Genotype to Phenotype Mapping via Deep Learning
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Abstract Methods (Data)

e We aim to identify genes and mutations associated with phenotypic variation measured in e Each butterfly specimen is imaged and sequenced into a format compatible for machine learning training.

Heliconius butterfly images. e Images are sent through Patternize to obtain PCA values associated with a targeted phenotype (e.g. red color

e \We train a convolutional neural network to predict phenotypic variation from genotypes. variation).

e Given the trained network we apply saliency methods to highlight which genes the neural e The DNA sequence of each butterfly is processed to obtain genotypes and then one-hot encoded to allow for

network used to make its prediction. convolutional operations. PCA (y)
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e Our findings identify existing genes responsible for color pattern variations previously discovered

by GWAS.

e Our future work aims to improve modeling, use deep learning features as phenotypes, address —> 1
missing heritability, and uncover epistasis behavior. Specimen 4
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- - — - e A convolutional neural network based on SoybeanNet is trained. Early stopping with a held out validation
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e We then apply Guided Grad-CAM to the predicted output across a held out testing set and visualize the
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aggregated importance of each gene.
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