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ABSTRACT DATASET RESULTS

The Physics-Informed Sea Ice Thickness Model (PSTM) introduced in | |® The study uses the NEMO3.6-LIM3 global ocean—sea ice model

Table 1. Evaluation sea ice thickness prediction with and without physics.

this study combines the strengths of physics-based models and simulations from [2], focusing on the Arctic Ocean (60-90 degrees N)
machine learning techniques. By integrating recurrent neural during the period 1995-2014. Type |Model MSE |SMAPE|MAPE!| Theil
networks (RNNs) with a Kolmogorov-Arnold Networks -
(KAN)-inspired spline module, PSTM effectively captures long-range | |® Monthly gridded sea ice thickness data is obtained, where the Earth's NoPhysics | Transformer_NP 1.9523 10.9822 16.91140.1805
dependencies and nonlinear relationships within sea ice data. The surface is divided into grid cells, each representing sea ice thickness for NoPhysics | PSTM_NP (GRU) (1.9236 [0.9803 [6.8104|0.1825
integration of optimal transport cost into backpropagation further that area. NoPhysics| PSTM_NP (LSTM)|1.8986 [0.9795 [6.7029|0.1837
enhances the model’s ability to represent physical relationships. e The grid has dimensions of 362 cells in the x-coordinate, 292 cells in .
the y-coordinate, and 480 time steps (t-coordinate) corresponding to Physics | PGNN 18.959213.1262 8.6318|0.2021
PSTM is designed to predict sea ice thickness by focusing on the monthly data points. Physics |PcudnnLSTM 2.2397 [1.1905 |[3.5606(0.3004
fundamental processes of ice growth, melt, and dynamics. By ® The sea ice thickness variable is used as the target label for prediction Physics |PSTM (GRU) 1.8564 (0.9781 16.5139/0.1859
concentrating on these key factors, the model provides a more tasks in the study. . ,
accurate and interpretable understanding of sea ice evolution. e A total of 2,000,000 samples are utilized, which are split into training, raysies: [P5IM (Lyth) LOOM |50 | 64536 | D.1516
validation, and testing datasets for evaluating prediction performance .
Experimental results using Arctic sea ice data show that PSTM on historical data. ® Among the physics-based models, PSTM (LSTM) appears to have the

best overall performance based on the metrics.

consistently outperforms traditional models, demonstrating the — ETHODS 3
advantages of incorporating physical constraints into machine Table 2. Evaluation sea ice thickness prediction with and without physics.

learning frameworks for spatio-temporal prediction tasks. We propose a neural network approach to solve the sea ice thickness Optimizer MSE SMAPE MAPE Theil
INTRODUCTION distribution equation presented in [2]. The neural network is trained KAN |[NO KAN| KAN [NO KAN| KAN |[NO KAN| KAN [NO KAN
con ice thick f i B A i to approximate the solution, h(x,y,t). During training, a physics loss Adam [1.9362| 2.0280 [0.9812| 1.1119 |6.8533| 4.3639 [0.1813| 0.3100
eaf'ce t f"t:h“ess e e(rs L‘? th © Vergca ISta gcs Etwe)e” td;f"':) , function is minimized. Adagrad |1.8641| 3.2285 |0.9765| 1.6596 |6.5936| 2.7689 |0.1886] 0.4089
surface of the sea ice (which may be covere SNOW) an e bottom | ,
OTt | Y oy dg(h) 0 , RMSprop |1.9324| 1.7600 |0.9810] 09888 |6.8397| 57456 |0.1814] 0.2290
where it is in contact with the ocean water. It is a key measure used to 5 = —V - (ug(h)) 57 (f*g(h))+1¢(h)+L
understand the overall volume and structure of sea ice in polar ’ L e NO KAN: Traditional activation function RelU is used
regions g(h) represents the ice thickness distribution, u is the velocity of the ice pack, f = dh/dt is the . . . . . . . . .
' Region of focus: Sea ice thickness (m) - 2024 growth or melting rate of the ice, W(h) is the mechanical redistribution function. t is time. ® KAN: Cubic splme activation function is used. These Splme'baSEd activation
The equation describes the rate of change of the ice thickness distribution as the sum of two function provides smoother transitions and more flexibility in modeling
terms:

non-linear relationships

e First term: represents the advection of ice thickness by the ice pack velocity. : :
e Second term: represents the redistribution of ice thickness due to processes like rafting, - KAN generally leads to better MSE, SMAPE, and Theil metrics. KAN may

ridging, and melting. increase MAPE, suggesting potential sensitivity to outliers.

The redistribution function W(h) is non-negative and dictates how ice thickness is redistributed. _ Adagrad' Shows the most significant improvement in MSE and Theil

The term L corresponds to lateral melt
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Fig.2, RNN/LSTM with KAN-Inspired Architecture for Physics-Informed Model for sea ice thickness metrics when using KAN.
1
T B |
Understanding the dynamics of sea ice thickness, particularly focusing / e g g [ — . e Our study suggests that physics-informed models show reasonable
on thermodynamic and dynamic processes, is key to comprehending (I)E I JDE ! g)E | o improvements in sea ice thickness prediction.
freshwater discharge in the Arctic. Sea ice melt releases freshwater o« < B <-- SR | nacne s ® Results demonstrate that PSTM, which combines RNNs and KAN,
into the ocean, affecting salinity and influencing ocean circulation and - Rﬁ ; RN:' o RNNN _) \ —— o PSTM combines RNNs and effectively captures complex spatiotemporal patterns in sea ice thickness
heat transport. Changes in ocean currents, driven by the formation Al A A i' Kolmogorov-Arnold data.
and melting of sea ice, further impact the distribution and timing of B R . I e ™ Networks (KAN) e The RNN models, with physics-informed loss functions, better represent
freshwater discharge. d ,IN ot KA: L KA,T _, T physical relationships and improve prediction accuracy.
Physics-informed machine learning (PIML) incorporates physical laws | i e Future research could explore applying PSTM to other geophysical
and constraints into the loss function of a machine learning model, \ el phenomena and assessing the impact of various physical constraints on
ensuring that the model's predictions align with underlying physical e e e T ' i
principles. | : "
e o e, B [2 IMassonnet, F. Climate Models as Guidance for the Design of Observing Systems: the Case of Polar Climate and Sea Ice Prediction. {\em Current Climate Change
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