Incorporating phenotypic similarity into trait description embeddings

(¹RENCI, UNC at Chapel Hill, ²Duke University, ³UC Irvine)

Introduction

- language descriptions Natural phenotypes are abundantly available.
- Developing computable traits or expressing phenotypes as logical statements amenable to machine reasoning, require considerable human effort.
- Phenoscape (https://phenoscape.org) curators annotate free-text phenotypic character state descriptions from morphological phylogenetic matrices, using the Entity-Quality semantic model. EQ associates an entity term from an anatomical ontology e.g., UBERON, with a quality term from the generic Phenotype and Trait Ontology (PATO).

Figure 1. An example of EQ annotation

Objective

Learning embeddings of trait descriptions that capture semantic similarity by incorporating background ontological knowledge.

Hypothesis: Ontology-based fine-tuning improves semantic textual similarity (STS) performance over just using free-text relationships.

- Develop a model to produce ontology-aligned text embeddings, without labor-intensive manual curation.
- Evaluate benchmarked models on trait description pairs, scored per their ontology-based semantic similarities.

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL FOR CONTRACT OF ALL AND ALL A

Soumyashree Kar¹, James P. Balhoff¹, Hilmar Lapp², Wasila Dahdul³

- Pairwise similarity of EQ annotations (and hence character state descriptions) are assessed using methods that consider the common ontology concepts connected via various relations (is_a, part_of, has_characteristic, etc.) as well as concept specificity.
- Concept specificity refers to the degree of detail or granularity of a concept within an ontology, quantified using information content.

Methodology

- Inspect / filter (if any) duplicate trait-description pairs.
- Compute from KB ontology-based semantic similarities.
- Select the highest scoring metric (Fig. 5) as the label or target scores for the pairwise-similarities.
- Inspect for any noise in the dataset (non-English and coarse annotations) and generate filtered dataset.
- Perform semantic textual similarity analysis (Fig. 6).
- Obtain raw-baseline performance of pre-trained and benchmarked sentence-transformer models.
- 2. Compare performance for different sequence lengths, embedding dimensions, and pooling methods.
- 3. Select the best (most accurate and efficient) model.
- 4. Finetune selected model on data: raw and filtered.
- 5. Compare performance metrics of both the models.

Figure 6. Siamese network of BERT-based models for semantic textual similarity (STS) analysis.

all-distilroberta all-MiniLM-L1 all-MiniLM-L6 all-mpnet-bas multi-qa-distill multi-qa-Minil multi-qa-mpn nli-distilbert-k nli-distilbert-k nli-distilrobert nli-roberta-bas paraphrase-alb paraphrase-Mir paraphrase-mu

all-distilroberta all-MiniLM-L12 all-MiniLM-L6all-mpnet-bas multi-qa-disti multi-qa-Mini multi-qa-mpn nli-distilbert-k nli-distilbert-k nli-distilrober nli-roberta-ba paraphrase-alk paraphrase-Mi paraphrase-mu

all-distilrober all-MiniLM-L1: all-MiniLM-L6all-mpnet-bas multi-qa-distil multi-qa-MiniL multi-qa-mpn nli-distilbertnli-distilbert-k nli-distilrobe nli-roberta-bas paraphrase-all paraphrase-Mi paraphrase-mu

RAW FILTERED

performed best (~0.22 correlation without finetuning).

Table 1. Baseline performance of pretrained models for pooling methods (I - iii), embedding dim : sequence length

	CLS							
	Pears	on's r	h:m	m:ss	Pears	on's r	h:mi	m:ss
model	768:128	768:256	768:128	768:256	256:128	256:256	256:128	256:256
a-v1	0.1618	0.1633	0:23:15	0:24:01	0.1484	0.1445	0:24:01	0:23:59
-v2	0.1275	0.1277	0:32:02	0:35:14	0.1217	0.1203	0:33:28	0:33:47
/2	0.0941	0.0921	0:21:32	0:21:57	0.0900	0.0936	0:21:48	0:22:03
-v2	0.2104	0.2109	0:25:24	0:27:04	0.1829	0.2158	0:26:33	0:26:48
pert-cos-v1	0.1080	0.1063	0:21:37	0:22:40	0.1058	0.1052	0:22:20	0:22:42
M-L6-cos-v1	0.0803	0.0794	0:21:29	1:14:57	0.0763	0.0807	0:21:59	0:22:08
t-base-dot-v1	0.1795	0.1753	0:34:57	0:36:39	0.1586	0.1683	0:36:18	0:36:31
ase	0.0919	0.0910	0:21:32	0:21:50	0.0891	0.0913	0:21:58	0:22:04
ase-max-pooling	0.0937	0.0921	0:21:15	0:21:49	0.0897	0.0909	0:21:53	0:22:06
a-base-v2	0.0895	0.0897	0:23:31	0:23:56	0.0871	0.0915	0:24:06	0:24:02
e-v2	0.0868	0.0876	0:34:30	0:35:42	0.0844	0.0901	0:35:33	0:35:39
ert-small-v2	0.0761	0.0762	0:24:21	0:26:19	0.0739	0.0782	0:25:01	0:26:15
niLM-L3-v2	0.0835	0.0842	0:59:33	0:16:05	0.0814	0.0866	0:16:03	0:29:03
Itilingual-MiniLM-L12-v2	0.0793	0.0794	0:31:51	0:33:48	0.0772	0.0820	0:33:09	0:46:24
	WEIGHTED MEAN							
	Pears	on's r	h:mr	m:ss	Pears	on's r	h:mi	n:ss
model	768:128	768:256	768:128	768:256	256:128	256:256	256:128	256:256
-v1	0.1350	0.1254	0:25:42	0:26:25	0.1057	0.1131	0:26:10	0:33:04
v2	0.1330	0.1241	0:34:35	0:36:29	0.1073	0.1129	0:35:31	0:40:15
2	0.1330	0.1250	0:54:05	0:23:54	0.1100	0.1193	0:23:41	0:25:51
-v2	0.1826	0.1851	0:36:51	0:38:19	0.1539	0.1622	0:38:11	0:51:02

