
• Natural language descriptions of phenotypes are

abundantly available.

• Developing computable traits or expressing phenotypes as

logical statements amenable to machine reasoning,

require considerable human effort.

• Phenoscape (https://phenoscape.org) curators annotate

free-text phenotypic character state descriptions from

morphological phylogenetic matrices, using the Entity–

Quality semantic model. EQ associates an entity term from

an anatomical ontology e.g., UBERON, with a quality term

from the generic Phenotype and Trait Ontology (PATO).

Objective
Learning embeddings of trait descriptions that capture

semantic similarity by incorporating background ontological

knowledge.

Hypothesis: Ontology-based fine-tuning improves semantic

textual similarity (STS) performance over just using free-text

relationships.

• Develop a model to produce ontology-aligned text

embeddings, without labor-intensive manual curation.

• Evaluate benchmarked models on trait description pairs,

scored per their ontology-based semantic similarities.

Methodology

Figure 5. Distribution plot of maxIC, jaccard, and simGIC scores
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Incorporating phenotypic similarity 
into trait description embeddings

• Inspect / filter (if any) duplicate trait-description pairs.

• Compute from KB ontology-based semantic similarities.

• Select the highest scoring metric (Fig. 5) as the label or 

target scores for the pairwise-similarities.

• Inspect for any noise in the dataset (non-English and 

coarse annotations) and generate filtered dataset. 

• Perform semantic textual similarity analysis (Fig. 6).

1. Obtain raw-baseline performance of pre-trained and 

benchmarked sentence-transformer models.

2. Compare performance for different sequence lengths, 

embedding dimensions, and pooling methods.

3. Select the best (most accurate and efficient) model. 

4. Finetune selected model on data: raw and filtered. 

5. Compare performance metrics of both the models.
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Semantic similaritySemantic similarity ≈

• EQ annotations - logically connected to domain ontologies.

• Pairwise similarity of EQ annotations (and hence character

state descriptions) are assessed using methods that

consider the common ontology concepts connected via

various relations (is_a, part_of, has_characteristic, etc.) as

well as concept specificity.

• Concept specificity refers to the degree of detail or

granularity of a concept within an ontology, quantified

using information content.

Data

Text input: 

• 28461 individual character-state descriptions

• 405M unique pairs of character-state descriptions

Label: Ontology-based semantic similarities metrics:

• simGIC: proportion of subsumers in common, weighted by 

their information content.

Figure 2. Schematic representation of the objective

Figure 3. Snippet of the Phenoscape KB, the gold-standard data repository with annotations of 
phenotypes using ontologies.

Figure 4. Illustration of EQ annotation using common ontology concepts.

Figure 6. Siamese network of BERT-based models for semantic textual similarity (STS) analysis.

Results

Training loss Validation loss Spearman_max (val) Pearson_max (val) 

RAW 0.0017 0.0015 0.9076 0.9544

FILTERED 0.0027 0.0136 0.9388 0.9432

Table 2. Finetuned performance of all-mpnet-base-v2 on raw and filtered datasets.

• Baseline evaluation – all-mpnet-base-v2 (109M params) 

performed best (~0.22 correlation without finetuning).

• Model finetuned on filtered dataset showed better and more 

consistent performance, with overall correlation of 0.94.

• Ontology-based finetuning improves semantic similarity 

between trait descriptions.

• Finetuned embeddings to be evaluated for multimodal learning.

Table 1. Baseline performance of pretrained models for pooling methods (I - iii), embedding dim : sequence lengths.

Figure 1. An example of EQ annotation

The Phenoscape Knowledgebase (KB) contains ontology-

annotated phenotypic data from 256 comparative studies.
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