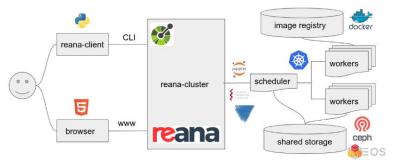
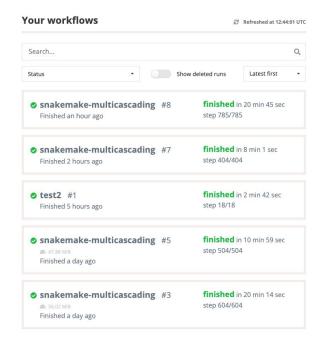
Analysis Grand Challenge at REANA


Andrii Povsten


Mentors: Alex Held, Matthew Feickert (University of Wisconsin- Madison), Oksana Shadura (University Nebraska-Lincoln), Tibor Simko (CERN)

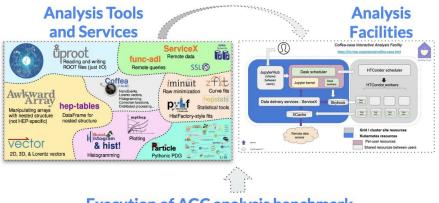
FAIR and Open Science in High Energy Physics, OAC-2226378, OAC-2226379 and OAC-2226380

REANA - Reusable analysis

- Allow complex multi-stage physics analysis to be executed with a single command, using REANA service
- Enable to submit parameterized computational workflows to run on remote compute clouds or using other backends
- REANA uses container technologies to provide exact runtime environment necessary for various analysis steps
- Supports several different container technologies (Docker, Singularity), compute clouds (Kubernetes/OpenShift,), shared storage systems (Ceph, EOS) and structured workflow specifications (CWL, Yadage, Snakemake)

REANA instance at CERN - https://reana.cern.ch

$\leftarrow \rightarrow$ C @	○ A = https://reana.cern.ch/profile		<u>ନ</u> ତ) ±	hit.	•	• •	0	Т	*	HH 🥶		*	ව
reana												۵	8	3
	Your REAL	NA token												
	In order to use	your token, make sure you have reana-client ins	talled and run:											
		EANA_SERVER_URL=https://reana.cern.ch EANA_ACCESS_TOKEN-	-	۲	¢									
	Your GitL	ab projects												
		onnect to GitLab order to integrate your GitLab projects with REA eed to grant permissions.	NNA you 😽 Conr	nect										
	Your quo	ta												
	CP	U Os Di	Sk	0 GiB										
Privacy notice							E Do	cs C) Foru	m 🔍	Chat	😻 Clus	ter he	alth

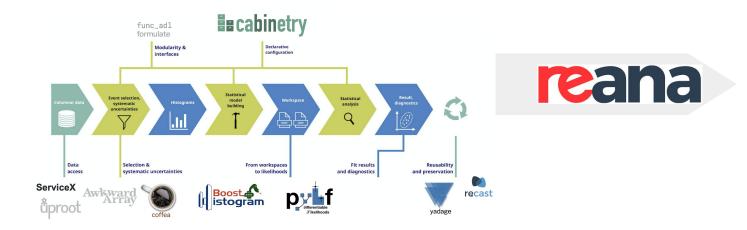

- Using custom user tokens
- CERN gitlab native integration - allows to integrate REANA into your GitLab pipelines.
- Excellent documentation https://docs.reana.io/
- User support: <u>https://forum.reana.io/</u>

For setting REANA client: pip install reana-client

<pre>(reana) andrewpovsten@pucomphep03 cms-open-data-ttbar % reana-client ping</pre>
REANA server: https://reana.cern.ch
REANA server version: 0.9.2
REANA client version: 0.9.1
Authenticated as: Andrii Povsten <andrii.povsten@cern.ch></andrii.povsten@cern.ch>
Status: Connected
(reana) andrewpovsten@pucomphep03 cms-open-data-ttbar %

Analysis Grand Challenge (AGC)

- Main AGC analysis task: ttbar cross-section measurement in single lepton channel
 - Includes single top reconstruction
- **AGC goal** to allow coping with HL-LHC data sizes by rethinking data pipeline (e.g. increasingly complex analysis benchmark)
 - As well to provide flexible, easy-to-use, low latency analysis facilities



Execution of AGC analysis benchmark

Analysis Grand Challenge

- Columnar data extraction from large dataset
- Processing of that data (event filtering, construction of observables, evaluation of systematic uncertainties) into histograms
- Statistical model construction and statistical inference
- Relevant visualisation for this steps

+ Adding analysis preservation step to AGC pipeline

Next step: REANA specification file

The REANA reproducible analysis platform requires to have reana.yaml file present in your analysis source code (REANA specification file).

