inpact of different trigger conditions on spectra of jets and jets

Impact of different trigger conditions on spectra of tracks and jets

Impact of different trigger conditions on spectra of tracks and jets Preferably trigger on: AKT R = 0.6 jet $|\eta_{jet}| < 0.9$ $p_{T,ch jet} >$ threshold

 $p_{\rm T}$ spectrum of leading AKT R = 0.6 jets in $|\eta_{\rm jet}| < 0.9$ \Rightarrow one entry in histogram per event

• Selection of events with the jet $p_{T,ch jet} > 47 \text{ GeV}$ provides desired suppressesion (2.5 · 10⁻⁵)

- Selection of events with the jet $p_{T,ch jet} > 47 \text{ GeV}$ provides desired suppressesion (2.5 · 10⁻⁵)
- Two threshold scenario low p_T threshold ~ 30 GeV downscaled high p_T threshold ~ 55 GeV not downscaled

Downscaling of low trigger threshold

 P_L probability of event with AKT R = 0.6 jet above 30 GeV P_H probability of event with AKT R = 0.6 jet above 55 GeV D_L , D_H corresponding downscaling factors

Trigger scenario for charged-particle jets in 2023

ch jet trhresh.	Probability	Downscaling
30 GeV	1.28 · 10 ⁻⁴	10
55 GeV	1.26 · 10 ⁻⁵	1

Performace for 2023

Performace for 2023

Spectra selected with the low p_{T} threshold will be downscaled by factor of 10 after the skimming

Trigger scenario for 2024

21

trigger	Probability of such event	Downscaling	
leading jet $p_T > 30 \text{ GeV}$	1.28 · 10 ⁻⁴	10	Suppr
leading jet $p_T > 55 \text{ GeV}$	1.26 · 10 ⁻⁵	not downscaled	2.5e-5
leading track $p_T > 25 \text{ GeV}$	2.41e-5	5	Suppr
leading track $p_T > 35 \text{ GeV}$	7.34e-6	not downscaled	1.2e-5
minimum bias		333	-

Factor that convertes statistics of LHC23zs_pass3_QC1_sampling dataset to 2024 projection

(L₂₀₂₄/L₂₀₂₃)*(N₂₀₂₃/N_{zs})

 $N_{2023} = 3.14 \cdot 10^{11}$ number of events in 2023 N_{zs} number of events in LHC23zs_pass3_QC1_samplig $L_{2023} = 9.7 \text{ pb}^{-1}$ luminosity from 2023 $L_{2024} = 30 \text{ pb}^{-1}$ expected lumi for 2024

inclusive AKT R = 0.4 charged jets $|\eta_{jet}| < 0.5$:

Trigger p_T bin	15-20 GeV	20-25	25-30	30-3	5	35-40	35-40		40-45		0	50-55	55-60)	60-65
MB	1.3 M	423 k	170 k	79.8	k	k 40.6		22.5 k		13.6 k		8305	5373		3616
jet > 30 GeV				2.6 N	2.6 M 1			755 k		447 k		277 k	178 k	ζ.	119 k
jet > 55 GeV													1.79	М	1.19 M
inclusive tracks $ \eta_{track} < 0.9$:															
Trigger p_T bin	15-20 GeV	20-25	25-30		30-3	5	35-40)	40-45		45-50	50-55	55-	·60	60-65
MB	315 k	89.3 k	33.4 k		15.9		8321		4160		2593	1246	100)5	462
track >25 GeV			2.23 M		1.06		554 k	ζ.	277 k		172 k	83 k	67	k	30.7 k
track >35 GeV							2.77	М	1.38 N	N	863 k	415 k	334	4 k	153 k

Concluding remarks

• Code location:

O2Physics/EventFiltering/filterTables.h O2Physics/EventFiltering/PWGJE/jetFilter.cxx

• High p_T reconstruction \Rightarrow later improvements in p_T resolution will smear threshold

