
VLM4Bio: A Benchmark Dataset to Evaluate Pretrained Vision-Language Models for Trait Discovery from Biological Images

Motivation

Images are increasingly becoming the currency for documenting biodiversity on opportunities for accelerating scientific discoveries in the field of organismal biology, espe vision-language models (VLMs). We ask if pre-trained VLMs can aid scientists in answer relevant questions without any additional fine-tuning.

Challenge: Understanding scientific images requires knowledge of domain-specific termine not fully represented in conventional image datasets used for training VLMs.

- In this work, we evaluate the effectiveness of 12 state-of-the-art (SOTA) VLMs in the field a novel dataset, VLM4Bio, consisting of 469K question-answer pairs involving 30K i organisms: fishes, birds, and butterflies, covering five biologically relevant tasks. We also explore the effects of applying prompting techniques and tests for reas
- performance of VLMs, shedding new light on the capabilities of current SOTA VLN relevant questions using images.

Organism Datasets

- We used image collections of three taxonomic groups of organisms: Fish (images), Birds (containing ~10k images), and Butterflies (containing ~10k taking subsets of the FishAIR dataset, the CUB dataset, and the Cambridge
- We leveraged expert annotations of biologists to generate the ground-trut approximately 469k question-answer pairs for the ~30k biological images

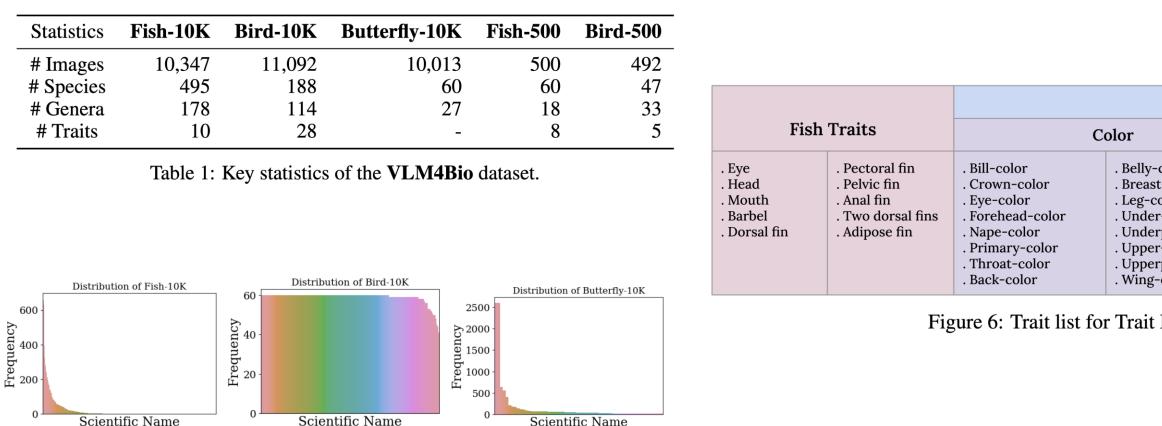


Figure 5: Dataset Distribution of Fish-10K, Bird-10K, and Butterfly-10K

Scientific Tasks

Species Classification	Trait Identification	Trai
Question: What is the scientific name of the butterfly shown in the image?	Question : Is there eye visible in the fish shown in the image?	Question: What is the to the bounding box rethe image?
Correct Answer: Heliconius timareta	Options: A) Yes B) No	Options: A) dorsal fin B) caudal fin C) adipose fin D) pelvic fin
CAM009419	Correct Answer: A) Yes	Correct Answer: A)
Question type: Open Questions	Question type: Multiple Choice Questions	Question type: Multip
Species Classification	Trait Grounding	Trai
Question: What is the scientific name of the bird shown in the image?	Question: What is the bounding box coordinates of the dorsal fin in the fish shown in the image?	Question: How mar the fish shown in th normally present in
Options: A) Geothlypis philadelphia B) Vireo atricapilla	Options: A) [453, 620, 557, 724] B) [2545, 335, 3510, 423]	fin, pectoral fin, pel fin.
C) Larus glaucescens D) Coccothraustes vespertinus	C) [2012, 1001, 2404, 1350] D) [3444, 350, 4730, 1114]	Correct Answer: 5
Correct Answer: C) Larus glaucescens	Correct Answer: B) [2545, 335, 3510, 423]	0

