

Overview

- We aim to understand evolutionary traits in species directly from images without relying on expert-annotated trait labels.
- We introduce **Phylo-Diffusion**, a novel way of conditioning diffusion models with trees using hierarchical embeddings (HIER-Embeds)
- We introduce two novel operations for understanding evolutionary traits:
- Trait Masking
- Trait Swapping

Methodology

Phylogeny: "a tree of life" that encodes the evolutionary relationships between species. For computational simplicity, we quantize the tree into four ancestral levels.

Proposed Experiments

Trait Masking:

- Replace components with noise
- Analogous to "Gene Knockout"

Hierarchical Conditioning of Diffusion Models Using Tree-of-Life for Studying Species Evolution

<u>Mridul Khurana^{1,*}, Arka Daw², M. Maruf¹, Josef Uyeda¹, Wasila Dahdul³, Caleb Charpentier¹, Yasin Bakis⁴, Henry Bart⁴,</u> Paula Mabee⁵, Hilmar Lapp⁶, James Balhoff⁷, Wei-Lun Chao⁸, Charles Stewart⁹, Tanya Berger-Wolf⁸, and Anuj Karpatne¹ ¹Virginia Tech, ²Oak Ridge National Laboratory, ³University of California Irvine, ⁴Tulane University, ⁵Battelle, ⁶Duke University, ⁷University of North Carolina Chapel Hill, ⁸The Ohio State University, ⁹Rensselaer Polytechnic Institute [Accepted to ECCV 2024] ^{*}presenting author

Results

• Qualitative evaluation of generated images for different models • Order of species from top to bottom is Cyprinus Carpio, Notropis Hudsonius, Lepomis Auritus, Noturus Exilis, Gambusia Affinis

Ground Truth	Class Conditional	Scientific Name	Phylo-Diffusion
		ALL ALL	
A State of the Sta			

• Table 1: Quantitative Comparison of generated images sampled using DDIM (100 samples per class).

Method	FID ↓	IS ↑
PhyloNN	28.08	2.35
Class Conditional	11.46	2.47
Scientific Name	11.76	2.43
Phylo-Diffusion (ours)	11.38	2.53

- For F1-Score, we use a separately trained ResNet-18 classifier The base model has a test accuracy of 0.85.
- Goal: To verify the generated images capture essential phylogenetic information but also enable accurate classification within their respective classes.

Generated Image of Species A

ienerated Image with Change

in Evolutionary Traits of Level

 E^3

Noise

Prec. ↑	Recall ↑	F1 (%) ↑
0.625	0.084	47.37
0.679	0.359	81.99
0.683	0.332	70.16
0.654	0.367	82.21
0.679 0.683 0.654	0.359 0.332 0.367	81.99 70.16 82.21

• Analysis of the quality of embeddings generated from conditioning encoders using cosine distance. • We found that HIER-Embed distances correlated more closer with the GT phylogeny than any other model

occurred at that node. **Generated** images without perturbation (Source)

• Results on the CUB dataset. Generated images Generated images after perturbation without perturbation (swapping at Level 2) (Source)

- defined phylogenies and Birds-525
- the phylogeny

This work was supported by the NSF OAC 2118240 Imageomics Institute award used computing resources from the Advanced Research Computing (ARC) Center at Virginia Tech

• Trait Swapping: Perturbing Species with Siblings

• We replace a specific level encoding of a reference species with that of a sibling node to observe the evolutionary trait changes

Generated images after Sample image of perturbation species from (swapping A to B) subtree at B Alosa chrysochlori Noturus avrinus Noturus nocturnus Noturus miurus Noturus flavus Cyprinus carpio Carassius auratus Notropis atherinoide Notropis wickliff Notropis buchanar Notropis nubilu Notropis boops Notropis blennius Notropis percobromus

• Visualization of changes in traits after swapping information at Level 2 for *Clark nutcracker* (left) with its species from its sibling subtree (right) to generate perturbed species (center)

On-going Work and Future Steps

• Extending the work to Butterflies (Meier-Jiggins dataset) which have well

• Handling imbalanced trees and at different depths of species nodes in