## Dark matter candidate emerging from 3-form gauge theory

#### **7th Sydney CPPC Meeting**

Christian Canete Supervisor: Prof. Archil Kobakhidze



#### Dark matter and dark energy



| Dark matter (DM)                                                                                                                                           | Dark energy (DE)                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Properties                                                                                                                                                 |                                                                                                               |
| <ul> <li><i>Matter</i>: clumps under gravity</li> <li><i>Dark</i>: Does not emit/absorb light</li> <li><i>Cold</i>: Most non-relativistic today</li> </ul> | <ul> <li>Causes accelerated expansion<br/>(negative pressure)</li> <li>Doesn't clump under gravity</li> </ul> |
| Evidence                                                                                                                                                   |                                                                                                               |
| <ul> <li>Rotational curves of galaxies</li> <li>Gravitational lensing</li> <li>Galaxy formation</li> <li>CMB</li> </ul>                                    | <ul><li>SN Ia</li><li>CMB</li></ul>                                                                           |
| Candidates                                                                                                                                                 |                                                                                                               |
| <ul> <li>New particles (e.g. WIMPs, ALPs)</li> <li>Primordial black holes</li> <li>Modified gravity (e.g. MOND)</li> </ul>                                 | <ul> <li>Cosmological constant Λ</li> <li>Quintessence</li> </ul>                                             |

#### Are dark matter and dark energy related?

- Most DM theories related to new particles.
- DE traditionally a constant vacuum energy  $\Lambda$  permeating whole Universe no particles.

#### Are dark matter and dark energy related?

- Most DM theories related to new particles.
- DE traditionally a constant vacuum energy  $\Lambda$  permeating whole Universe no particles.
- This work proposes a model that can explain DM and DE using 3-form gauge fields.

### 3-form gauge theory

#### Electromagnetism **3-form gauge theory** • Photon $A_{\mu}$ with gauge redundancy: • Tensor field $A_{\nu\rho\sigma}$ with gauge redundancy: $\delta A_{\nu\rho\sigma} = \partial_{[\nu}\Omega_{\rho\sigma]} \propto \epsilon_{\mu\nu\rho\sigma}\partial^{\mu}\theta$ $\delta A_{\mu} = \partial_{\mu} \theta$ • Field strength tensor: Field strength tensor: $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = \partial_{\mu}A_{\nu}$ $F_{\mu\nu\rho\sigma} = \partial_{[\mu}A_{\nu\rho\sigma]}$ • $F_{\mu\nu\rho\sigma}$ is dual to a scalar F 2 propagating d.o.f. (2 polarisation states) $F_{\mu\nu\rho\sigma} = \epsilon_{\mu\nu\rho\sigma} F$



• 0 propagating d.o.f. (no particles)

Christian Canete | Dark matter candidate emerging from 3-form gauge theory

## Dynamics of 3-forms in vacuum $\mathcal{L}_{gauge} = \sqrt{-g} \left[ -\frac{1}{2 \cdot 4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} \right]$

• Equations of motion:  $\partial_{\mu}F = 0 \implies F = \text{constant} \equiv \lambda$ 

# Dynamics of 3-forms in vacuum

$$\mathcal{L}_{gauge} = \sqrt{-g} \left[ -\frac{1}{2 \cdot 4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} \right]$$

• Equations of motion:  $\partial_{\mu}F = 0 \implies F = \text{constant} \equiv \lambda$ 

No new particles!

## Dynamics of 3-forms in vacuum $\mathcal{L}_{gauge} = \sqrt{-g} \left[ -\frac{1}{2 \cdot 4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} \right]$

• Equations of motion: 
$$\partial_{\mu}F = 0 \implies F = \text{constant} \equiv \lambda$$

No new particles!