M. Maruf, Arka Daw, Kazi Sajeed Mehrab, Harish Babu Manogaran, Abhilash Neog, Medha Sawhney, Mridul Khurana, James P. Balhoff, Yasin Bakış, Bahadir Altintas, Matthew J Thompson, Elizabeth G Campolongo, Josef C. Uyeda, Hilmar Lapp, Henry L. Bart Jr., Paula M. Mabee, Yu Su, Wei-Lun Chao, Charles Stewart, Tanya Berger-Wolf, Wasila Dahdul, and Anuj Karpatne

Prompts

Task	
Species Classification	<image/> What is the so <options> Write the ar</options>
Trait Identification	<image/> Is there <trai <options> Write the ar</options></trai
Trait Grounding	<image/> What is the bo shown in the image? <o< th=""></o<>
Trait Referring	<image/> What is the tr box region <coordinat writing the answer is: .</coordinat
Trait Counting	<image/> How many un image? <options> Writ</options>
Contextual Prompting	<image/> Each biologica parts: the first for the g What is the scientific r Write the answer after
Dense Caption Prompting	<pre><image/> <dense capt<br="">answer the following q shown in the image? <dense capt<br="">shown in the image? <dense capt<="" pre=""></dense></dense></dense></pre>
Chain-of-Thought Prompting	<image/> What is the so <options> Please cons <reasoning>. Write the</reasoning></options>
False Confidence Test (FCT)	<image/> What is the so <options> Chosen Ans the chosen answer is c</options>
None of the Above Test (NOTA)	<image/> What is the so <options: _="" _<br="" a)="" b)="">writing the answer is: .</options:>