e-v2	0.1826	0.1851	0:36:51	0:38:19	0.1539	0.1622	0:38:11	0:51:02
bert-cos-v1	0.1327	0.1247	0:24:22	0:25:04	0.1088	0.1172	0:24:51	0:32:22
M-L6-cos-v1	0.1351	0.1266	3:03:09	0:23:57	0.1121	0.1216	0:23:43	0:25:56
et-base-dot-v1	0.1617	0.1555	0:36:48	0:37:54	0.1279	0.1404	0:37:40	0:50:10
ase	0.1323	0.1277	0:24:08	0:24:35	0.1172	0.1230	0:23:47	0:24:40
ase-max-pooling	0.1256	0.1222	0:56:13	0:24:24	0.1116	0.1187	0:25:20	0:24:51
a-base-v2	0.1371	0.1311	0:25:39	0:26:07	0.1206	0.1262	0:25:58	0:26:17
se-v2	0.1377	0.1313	0:35:59	0:37:01	0.1198	0.1256	0:37:13	0:49:02
pert-small-v2	0.1360	0.1286	0:27:27	0:28:32	0.1137	0.1235	0:27:12	0:36:25
niLM-L3-v2	0.1370	0.1310	0:17:19	0:17:29	0.1183	0.1250	0:17:29	0:18:49
ultilingual-MiniLM-L12-v2	0.1362	0.1301	0:33:55	0:36:08	0.1161	0.1249	0:35:19	0:40:36
		-		-			-	

MEAN

	Pears	on's r	h:mi	n:ss	Pears	on's r	h:mi	m:ss
model	768:128	768:256	768:128	768:256	256:128	256:256	256:128	256:256
a-v1	0.1289	0.1315	0:24:14	0:24:34	0.1059	0.1108	0:24:15	0:24:25
-v2	0.1320	0.1286	0:34:49	0:35:19	0.1090	0.1094	0:34:07	0:34:39
v2	0.1342	0.1314	0:22:15	0:22:45	0.1129	0.1120	0:22:11	0:22:13
e-v2	0.1757	0.1803	0:39:43	0:39:53	0.1480	0.1587	0:36:39	0:37:09
bert-cos-v1	0.1039	0.1297	0:22:50	0:24:50	0.1132	0.1115	0:21:58	0:22:48
M-L6-cos-v1	0.1312	0.1336	0:22:28	0:22:48	0.1017	0.1124	1:41:22	1:42:32
et-base-dot-v1	0.1527	0.1596	0:37:05	0:37:55	0.1208	0.1392	0:36:44	0:36:47
ase	0.1106	0.1186	0:22:31	0:23:31	0.1016	0.1098	0:22:26	0:23:26
ase-max-pooling	0.1022	0.1042	0:22:42	0:24:42	0.1035	0.1051	0:21:28	0:22:48
a-base-v2	0.1133	0.1243	0:24:34	0:25:14	0.1012	0.1137	0:23:01	0:24:01
se-v2	0.1212	0.1203	0:36:16	0:36:27	0.1114	0.1105	0:34:30	0:35:30
pert-small-v2	0.1126	0.1265	0:27:03	0:27:50	0.1072	0.1096	0:25:52	0:26:52
niLM-L3-v2	0.1170	0.1287	0:16:18	0:17:08	0.1131	0.1134	0:14:20	0:15:15
ultilingual-MiniLM-L12-v2	0.1255	0.1276	0:34:46	0:35:16	0.1100	0.1116	0:34:26	0:34:36

Table 2. Finetuned performance of all-mpnet-base-v2 on raw and filtered datasets.

Training loss	Validation loss	Spearman_max (val)	Pearson_max (val)
0.0017	0.0015	0.9076	0.9544
0.0027	0.0136	0.9388	0.9432

Baseline evaluation – all-mpnet-base-v2 (109M params)

• Model finetuned on filtered dataset showed better and more

consistent performance, with overall correlation of 0.94.

Ontology-based finetuning improves semantic similarity

between trait descriptions.

Finetuned embeddings to be evaluated for multimodal learning.

Funding and Acknowledgement

This work was supported by the NSF OAC 2118240 Imageomics Institute award.