• Energy-momentum tensor:

$$T_{\mu\nu} = g_{\mu\nu} \cdot \frac{1}{2} \lambda^2 \Longrightarrow \begin{cases} \rho = T_{00} = \frac{1}{2} \lambda^2 \\ p = T_{ii} = -\frac{1}{2} a^2 \lambda^2 \end{cases}$$

## Dynamics of 3-forms in vacuum $\mathcal{L}_{gauge} = \sqrt{-g} \left[ -\frac{1}{2 \cdot 4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} \right]$

• Equations of motion:  $\partial_{\mu}F = 0 \implies F = \text{constant} \equiv \lambda$ 

No new particles!

• Energy-momentum tensor:

$$T_{\mu\nu} = g_{\mu\nu} \cdot \frac{1}{2} \lambda^2 \Longrightarrow \begin{cases} \rho = T_{00} = \frac{1}{2} \lambda^2 \\ p = T_{ii} = -\frac{1}{2} a^2 \lambda^2 \end{cases}$$

• Negative pressure  $\Rightarrow$  dark energy!

3-form in vacuum behaves like a cosmological constant!

#### Generating a mass for 3-forms

- Need to get DM candidate apply Anderson-Higgs mechanism to 3-form.
- Analogous to photons propagating in plasma:
  - +1 d.o.f. due to collective plasma oscillations.
  - Photon now has 3 d.o.f.  $\Rightarrow$  effective mass.

#### Generating a mass for 3-forms

- Need to get DM candidate apply Anderson-Higgs mechanism to 3-form.
- Analogous to photons propagating in plasma:
  - +1 d.o.f. due to collective plasma oscillations.
  - Photon now has 3 d.o.f.  $\Rightarrow$  effective mass.
- 3-form permeates Universe containing ordinary matter.

Anderson-Higgs mechanism on 3-form  $\Rightarrow +1$  d.o.f. for 3-form  $\Rightarrow$  Effective mass arises (DM candidate)

#### Modelling the Universe

$$g_{\mu\nu} = \text{diag}(1, -a(t)^2, -a(t)^2, -a(t)^2)$$

- Cosmological principle  $\Rightarrow$  model ordinary matter as a **perfect cosmic fluid**.
  - Described by real scalar field  $\phi(x)$  with shift symmetry  $\delta \phi = c$ .

#### Modelling the Universe

$$g_{\mu\nu} = \text{diag}(1, -a(t)^2, -a(t)^2, -a(t)^2)$$

- Cosmological principle ⇒ model ordinary matter as a **perfect cosmic fluid**.
  - Described by real scalar field  $\phi(x)$  with shift symmetry  $\delta \phi = c$ .
- Construct Lagrangian (using first-order formalism):

$$\mathcal{L}_{fluid} = \sqrt{-g} \Big[ \partial_{\mu} \phi V^{\mu} - \mu^{4} P(X) \Big] \quad \text{where} \quad X = \frac{1}{2\mu^{4}} V_{\mu} V^{\mu}$$
  
Energy scale of theory

### Ordinary matter as a perfect fluid $\mathcal{L}_{fluid} = \sqrt{-g} [\partial_{\mu} \phi V^{\mu} - \mu^{4} P(X)] \text{ where } X = \frac{1}{2\mu^{4}} V_{\mu} V^{\mu}$

• Energy-momentum tensor:  $T_{\mu\nu} = 2V_{\mu}\partial_{\nu}\phi - V_{\mu}V_{\nu} - g_{\mu\nu}(V^{\alpha}\partial_{\alpha}\phi - \mu^{4}P)$ 

#### Ordinary matter as a perfect fluid $\mathcal{L}_{fluid} = \sqrt{-g} [\partial_{\mu} \phi V^{\mu} - \mu^{4} P(X)] \text{ where } X = \frac{1}{2\mu^{4}} V_{\mu} V^{\mu}$

- Energy-momentum tensor:  $T_{\mu\nu} = 2V_{\mu}\partial_{\nu}\phi V_{\mu}V_{\nu} g_{\mu\nu}(V^{\alpha}\partial_{\alpha}\phi \mu^{4}P)$ 
  - 4-velocity of fluid:  $V^{\mu} = \mu^2 \sqrt{2X} u^{\mu}$
  - Equations of motion:  $P_X V^{\mu} = \partial^{\mu} \phi$

