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Table-top Physics

• Table top searches for new physics are gaining

popularity.

• Parity Violation, testing QED, EDMs, Isotope Shi� -

all improved with precise nuclear models.
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• Table top searches for new physics are gaining

popularity.

• Parity Violation, testing QED, EDMs, Isotope Shi� -

all improved with precise nuclear models.

• Atomic Hyperfine structure is the playground for

finite nuclear models.
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Finite Nuclear Effects

μ → F (r)μ

↓

A = A + A + A + Apoint charge BW QED

Need to improve nuclear models!



The Muonic Atom

Getting clever with empirical data

•  is  times heavier than 

• Otherwise treated in the same way

• Muon is much closer to nucleus and more sensitive

to nuclear effects

μ e

μ− ∼ 207 e−
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* A. A. Elizarov, et al. , Optics and Spectroscopy 100, 361 (2006).



Calculate ?

• Need to know the magnetisation distribution.

• Single particle model - requires odd nucleon

wavefunction.

• Extra (muonic) system provides one piece of

information.

ABW
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Total hyperfine constant

Solutions to Dirac equation.

Fermi charge distribution with radius from

scattering experiment.

Vacuum Polarisation

(dominant in muonic atoms)

Self Energy

A = A + A + A + Apoint charge BW QED

A =0 A +point Acharge AQED



Nucleon Wavefunctions

Experiment gives us 1 piece of information - .Rm



Nucleon Wavefunctions

Fitting Nuclear Magnetic Radius - 

μ e

Rm
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BW Effect in Mercury

• Sanamyan et al. recently applied this method in Cs.

• Also data available for Hg.

• Hg isotopes used by Moskowitz and Lombardi.

G. Sanamyan, B. M. Roberts, and J. S. M. Ginges , Physical Review Letters 130, 053001

(2023).

199
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Results

muonic  H-like 

μ e

Stand-alone value for BW effect in .

Hg → Hg

199Hg

screening ( ) ≈ ×1 → Hg , Hg+



Differential BW Effect

•  from experiment.

• Finding  immediately gives all isotopes.

ϵ ≈A ϵ +199 ΔA 199

ΔA 199

ϵ199



BW effect in Mercury Isotopes

P. A. Moskowitz and M. Lombardi , Physics Letters B 46, 334 (1973).
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BW effect in Mercury Isotopes

P. A. Moskowitz and M. Lombardi , Physics Letters B 46, 334 (1973).

ϵ =BW α +∣μ∣
μN c

(all agree)
α = 0.01

(Fujita & Arima)

(our result)

c ∼ −0.01

c ∼ −0.0036(8)

T. Fujita and A. Arima , Nuclear Physics A 254, 513 (1975).



BW Summary

• Now have BW in all Hg isotopes.

• Empirical shi� in ML rule gives insight into nuclear

models.

• Method relies on available muonic data - more

coming!

• 
(In Preparation) J. Vandeleur, G. Sanamyan, B. J. Roberts and J. S. M. Ginges, Empirical

determination of the Bohr-Weisskopf effect in Hg Isotopes and comparison with the

Moskowitz Lombardi rule.
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The muonic orbital has a strong overlap with the

nucleus.

Nuclear degrees of freedom are excited - Nuclear

Polarisability (NP)

A = A + A + A + A0 BW QED NP



The NP contribution is preventing progress with

muonic atom experiments.

• Nuclear structure tests.

• Radius of a proton (muonic Hydrogen).

• Previous method...



Finding ?

Can do previous method in reverse.

μ e

ANP

A = A − A − A − ANP
exp

exp 0 BW QED



Results

• NP contributions are very small.

• Uncertainties dominated by model variance through

BW.



NP Summary

• NP contributions  BW uncertainty.

• Muonic atom experiments can progress.

• Previous results in mercury still valid.

• 
(In Preparation) J. Vandeleur, G. Sanamyan, N.S. Oreshkina and J. S. M. Ginges,

Determination of nuclear polarizability effects in the hyperfine structure of muonic

atoms from a combination of H-Like and muonic atom experiments.

∼



μ

Thankyou.