Results

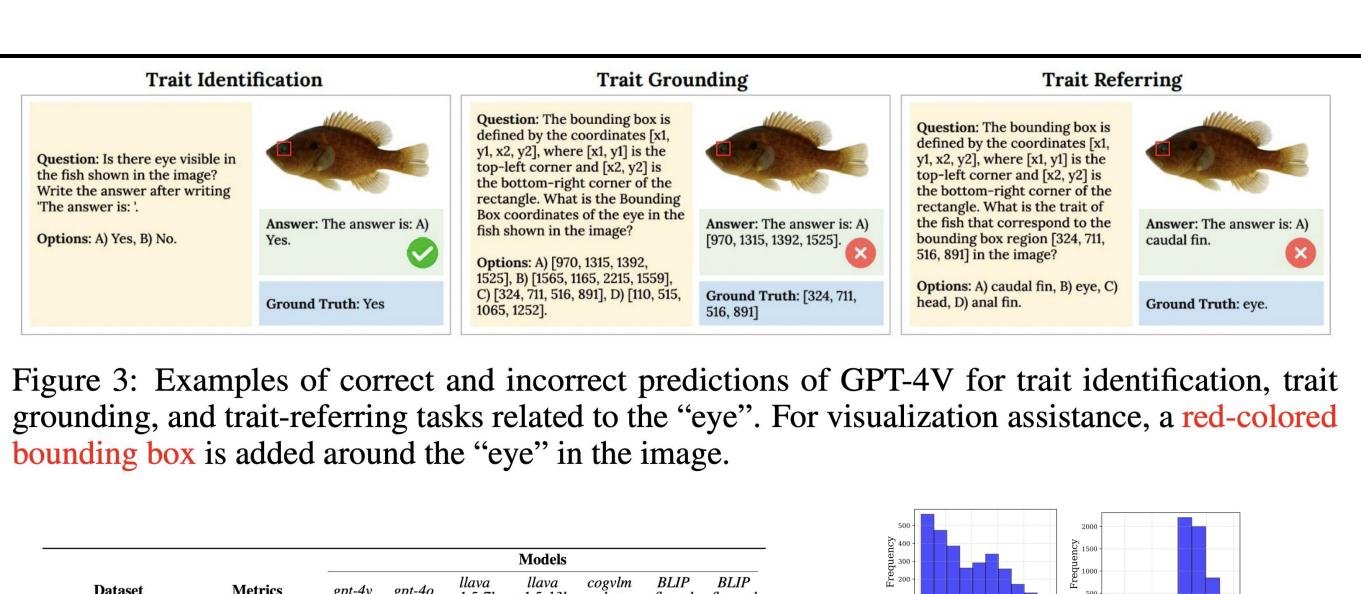
								Mo	odels					
Dataset	Question type	gnt-4v	llava v1.5-7b	llava v1.5-13b	cogvlm chat		BLIP flan-xxl	minigpt4 vicuna-7B	minigpt4 vicuna-13B		instruct flant5xxl			Randor Choice
						Spec	cies Clas	ssification						
Fish-10K	Open	1.01	2.32	0.40	0.11	0.01	1.59	0.50	0.38	0.00	1.46	0.00	0.00	0.20
F 1511-1VK	MC	35.91	40.20	32.27	31.72	29.76	33.36	29.02	27.45	30.86	31.70	27.27	26.57	25.0
Bird-10K	Open	17.40	1.45	2.06	0.86	0.00	0.57	2.80	2.56	0.00	0.50	0.07	0.00	0.5
	MC	82.58	50.32	55.36	44.73	33.68	34.75	23.95	27.62	36.36	35.83	44.00	46.55	25.0
Butterfly-10K	Open	0.04	0.05	0.00	0.01	0.00	0.00	0.07	0.01	0.00	0.00	9.94	0.00	1.54
Juticiny-101X	MC	28.91	50.24	44.58	36.45	25.14	28.88	33.06	28.90	25.28	36.67	41.70	34.48	25.0
						Tra	nit Ident	ification						
Fish-10K	MC	82.18	56.84	45.15	46.92	68.36	39.33	55.08	51.87	64.34	39.26	81.95	20.69	50.
Bird-10K	MC	62.22	34.68	46.14	63.93	50.11	41.38	39.11	40.44	47.89	45.52	77.91	89.98	31.12
						Ti	rait Gro	unding						
Fish-500	MC	29.41	24.87	17.98	23.42	23.32	25.14	22.18	25.58	7.20	27.09	33.51	26.90	25.00
Bird-500	MC	8.1	26.92	35.36	23.2	11.83	10.52	15.39	24.22	3.48	0.81	30.24	13.91	25.0
						Т	'rait Ref	ferring						
Fish-500	MC	28.15	27.07	29.14	28.19	24.93	25.68	39.24	31.21	31.75	25.78	28.04	32.73	25.00
Bird-500	MC	42.28	30.5	29.64	18.45	35.16	40.59	26.04	35.88	27.52	41.69	23.03	22.69	25.00
						ſ	rait Co	unting						
Fish-500	Open	16.4	47.4	52.0	14.8	37.6	63.4	13.6	31.53	50.2	61.4	61.4	0.0	25.0
1.1211-200	MC	44.80	13.20	54.80	21.00	64.8	78.2	22.00	25.00	74.0	69.4	15.80	11.80	25.0
Overa	11	34.24	29.0	31.78	25.27	28.91	30.24	23.0	25.19	28.49	29.79	33.92	23.31	22.0

scientific tasks. Results are color-coded as Best, Second best, Worst, Second worst.