# Ordinary matter as a perfect fluid

$$\mathcal{L}_{fluid} = \sqrt{-g} \Big[ \partial_{\mu} \phi V^{\mu} - \mu^4 P(X) \Big] \text{ where } X = \frac{1}{2\mu^4} V_{\mu} V^{\mu}$$

- Energy-momentum tensor:  $T_{\mu\nu} = 2V_{\mu}\partial_{\nu}\phi V_{\mu}V_{\nu} g_{\mu\nu}(V^{\alpha}\partial_{\alpha}\phi \mu^{4}P)$ 
  - 4-velocity of fluid:  $V^{\mu} = \mu^2 \sqrt{2X} u^{\mu}$
  - Equations of motion:  $P_X V^{\mu} = \partial^{\mu} \phi$

• Rewrite as: 
$$T_{\mu\nu} = 2\mu^4 X P_X u_\mu u_\nu - g_{\mu\nu} (2\mu^4 X P_X - \mu^4 P)$$

## Ordinary matter as a perfect fluid

$$\mathcal{L}_{fluid} = \sqrt{-g} \Big[ \partial_{\mu} \phi V^{\mu} - \mu^4 P(X) \Big] \quad \text{where} \quad X = \frac{1}{2\mu^4} V_{\mu} V^{\mu}$$

- Energy-momentum tensor:  $T_{\mu\nu} = 2V_{\mu}\partial_{\nu}\phi V_{\mu}V_{\nu} g_{\mu\nu}(V^{\alpha}\partial_{\alpha}\phi \mu^{4}P)$ 
  - 4-velocity of fluid:  $V^{\mu} = \mu^2 \sqrt{2X} u^{\mu}$
  - Equations of motion:  $P_X V^\mu = \partial^\mu \phi$

• Rewrite as: 
$$T_{\mu\nu} = 2\mu^4 X P_X u_\mu u_\nu - g_{\mu\nu} (2\mu^4 X P_X - \mu^4 P)$$

• Fix equation of state  $w = p/\rho$  and solve for  $\rho$  in terms of w:

$$\rho = \mu^4 P(X) = \rho_\Lambda X^{(1+w)/2}$$

#### Gauging the theory with a 3-form



#### Gauging the theory with a 3-form

$$\mathcal{L} = \sqrt{-g} \left[ -\frac{1}{2 \cdot 4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} + \left( \partial_{\mu}\phi - \frac{g_{A}\mu}{3!} \epsilon_{\mu\nu\rho\sigma} A^{\nu\rho\sigma} \right) V^{\mu} - \frac{1}{\mu^{4}} P(X) \right]$$

Gauge coupling between 3-form and cosmic fluid

• Energy-momentum tensor:

$$T_{\mu\nu} = 2\mu^{4} X P_{X} u_{\mu} u_{\nu} - g_{\mu\nu} \left( 2\mu^{4} X P_{X} - \mu^{4} P - \frac{1}{2} F^{2} \right)$$

#### Gauging the theory with a 3-form

$$\mathcal{L} = \sqrt{-g} \left[ -\frac{1}{2 \cdot 4!} F_{\mu\nu\rho\sigma} F^{\mu\nu\rho\sigma} + \left( \partial_{\mu}\phi - \frac{g_{A}\mu}{3!} \epsilon_{\mu\nu\rho\sigma} A^{\nu\rho\sigma} \right) V^{\mu} - \frac{1}{\mu^{4}} P(X) \right]$$

Gauge coupling between 3-form and cosmic fluid

• Energy-momentum tensor:

$$T_{\mu\nu} = 2\mu^{4} X P_{X} u_{\mu} u_{\nu} - g_{\mu\nu} \left( 2\mu^{4} X P_{X} - \mu^{4} P - \frac{1}{2} F^{2} \right)$$

• Again, parameterise energy density by equation of state  $w = p/\rho$ :

$$\rho = \mu^4 P + \frac{1}{2} F^2 = \rho_\Lambda X^{(1+w)/2}$$

#### Energy density at different epochs

Find background energy densities – assume only time-dependent solutions.