Its purpose is to answer the Four Questions:

- 1. What is your input data? (e.g. dataset samples)
- 2. What is your analysis code? (e.g. python notebook, compiled executable, script)
- 3. What is your computing environment? (e.g. docker image)

4. Which computational steps do you take to arrive at results? (e.g. data processing or statistical model construction and statistical inference)

Next step: Workflow management engine choice

- Our choice was to use **Snakemake workflow management system** (integrated in REANA)
 - Help to keep a record of used scripts and their input dependencies
 - Run multiple steps in sequence, parallelising where possible
 - Automatically detect if something changes and then reprocess data if needed
- Snakemake key feature is a "rule" description, which enables the parallelisation within REANA, running each rule in a separate virtual node.
- <u>Snakemake allows you to create a set of rules, each one defining a</u> <u>"step" of your analysis.</u>
- The rules need to be written in a file called Snakefile:
 - The input: Data files, scripts, executables or any other files.
 - The expected output: It's not required to list all possible outputs. Just those that you want to monitor or that are used by a subsequent step as inputs.
 - Shell: A command to run to process the input and create the output.

Example of Snakemake rule:
<pre>rule ttbar_nominal_sample:</pre>
input:
"samples.ipynb"
output:
"histograms_ttbarnominal.root"
params:
<pre>key_to_extract = 'ttbar',</pre>
variation = 'nominal'
container:
"povstenandrii/papermill:20231102a"
shell:
"/bin/bash -1 && source fix-env.sh &&

papermill {input} sample1_out.ipynb -p
key_to_extract {params.key_to_extract} -p
variation {params.variation} -k python3"

REANA specification file

Version without parallelisation

workflow:

type: serial

specification:

steps:

- name: demoanalyzer
- environment:
- 'hub.opensciencegrid.org/iris-hep/analysis-systems-b
 ase:latest'
 - commands:
 - /bin/bash -1 && source fix-env.sh && python
- ttbar_analysis_pipeline.py

outputs:

files:

- merged_histograms.root

Extremely long execution time since AGC was written in mind without support for other workflow languages

Version with parallelisation

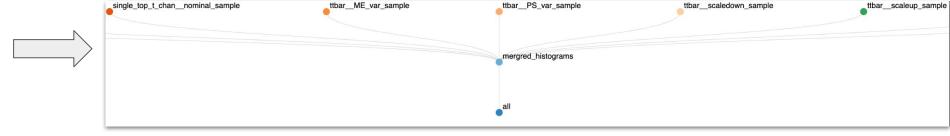
inputs:

files:

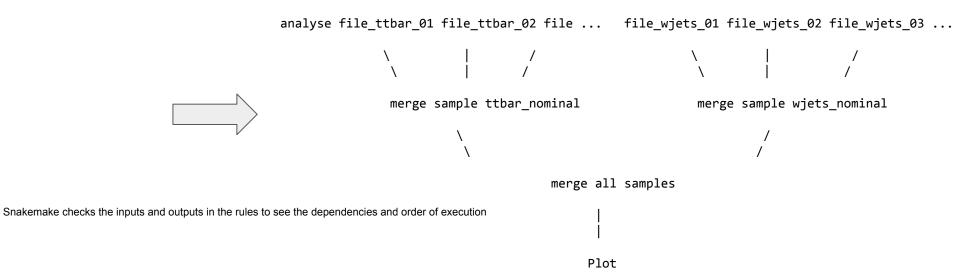
- ttbar_analysis_pipeline.py
- ttbar_analysis_pipeline.ipynb
- nanoaod_inputs.json
- nanoaod_branch_rations.json
- corrections.json
- Snakefile
- merged.ipynb
- directories:
 - histograms
 - models
- utils
- files
- workflow:
- type: snakemake
- file: Snakefile
- outputs:
- files:
 - merged_histograms.root

AGC notebooks modification:

- Rerun the same notebook n-times but with different parameters => instead of processing all files, samples we process one sample with one file
- Firstly we parallelized each sample from fileset:


```
original_dict = fileset
selected_file = original_dict[sample_name]['files']
new_dict = {sample_name: {'files': [filename], 'metadata': original_dict[sample_name]['metadata']}}
```

- Second, parallelize each file for each sample:


```
all_histograms, metrics = run(
    fileset={sample_name: new_dict[sample_name]},
    treename=treename,
    processor_instance=TtbarAnalysis(USE_INFERENCE, USE_TRITON)
)
```

The main idea is to see the whole picture of your analysis what steps suppose to be after another and modify it on the early stages to have a separate pieces which could be count as 1 job.

