Finite Nuclear Contributions to Atomic Hyperfine Structure

AIP Summer Meeting 2023

James Vandeleur

Supervised by Dr. Jacinda Ginges Thanks to George Sanamyan, Ben Roberts

The University of Queensland

Table-top Physics

- Table top searches for new physics are gaining popularity.
- Parity Violation, testing QED, EDMs, Isotope Shift all improved with precise nuclear models.

Table-top Physics

- Table top searches for new physics are gaining popularity.
- Parity Violation, testing QED, EDMs, Isotope Shift all improved with precise nuclear models.
- Atomic Hyperfine structure is the playground for finite nuclear models.

Hyperfine Interaction

$h_{ m hfs} \propto oldsymbol{\mu} \cdot {f B}$

Hyperfine Interaction

 $h_{ ext{hfs}} \propto oldsymbol{\mu} \cdot \mathbf{B} \ \mathcal{A} \propto ig \langle ext{atom} ig | h_{ ext{hfs}} \, | ext{atom}
ight
angle$

Finite Nuclear Effects

 $\mu
ightarrow F(r) \mu$

Finite Nuclear Effects

Finite Nuclear Effects

 $\mu
ightarrow F(r) \mu$ \downarrow $\mathcal{A} = \mathcal{A}_{ ext{point}} + \mathcal{A}_{ ext{charge}} + \mathcal{A}_{ ext{BW}} + \mathcal{A}_{ ext{QED}}$ Need to improve nuclear models!

e Muonic Atom

μ^- is ~ 207 times heavier than e^-

- Otherwise treated in the same way
- Muon is much closer to nucleus and more sensitive to nuclear effects

Outline

Method

Fitting nucleon distribution.

Bohr-Weisskopf (BW) Effect Nuclear Polarisability (NP) in Hg Effect

(Finite Magnetisation Distribution)

(Electron-Nucleon Excitations)

Outline

Method

Fitting nucleon distribution. *

Bohr-Weisskopf (BW) Effect Nuclear Polarisability (NP) in Hg Effect

(Finite Magnetisation Distribution)

(Electron-Nucleon Excitations)

* A. A. Elizarov, et al., Optics and Spectroscopy **100**, 361 (2006).

Calculate \mathcal{A}_{BW} ?

- Need to know the magnetisation distribution.
- Single particle model requires odd nucleon wavefunction.
- Extra (muonic) system provides one piece of information.

 $|\mathcal{A}_0| = \mathcal{A}_{ ext{point}} + \mathcal{A}_{ ext{charge}}|$

Solutions to Dirac equation.

Fermi charge distribution with radius from scattering experiment.

 $\mathcal{A}_0 = \mathcal{A}_{ ext{point}} + \mathcal{A}_{ ext{charge}}$

Solutions to Dirac equation.

Fermi charge distribution with radius from scattering experiment.

 $\mathcal{A}_{ ext{QED}}$

Vacuum Polarisation (dominant in muonic atoms)

Self Energy

 $\mathcal{A}_0 = \mathcal{A}_{ ext{point}} + \mathcal{A}_{ ext{charge}}$

Solutions to Dirac equation.

Fermi charge distribution with radius from scattering experiment.

 $\mathcal{A}_{ ext{QED}}$

Vacuum Polarisation (dominant in muonic atoms)

Self Energy

Nucleon Wavefunctions

Experiment gives us 1 piece of information - $R_{
m m}$.

Nucleon Wavefunctions

Fitting Nuclear Magnetic Radius - $R_{ m m}$

Outline

Method

Fitting nucleon distribution.

Bohr-Weisskopf (BW) Effect Nuclear Polarisability (NP) in Hg Effect

(Finite Magnetisation Distribution)

(Electron-Nucleon Excitations)

BW Effect in Mercury

- Sanamyan et al. recently applied this method in Cs.
- Also data available for ¹⁹⁹Hg.
- Hg isotopes used by Moskowitz and Lombardi.