• DE-dominated era (w = -1):

$$\bar{\rho}_{\Lambda} = \mu^4 P_0 + \frac{1}{2}\lambda^2$$

#### Energy density at different epochs

Find background energy densities – assume only time-dependent solutions.

• DE-dominated era (w = -1):

$$\bar{\rho}_{\Lambda} = \mu^4 P_0 + \frac{1}{2}\lambda^2$$

• Matter-dominated era (w = 0):

$$\bar{\rho}_{M} = \bar{\rho}_{B} + \left(\frac{4}{H_{0}}\frac{\Omega_{M,0}}{\Omega_{\Lambda,0}}\right)^{2}\frac{g_{A}^{2}\mu^{6}}{a^{3}} - \boxed{\begin{array}{c} \text{New contribution from} \\ 3-\text{form's effective mass!} \end{array}}$$

\_

#### Relating DM density to model parameters



Christian Canete | Dark matter candidate emerging from 3-form gauge theory

#### Conclusion

- Introduced novel theory of DM involving a 3-form gauge field that also contributes to DE.
- By considering energy density of background fields, one can find a relationship between  $\mu$  and  $g_A$  of the model.
- To make a viable DM candidate, need to **study perturbed fields of the theory** to verify large scale structure formation.

## BACKUP SLIDES

#### Levi-Civita tensor

Normalisation:

- $\epsilon^{\mu\nu\rho\sigma}\epsilon_{\mu\nu\rho\sigma} = -4!$
- $\epsilon_{0123} = \sqrt{-g}$
- $\epsilon^{0123} = 1/\sqrt{-g}$

Alternatively, can write in terms of Levi-Civita symbol  $\tilde{\epsilon}_{\mu\nu\rho\sigma}$ :

- $\epsilon_{\mu\nu\rho\sigma} = \sqrt{-g}\tilde{\epsilon}_{\mu\nu\rho\sigma}$
- $\epsilon^{\mu\nu\rho\sigma} = (1/\sqrt{-g})\tilde{\epsilon}^{\mu\nu\rho\sigma}$

#### Energy-momentum tensors

$$T_{\mu\nu} = \frac{2}{\sqrt{-g}} \frac{\partial \mathcal{L}}{\partial g^{\mu\nu}} = 2 \frac{\partial (\mathcal{L}/\sqrt{-g})}{\partial g^{\mu\nu}} - g_{\mu\nu} (\mathcal{L}/\sqrt{-g})$$

$$T_{\mu\nu}^{fluid} = (\rho + p)u_{\mu}u_{\nu} - g_{\mu\nu}p$$

#### Cosmic fluid through first-order formalism $\mathcal{L}_{fluid} = \sqrt{-g} [\partial_{\mu} \phi V^{\mu} - \mu^{4} P(X)] \quad \text{where} \quad X = \frac{1}{2\mu^{4}} V_{\mu} V^{\mu}$

Equations of motion:

- $\partial_{\mu}\left(\sqrt{-g}V^{\mu}\right) = 0$
- $V^{\mu} = \frac{1}{P_X} \partial^{\mu} \phi$

4-velocity of fluid:  $V^{\mu} = \mu^2 \sqrt{2X} u^{\mu}$ 

$$T_{\mu\nu} = 2V_{\mu}\partial_{\nu}\phi - V_{\mu}V_{\nu} - g_{\mu\nu}(V^{\alpha}\partial_{\alpha}\phi - \mu^{4}P) = 2\mu^{4}XP_{X}u_{\mu}u_{\nu} - g_{\mu\nu}(2\mu^{4}XP_{X} - \mu^{4}P)$$

$$\rho(w) = \mu^4 P = \alpha \mu^4 X^{(1+w)/2} \text{ where } w = p/\rho$$

#### 3-form gauge theory in vacua

Gauge invariance:

- $\delta A_{\nu\rho\sigma} = \frac{1}{g_{A\mu}} \epsilon_{\mu\nu\rho\sigma} \nabla^{\mu} \theta$ •  $\delta F_{\mu\nu\rho\sigma} = \frac{1}{g_{A\mu}} \nabla_{[\mu} \epsilon_{\nu\rho\sigma]\alpha} \nabla^{\alpha} \theta$
- $\delta(F_{\mu\nu\rho\sigma}F^{\mu\nu\rho\sigma}) = 0 \Longrightarrow \nabla_{\mu}\nabla^{\mu}\theta = 0$
- $\delta F \propto \nabla_{\mu} \nabla^{\mu} \theta = 0$

Dual 1-form:

• 
$$B_{\mu} = \frac{1}{3!} \epsilon_{\mu\nu\rho\sigma} A^{\nu\rho\sigma}$$
 where  $\delta B_{\mu} = \frac{1}{g_{A}\mu} \nabla_{\mu} \theta$   
•  $F = -\frac{1}{4} \nabla_{\mu} B^{\mu}$ 

#### 3-form gauge theory in vacua

Equations of motion:

$$\partial_{\mu}(\sqrt{-g}F^{\mu\nu\rho\sigma}) = 0 \implies \partial_{\mu}\left(\sqrt{-g}\left(\frac{1}{\sqrt{-g}}\tilde{\epsilon}^{\mu\nu\rho\sigma}F\right)\right) = 0 \implies \tilde{\epsilon}^{\mu\nu\rho\sigma}\partial_{\mu}F = 0 \implies \partial_{\mu}F = 0$$

Lagrangian requires a boundary term  $+\frac{1}{4!}\partial_{\mu}(\sqrt{-g}F^{\mu\nu\rho\sigma}A_{\nu\rho\sigma})$  to ensure:

- 1. The variation of the fields vanishes at the boundary.
- 2. The energy-momentum tensor derived from the *on-shell* Lagrangian reproduces the correct sign.

### 3-form gauge theory + cosmic fluid

Gauge invariance:

• 
$$\delta A_{\nu\rho\sigma} = \frac{1}{g_A\mu} \epsilon_{\mu\nu\rho\sigma} \nabla^{\mu}\theta$$

• 
$$\delta B_{\mu} = \frac{1}{g_A \mu} \nabla_{\mu} \theta$$

• 
$$\delta F_{\mu\nu\rho\sigma} = \frac{1}{g_{A}\mu} \nabla_{[\mu} \epsilon_{\nu\rho\sigma]\alpha} \nabla^{\alpha} \theta$$

• 
$$\delta F = \nabla_{\mu} \nabla^{\mu} \theta = 0$$

• 
$$\delta \phi = \theta$$

Equations of motion:

•  $\partial_{\mu}\left(\sqrt{-g} V^{\mu}\right) = 0$ 

• 
$$V^{\mu} = \frac{1}{P_X} (\partial^{\mu} \phi - g_A \mu B^{\mu})$$

•  $\partial_{\mu} \left( \sqrt{-g} F^{\mu\nu\rho\sigma} \right) = 4g_A \mu \sqrt{-g} \epsilon^{\mu\nu\rho\sigma} V_{\mu} \Longrightarrow \partial_{\mu} F = 4g_A \mu V_{\mu}$ 

3-form gauge theory + cosmic fluid

Energy-momentum tensor:

$$T_{\mu\nu} = 2\mu^4 X P_X u_\mu u_\nu - g_{\mu\nu} \left( 2\mu^4 X P_X - \mu^4 P - \frac{1}{2} F^2 \right)$$