Analysis Grand Challenge pipeline: Adapting to Snakemake

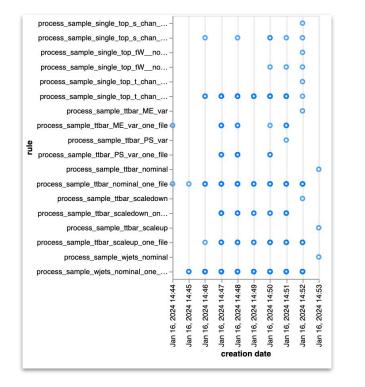
Each rule REANA sends to the Kubernetes cluster as separate node

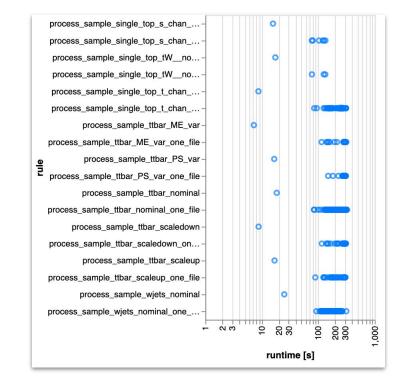
Next step: Execute REANA workflow

To run the workflow use the: reana-client run -f reana.yaml -w your-workflow

(reana) andrewpovsten@pucomphep03 cms-open-data-ttbar % reana-client run -f reana-snakemake.yaml -w snakemake-multicascading ==> Creating a workflow... lob stats:

Finished an hour ago step 786/74	in 27 min 7 sec : 36	Jo			s the proces or each step	
Chargine logs >	a& papermill merg	• snakemake-multicascading #2 Finished an hour ago				finished in 27 min 7 sec step 786/786
job: : Input Notebook: mergedl.ipynb Output Notebook: merged_scaleup.ipynb		©© Engine logs >_ Job logs □ Workspace 🔒 Specificat	tion			
Input notebook does not contain a cell with tag 'parameters' Executing: 0% 0/4 [00:00<7, ?cell/s]Executing notebook with kernel: python3	/s]Executing:	2024-01-16 12:42:07,199 reana-workflow-engine-snake 2024-01-16 12:42:07,470 snakemake.logging MainThr 2024-01-16 12:42:07,760 snakemake.logging MainThr 2024-01-16 12:42:07,760 snakemake.logging MainThr 2024-01-16 12:42:07,760 snakemake.logging MainThr	ead WARNING ead WARNING ead WARNING	Building D Using shel Provided c	DAG of jobs ll: /usr/bin/bash cluster nodes: 300	d: Snakefile
Completed		2024-01-16 12:42:07,809 snakemake.logging MainThr job	ead WARNING count min th	Job stats: reads m	: max threads	
		<pre>all process_sample_single_top_s_channominal process_sample_single_top_s_channominal_one_file process_sample_single_top_tWnominal</pre>	1 1 5 1	1 1 1	1 1 1	
		<pre>process_sample_single_top_tWnominal_one_file process_sample_single_top_t_channominal process_sample_single_top_t_chan_nominal_one_file process_sample_ttbar_ME_var</pre>	2 1 89	1 1 1	1 1 1	
		process_sample_ttbar_ME_var_one_file process_sample_ttbar_PS_var process_sample_ttbar_PS_var_one_file	1 15 1 14	1 1 1	1 1 1	
Engine logs: shov about steps se		<pre>process_sample_ttbar_nominal process_sample_ttbar_nominal_one_file process_sample_ttbar_scaledown nrocess_sample_ttbar_scaledown one file</pre>	1 242 1 31	1 1 1	1 1 1 1	


process_sample_ttbar_scaleup
process_sample_ttbar_scaleup_one_file


process_sample_wjets_nominal

32

Current results:

The processing, and merging all files in each sample takes around 21 minutes with REANA. But this results can be improved further.

Conclusion

- Successfully implement the AGC at REANA
- Get parameterized AGC notebook and execute it with papermill tool

Future Tasks

- Identify the possible ways of improving AGC adoption for REANA workflow and RECAST
- Demonstrate HEPData submission of AGC artefacts for reusability
- Further optimisation of AGC processing time in REANA
- Testing on larger clusters
- Testing AGC ServiceX and machine learning pipelines in REANA