
Analysis Grand Challenge at REANA

Andrii Povsten
Mentors: Alex Held, Matthew Feickert (University of Wisconsin- Madison),

Oksana Shadura (University Nebraska-Lincoln), Tibor Simko (CERN)

FAIR and Open Science in High Energy Physics, OAC-2226378, OAC-2226379 and OAC-2226380

REANA - Reusable analysis

● Allow complex multi-stage physics analysis to be
executed with a single command, using REANA
service

● Enable to submit parameterized computational
workflows to run on remote compute clouds or
using other backends

● REANA uses container technologies to provide
exact runtime environment necessary for various
analysis steps

● Supports several different container technologies
(Docker, Singularity), compute clouds
(Kubernetes/OpenShift,), shared storage systems
(Ceph, EOS) and structured workflow
specifications (CWL, Yadage, Snakemake)

REANA instance at CERN - https://reana.cern.ch
● Using custom user tokens
● CERN gitlab native

integration - allows to
integrate REANA into your
GitLab pipelines.

● Excellent documentation
https://docs.reana.io/

● User support:
https://forum.reana.io/

For setting REANA client:
pip install reana-client

https://reana.cern.ch
https://docs.reana.io/
https://forum.reana.io/

Analysis Grand Challenge (AGC)
- Main AGC analysis task: ttbar cross-section measurement in single lepton channel

- Includes single top reconstruction
- AGC goal to allow coping with HL-LHC data sizes by rethinking data pipeline (e.g. increasingly

complex analysis benchmark)
- As well to provide flexible, easy-to-use, low latency analysis facilities

Analysis Grand Challenge
- Columnar data extraction from large dataset
- Processing of that data (event filtering, construction of observables, evaluation of

systematic uncertainties) into histograms
- Statistical model construction and statistical inference
- Relevant visualisation for this steps

+ Adding analysis preservation step to AGC pipeline

Next step: REANA specification file

The REANA reproducible analysis platform requires to have reana.yaml file present in your analysis source code (REANA
specification file).

Its purpose is to answer the Four Questions:

1. What is your input data? (e.g. dataset samples)

2. What is your analysis code? (e.g. python notebook, compiled
executable, script)

3. What is your computing environment? (e.g. docker image)

4. Which computational steps do you take to arrive at results? (e.g.
data processing or statistical model construction and statistical

inference)

Next step: Workflow management engine choice

● Our choice was to use Snakemake workflow management system
(integrated in REANA)

○ Help to keep a record of used scripts and their input dependencies
○ Run multiple steps in sequence, parallelising where possible
○ Automatically detect if something changes and then reprocess data if

needed
● Snakemake key feature is a “rule” description, which enables the

parallelisation within REANA, running each rule in a separate virtual node.
● Snakemake allows you to create a set of rules, each one defining a

“step” of your analysis.
● The rules need to be written in a file called Snakefile:

○ The input: Data files, scripts, executables or any other files.
○ The expected output: It’s not required to list all possible outputs. Just

those that you want to monitor or that are used by a subsequent step
as inputs.

○ Shell: A command to run to process the input and create the output.

rule ttbar_nominal_sample:

 input:

 "samples.ipynb"

 output:

 "histograms_ttbar__nominal.root"

 params:

 key_to_extract = 'ttbar',

 variation = 'nominal'

 container:

 "povstenandrii/papermill:20231102a"

 shell:

 "/bin/bash -l && source fix-env.sh &&

papermill {input} sample1_out.ipynb -p

key_to_extract {params.key_to_extract} -p

variation {params.variation} -k python3"

Example of Snakemake rule:

Version without parallelisation Version with parallelisation
workflow:

 type: serial

 specification:

 steps:

 - name: demoanalyzer

 environment:

'hub.opensciencegrid.org/iris-hep/analysis-systems-b

ase:latest'

 commands:

 - /bin/bash -l && source fix-env.sh && python

ttbar_analysis_pipeline.py

outputs:

 files:

 - merged_histograms.root

inputs:

 files:

 - ttbar_analysis_pipeline.py

 - ttbar_analysis_pipeline.ipynb

 - nanoaod_inputs.json

 - nanoaod_branch_rations.json

 - corrections.json

 - Snakefile

 - merged.ipynb

 directories:

 - histograms

 - models

 - utils

 - files

workflow:

 type: snakemake

 file: Snakefile

outputs:

 files:

 - merged_histograms.root

 REANA specification file

Extremely long execution time since AGC was
written in mind without support for other workflow

languages

AGC notebooks modification:

- Rerun the same notebook n-times but with different parameters => instead of processing all files,
samples we process one sample with one file

- Firstly we parallelized each sample from fileset:

- Second, parallelize each file for each sample:

The main idea is to see the whole picture of your analysis what steps suppose to be after another and modify
it on the early stages to have a separate pieces which could be count as 1 job.

original_dict = fileset

selected_file = original_dict[sample_name]['files']

new_dict = {sample_name: {'files': [filename], 'metadata': original_dict[sample_name]['metadata']}}

all_histograms, metrics = run(

 fileset={sample_name: new_dict[sample_name]},

 treename=treename,

 processor_instance=TtbarAnalysis(USE_INFERENCE, USE_TRITON)

)

Analysis Grand Challenge pipeline:
Adapting to Snakemake

Each rule REANA sends to the Kubernetes cluster as separate node

 analyse file_ttbar_01 file_ttbar_02 file ... file_wjets_01 file_wjets_02 file_wjets_03 ...

 \ | / \ | /
 \ | / \ | /

 merge sample ttbar_nominal merge sample wjets_nominal

 \ /
 \ /

 merge all samples

 |
 |

 Plot

Snakemake checks the inputs and outputs in the rules to see the dependencies and order of execution

Next step: Execute REANA workflow
To run the workflow use the: reana-client run -f reana.yaml -w your-workflow

Job logs shows the process and full
workflow for each step(rule)

Engine logs: shows information
about steps scheduling.

Current results:

The processing, and merging all files in each sample takes around 21 minutes with
REANA. But this results can be improved further.

Conclusion

- Identify the possible ways of improving AGC adoption for REANA workflow and
RECAST

- Demonstrate HEPData submission of AGC artefacts for reusability
- Further optimisation of AGC processing time in REANA
- Testing on larger clusters
- Testing AGC ServiceX and machine learning pipelines in REANA

Future Tasks

- Successfully implement the AGC at REANA
- Get parameterized AGC notebook and execute it with papermill tool