Energy density:

$$\rho = \mu^4 P + \frac{1}{2} F^2 = \rho_\Lambda X^{(1+w)/2}$$

Dark energy-dominated era (w = -1)  $\bar{\rho}_{\Lambda} = \mu^{4}\bar{P} + \frac{1}{2}\bar{F}^{2} = \mu^{4}P_{0} + \frac{1}{2}\lambda^{2} = \text{constant}$ 

On-shell background fields:

- $\overline{V}^0 = \frac{\mu^2 c_\Lambda}{a^3} = \frac{1}{\overline{P}_{\overline{X}}} \left( \dot{\overline{\phi}} g_A \mu \overline{B}^0 \right)$
- $\bar{X} = \frac{1}{2\mu^4} \left( \bar{V}^0 \right)^2$
- $\overline{F} = -\frac{4g_A\mu^3c_\Lambda}{3H_0}\frac{1}{a^3} + \lambda$

If you plug  $\overline{F}$  into  $\overline{\rho}_{\Lambda}$ , you find terms  $\sim a^{-6}$  and  $\sim a^{-3}$ . But since  $\overline{\rho}_{\Lambda}$  is constant, the function  $\overline{P}(\overline{X})$  must contain terms that exactly cancel out these terms, leaving behind only constant contributions  $P_0$  as well as  $\lambda^2$  from  $\overline{F}$ .

## Matter-dominated era (w = 0) $\bar{\rho}_M = \mu^4 \bar{P} + \frac{1}{2} \bar{F}^2 = \bar{\rho}_\Lambda \bar{X}^{1/2} = \frac{c_M}{\sqrt{2}} \frac{\bar{\rho}_\Lambda}{a^3}$

On-shell background fields:

•  $\bar{V}^0 = \frac{\mu^2 c_M}{a^3} = \frac{1}{\bar{P}_{\bar{X}}} \left( \dot{\bar{\phi}} - g_A \mu \bar{B}^0 \right)$ •  $\bar{X} = \frac{1}{2\mu^4} \left( \bar{V}^0 \right)^2$ •  $\bar{F} = -\frac{4g_A \mu^3 c_M}{H_0} \frac{1}{a^{3/2}} + \lambda$ 

If you plug  $\overline{F}$  into  $\overline{\rho}_M$ , you find terms  $\sim a^{-3/2}$  and a constant  $\sim \lambda^2$ . But since  $\overline{\rho}_M \sim a^{-3}$ , the function  $\overline{P}(\overline{X})$  must contain terms that exactly cancel out the terms  $\sim a^{-3/2}$  and the constants, leaving behind  $\sim a^{-3}$  terms from  $\overline{P}(\overline{X})$  and  $\overline{F}^2$ . We assume that whatever remaining term from  $\overline{P}(\overline{X})$  corresponds to ordinary matter  $\rho_B$ .

## Radiation-dominated era (w = 1/3) $\bar{\rho}_R = \mu^4 \bar{P} + \frac{1}{2} \bar{F}^2 = \bar{\rho}_\Lambda \bar{X}^{2/3} = \left(\frac{c_R^2}{2}\right)^{2/3} \frac{\bar{\rho}_\Lambda}{a^4}$

On-shell background fields:

- $\bar{V}^0 = \frac{\mu^2 c_R}{a^3} = \frac{1}{\bar{P}_{\bar{X}}} \left( \dot{\bar{\phi}} g_A \mu \bar{B}^0 \right)$
- $\overline{X} = \frac{1}{2\mu^4} \left( \overline{V}^0 \right)^2$
- $\overline{F} = -\frac{8g_A\mu^3c_R}{aH_0} + \lambda$

If you plug  $\overline{F}$  into  $\overline{\rho}_R$ , you find terms  $\sim a^{-2}$ ,  $\sim a^{-1}$  and a constant  $\sim \lambda^2$ . But since  $\rho_R \sim a^{-4}$ , the function  $\overline{P}(\overline{X})$  must contain terms that exactly cancel outs the entire contribution of  $\overline{F}^2$ . Thus, the 3-form doesn't contribute to the radiation-dominated era.