		Models																		
	Dataset	Difficulty	gpt-4v	gpt-40	llava v1.5-7b						minigpt4 vicuna-13B				instruct vicuna13B	CLIP	BioCLIP			
	Fish	Easy			47.50	46.00			27.50	29.00	19.50	32.00	28.00	33.50			55.50			
		Medium Easy	3.50 73.50		30.00 53.50	28.50 50.00		26.00 34.50		26.50 21.00	25.00 32.00	28.50	24.50 33.00	26.00 43.50		26.00 57.00	29.00 94.00			
	Bird	Medium		40.50	30.50	37.00		25.50		21.00	24.00	27.00	27.00	24.50			95.00			
		Easy		17.50	19.00	20.50		30.00		34.50	26.00	24.50	22.50	19.00			65.50			
	Butterfly	Medium Hard	5.50 2.00	7.00 1.50	29.50 22.00	29.00 21.00	29.50 32.00	20.00 26.50	25.50 20.00	33.0029.50	25.00 24.00	27.50 22.50	25.00 24.00	25.00 24.00			58.00 35.00			
				_																
						Mo	dels											Models		
taset	Pro	ompting	gpt-4v	gpt-4	llav v1.5-	a lla 7b v1.5		0	BLIP flan-xl	BLIP flan-xxl				Dataset	Question type	gpt-4	llava v1.5-7b	cogvlm chat	CLIP	BioCl
		Prompting	34.40				5.40	31.00	28.60	22.60			_		Sp	ecies (Classificatio	on		
ompting		ntextual e Caption	30.00 18.80					25.60 32.00	27.20 28.40	26.60 29.80			_	Fish-10K	Open	1.0		0.11		1
		СоТ		86.00				26.80		24.60			_		MC	35.9		31.72 4	-	50
		Prompting		97.6				45.40		35.80				Bird-10K	Open MC	17.4 82.5		0.86 44.73 4		67 93
rompting	•	ntextual e Caption	78.60 87.40	98.60 97.0				49.40 44.00	35.60 25.60	30.40 22.80			– I	Butterfly-10		0.0		0.01	-	15
		CoT		98.60				42.20		31.00			_		MC	28.9		36.45 4		62
	NL T)	12.00	56 4	0 07	20 2	6 00	25 60	24.40	21.20			_							

Fish Prompting	Contextual	30.00	77.20	40.20	35.60	25.60	27.20	26.60
Fish-Prompting	Dense Caption	18.80	78.60	26.00	27.60	32.00	28.40	29.80
	CoT	42.60	86.00	41.40	34.80	26.80	29.20	24.60
	No Prompting	78.80	97.60	44.20	49.80	45.40	35.60	35.80
Bird-Prompting	Contextual	78.60	98.60	44.00	52.00	49.40	35.60	30.40
	Dense Caption	87.40	97.00	33.40	41.00	44.00	25.60	22.80
	CoT	62.60	98.60	37.40	47.80	42.20	30.60	31.00
	No Prompting	13.20	56.40	27.20	26.80	25.60	24.40	21.20
Butterfly-Prompting	Contextual Dense Caption	9.20 49.60	56.20 63.20	26.00 25.20	24.60 23.80	27.20 27.00		24.60 23.20
	CoT	63.60	74.60	21.40	23.20	34.60	37.20	23.60

Table 4: Zero-shot accuracy comparison for different prompting techniques of seven VLMs (in % ranging from 0 to 100). Results are color-coded as Best and Worst


ecially with	n the adve	ling novel ent of large piologically
logies and	reasonin	g that are
ld of organ mages fro		
soning ha Ms in ans		
Iulti-mod	al Reasor	ning
npting		sts for soning
al Prompting		Confidence est (FCT)
Captioning Thought (CoT)		of the Above st (NOTA)
Bird Trai	ts	
y-color ast-color c-color der-tail-color derparts-color per-tail-color perparts-color ng-color	Pattern . Head-pattern . Back-pattern . Breast-pattern . Wing-pattern . Tail-pattern . Belly-pattern	Measurements . Bill-length . Bill-shape . Shape . Size . Tail-shape . Wing-shape
it Identification	task.	
ait Referri	ng	
the trait of the fish ox region [2545, 33	-	1
: A) dorsal fin Iltiple Choice Ques	stions	
rait Counti		
nany unique fins n the image? The t in a fish are do pelvic fin, anal fi	are visible in fins that are rsal fin, caudal	
: .		

n Questions

Prompt Format

- eientific name of the *<organism>* shown in the image? swer after writing the answer is:
- it> visible in the *<organism>* shown in the image? swer after writing the answer is:
- ounding box coordinates of the *<trait>* in the fish *ptions* > Write the answer after writing the answer is:
- rait of the *<organism>* that corresponds to the bounding ites> in the image? <options> Write the answer after
- nique *<trait>* are visible in the *<organism>* shown in the te the answer after writing the answer is:
- cal species has a unique scientific name composed of two e genus and the second for the species within that genus. name of the <organism> shown in the image? <options> r writing the answer is: .
- *ion>*. Use the above dense caption and the image to estion. What is the scientific name of the *<organism>* options> Write the answer after writing the answer is: cientific name of the *<organism>* shown in the image? sider the following reasoning to formulate your answer. e answer after writing the answer is: .
- scientific name of the *<organism>* shown in the image? nswer: <*suggested answer*>. Please provide: 1) Whether correct (True/False). 2) The correct answer.
- cientific name of the *<organism>* shown in the image? C) _ D) None of the above.> Write the answer after