G. Sanamyan, B. M. Roberts, and J. S. M. Ginges , Physical Review Letters **130**, 053001 (2023).

Results

muonic $\mathrm{Hg} ightarrow$ H-like Hg

Stand-alone value for BW effect in $^{199}\mathrm{Hg.}$

Model		u		1	υ		
n	0	1	2	1	2	Variance	Final Value
$\overline{R_{ m m}}~({ m fm}) \ \epsilon_{ m BW}~(\%)$	5.76(56) -2.33(40)	5.16(47) -2.26(37)	$\begin{array}{c} 4.91(44) \\ -2.24(36) \end{array}$	$ \begin{array}{c c} 8.81(96) \\ -2.50(46) \end{array} $	11.9(1.3) -2.61(50)	0.16	-2.39(45)

Results

muonic $\mathrm{Hg} ightarrow$ H-like Hg

Stand-alone value for BW effect in $^{199}\mathrm{Hg.}$

Model		u		1	v		
\overline{n}	0	1	2	1	2	Variance	Final Value
$\overline{R_{ m m}}~({ m fm}) \ \epsilon_{ m BW}~(\%)$	5.76(56) -2.33(40)	5.16(47) -2.26(37)	$\begin{array}{c} 4.91(44) \\ -2.24(36) \end{array}$	$ \begin{array}{c c} 8.81(96) \\ -2.50(46) \end{array} $	11.9(1.3) -2.61(50)	0.16	-2.39(45)

screening (pprox imes 1) $ightarrow \mathrm{Hg}^+,\mathrm{Hg}^+$

Differential BW Effect

$$\epsilon^A pprox \epsilon^{199} + {}^A\Delta^{199}$$

- ${}^A\Delta^{199}$ from experiment.
- Finding ϵ^{199} immediately gives all isotopes.

BW effect in Mercury Isotopes

$$\epsilon_{
m BW} = lpha rac{\mu_N}{|\mu|} + c$$

P. A. Moskowitz and M. Lombardi, Physics Letters B 46, 334 (1973).

BW effect in Mercury Isotopes

P. A. Moskowitz and M. Lombardi, Physics Letters B 46, 334 (1973).

BW effect in Mercury Isotopes

P. A. Moskowitz and M. Lombardi, Physics Letters B 46, 334 (1973).

T. Fujita and A. Arima, Nuclear Physics A **254**, 513 (1975).

BW Summary

- Now have BW in all Hg isotopes.
- Empirical shift in ML rule gives insight into nuclear models.
- Method relies on available muonic data more coming!
- (In Preparation) J. Vandeleur, G. Sanamyan, B. J. Roberts and J. S. M. Ginges, Empirical determination of the Bohr-Weisskopf effect in Hg Isotopes and comparison with the Moskowitz Lombardi rule.

Outline

Method

Fitting nucleon distribution.

Bohr-Weisskopf (BW) Effect Nuclear Polarisability (NP) in Hg Effect

(Finite Magnetisation Distribution)

(Electron-Nucleon Excitations)

The muonic orbital has a strong overlap with the nucleus.

Nuclear degrees of freedom are excited - Nuclear Polarisability (NP)

$$\mathcal{A} = \mathcal{A}_0 + \mathcal{A}_{BW} + \mathcal{A}_{QED} + \mathcal{A}_{NP}$$

The NP contribution is preventing progress with muonic atom experiments.

- Nuclear structure tests.
- Radius of a proton (muonic Hydrogen).
- Previous method...

Finding $\mathcal{A}_{\mathrm{NP}}$?

Can do previous method in reverse.

$$\mathcal{A}_{\mathrm{NP}}^{\mathrm{exp}} = \mathcal{A}_{\mathrm{exp}} - \mathcal{A}_{0} - \mathcal{A}_{\mathrm{BW}} - \mathcal{A}_{\mathrm{QED}}$$

Results

(keV)	$\mathcal{A}_{\mathrm{exp}}$	\mathcal{A}_0	$\mathcal{A}_{ m BW}$	$\mathcal{A}_{ ext{QED}}$	$\mathcal{A}_{ ext{NP}}$
203 Tl	2.340(80)	4.695(6)	-2.355(148)	0.023(12)	-0.023(169)
$^{209}{ m Bi}$	$2.309(35) \\ 0.959(52)$	4.726(6) 1.3394(7)	-2.719(149) -0.4115(199)	$0.023(12) \\ 0.006(3)$	-0.068(154) 0.0251(557)

- NP contributions are very small.
- Uncertainties dominated by model variance through BW.

NP Summary

- NP contributions \sim BW uncertainty.
- Muonic atom experiments can progress.
- Previous results in mercury still valid.

 (In Preparation) J. Vandeleur, G. Sanamyan, N.S. Oreshkina and J. S. M. Ginges, Determination of nuclear polarizability effects in the hyperfine structure of muonic atoms from a combination of H-Like and muonic atom experiments.

Thankyou.