Genotype to Phenotype Mapping via Deep Learning

Wei-Lun Chao¹, Tanya Berger-Wolf¹, Chuck Stewart⁴ **Polytechnic Institute**, ⁵**University of Nottingham**

Abstract

- We aim to identify genes and mutations associated with phenotypic variation measured in Heliconius butterfly images.
- We train a convolutional neural network to predict phenotypic variation from genotypes.
- Given the trained network we apply saliency methods to highlight which genes the neural network used to make its prediction.
- Our findings identify existing genes responsible for color pattern variations previously discovered by GWAS.
- Our future work aims to improve modeling, use deep learning features as phenotypes, address missing heritability, and uncover epistasis behavior.

Results

References

Liu, Y., Wang, D., He, F., Wang, J., Joshi, T., & Xu, D. (2019). Phenotype prediction and genome-wide association study using deep convolutional neural network of soybean. Frontiers in genetics, 10, 486384 Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626). Patricio A. Salazar, Nicola Nadeau, Gabriela Montejo-Kovacevich, & Chris Jiggins. (2020). Sheffield butterfly wing collection - Patricio Salazar, Nicola Nadeau, Ikiam broods batch 1 and 2. Zenodo. https://doi.org/10.5281/zenodo.4288311

David Carlyn¹, Christopher Lawrence², Carlos Arias³, Cyril Rauch⁵, Owen McMillan³, Daniel Rubenstein², ¹The Ohio State University, ²Princeton University, ³Smithsonian Tropical Research Institute, ⁴Rensselaer

Methods (Data)

Methods (Modeling)

• Each butterfly specimen is **imaged and sequenced** into a format compatible for machine learning training. • Images are sent through Patternize to obtain PCA values associated with a targeted phenotype (e.g. red color variation).

• The **DNA sequence** of each butterfly is processed to obtain genotypes and then **one-hot encoded** to allow for convolutional operations.

• A convolutional neural network based on SoybeanNet is trained. Early stopping with a held out validation set is incorporated to prevent overfitting.

• We then apply **Guided Grad-CAM** to the predicted output across a held out testing set and visualize the aggregated importance of each gene.

University of Nottingham | MALAYSIA

This material is based upon work supported by the National Science Foundation under Award No. 2118240.