Table 7: Zero-shot accuracy comparison of VLM baselines (in % ranging from 0 to 100) with BioCLIP for the species classification task. Results are color-coded as Best, and Worst.

					Models			
Dataset	Metrics	gpt-4v	gpt-40	llava v1.5-7b	llava v1.5-13b	cogvlm chat	BLIP flan-xl	BLIP flan-xx
	Fa	alse Confi	dence Te	st (FCT)				
Fish-Prompting	Accuracy Agreement Score	34.20 4.40	73.60 16.60	25.00 99.80	28.60 19.20	24.60 74.40	0.00	7.00 28.4
Bird-Prompting	Accuracy Agreement Score	73.40 11.40	99.00 21.00	25.40 93.20	35.80 17.80	19.80 47.80	0.00	20.20 79.80
Butterfly-Prompting	Accuracy Agreement Score	5.20 2.60	53.40 12.40	27.20 95.40	26.60 5.60	6.20 13.80	0.00	5.00 19.00
	Noi	ne of the A	Above (N	OTA) Test				
Fish-Prompting	Accuracy	81.40	44.80	3.40	3.80	0.00	4.00	0.00
Bird-Prompting	Accuracy	75.00	91.40	1.00	1.20	0.00	31.40	0.00
Butterfly-Prompting	Accuracy	50.40	4.60	1.00	4.60	0.00	51.00	0.00

Table 5: Performance of seven VLMs on the NOTA and FCT reasoning tests. Results are color-code as Best and Worst

- questions.
- VLMs struggle to localize traits in images.
- the hard set for each organism.
- performance.

- and correct species.

This research is supported by National Science Foundation (NSF) awards for the HDR Imageomics Institute (OAC-2118240). We are thankful for the support of computational resources provided by the Advanced Research Computing (ARC) Center at Virginia Tech. This poster has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains, and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or allow others to do so for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/doe-public-<u>access-plan</u>).

(mage Area (Pixels) ×1

Image Area (Pixels) ×10⁶

(c) Fish-10F

(a) Fish-10*k*

0.50 - GPT-4V .50 - LLaVA-v1.5-7B → LLaVA-v1.5-13B

mage Area (Pixels) ×1

·----

LLaVA-v1.5-78 LLaVA-v1.5-13

5.8 8.3 10.9 13.5 16.0 18.6 21.2 2

Image Area (Pixels) $\times 10^4$

(d) Bird-10K

Figure 9: Distribution of image resolutions for Fish-10K and Bird-10K are shown in Figures nd (b), respectively. The average score over image resolution for the GPT-4V, LLaVA-v1.5-7B

d LLaVA-v1.5-13B models on Fish-10K and Bird-10K are presented in Figures (c) and (d). W

conduct the experiment in the context of the Species Classification task with Multiple-Choice (MC)

(b) Bird-10*K*

Key Findings

All VLMs show poor accuracy on open questions but perform better on MC

• The Bird dataset shows better accuracy than the Fish or Butterfly dataset.

Counting biological traits is difficult for VLMs.

• The pretrained VLMs generally perform best on the easy set and worst on

By comparing BioCLIP with CLIP, we can see that finetuning foundation models with biological data provide large gains in classification

• From our prompting experiments, providing extra context and caption is more useful for GPT-4V and GPT-40 than the smaller models.

• GPT-4V often responded by apologetic expressions, admissions of an inability to visualize the organism precisely, and disclaimers regarding prediction without sufficient expert data and guidance.

• Image resolution influences the VLM performance for the Fish-10K dataset since higher resolution helps recognize the details of the biological traits

Acknowledgments