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likelihood What is statistics?

What is statistics?
A deliberately vague and heuristic definition (I did not look up a reference):
if you are doing some combination of

extracting a single number from several numbers
handling numbers with uncertainties
making inferences from data with gaps in it

then you are probably doing statistics. For example:
NO you have the (x , y , z) of a point, and you want to know the (r , θ, φ)

YES wanting to measure a constant rate, you make ten measurements
{10, 7, 2, 3, 4, 8, 9, 2, 5, 3}; averaging, you get 5.3

NO you want to know the force on a moving charge in a magnetic field,
and calculate ~F = q~v × ~B

YES you have three measurements of some quantity, with uncertainties:
10± 3.4, 9± 1.2, 14± 2.4; you take a weighted average and find 10

YES you don’t see any events of a certain process:
what can you say about its rate?
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likelihood What is statistics?

What is statistics?

It seems that this all has something to do with
some underlying state of affairs in the world
models of that state of affairs
observations
“uncertainties”, “probabilities”, and “chance”
inference

and so we are also in the domain of prediction:

will it rain tomorrow?
what is the chance that it will rain tomorrow?

This seems to be crying out for either some clear definitions,
and/or some clear recipes.
We will get there. First, a word about “likelihood”:
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likelihood Poisson

Likelihood: A simple Poisson process
Likelihood is the probability of the data (x), given the model (θ).
We write it, and think of it, as a fn of the model: L(θ; x) = P(x; θ)
For a discrete case, L =

∏
i

P(xi ; θ)

−2 lnL = −2
∑

i
ln P(xi ; θ)

Poisson (counts of rate-governed indept cases): Pp(ni ; µ) = e−µµni
ni !

1 ni = 10; L = Pp(10; µ)
2 ni = 7; L = Pp(10; µ)× Pp(7; µ)
3 ni = 2; L = Pp(10; µ)× Pp(7; µ)× Pp(2; µ)
4 ni = 3; L = Pp(10; µ)× Pp(7; µ)× Pp(2; µ)× Pp(3; µ)

. . .
10 ni = 3; L = Pp(10; µ)× Pp(7; µ)× Pp(2; µ)× Pp(3; µ)× Pp(4; µ)

×Pp(8; µ)× Pp(9; µ)× Pp(2; µ)× Pp(5; µ)× Pp(3; µ)

→ maximum likelihood estimate of rate µ = 5.3 ; note this = the average of ni
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likelihood Gaussian

Likelihood: A Gaussian process G(x; µ, σi)
suppose some underlying parameter µ (signal strength, mass, . . . )
suppose a measurement procedure that returns values xi :

each is an unbiased estimate of µ
each comes with a Gaussian uncertainty σi
(for now, never mind how this is determined)
suppose the σi are also reliably estimated

likelihood for a given measurement is L(µ; xi ) = G(xi ; µ, σi )

1 10± 3.4: L = exp
(
− (µ−10)2

2(3.4)2

)
2 9± 1.2: L = exp

(
− (µ−10)2

2(3.4)2

)
× exp

(
− (µ−9)2

2(1.2)2

)
3 14± 2.4: L = exp

(
− (µ−10)2

2(3.4)2

)
× exp

(
− (µ−9)2

2(1.2)2

)
× exp

(
− (µ−14)2

2(2.4)2

)
−2 lnL = (µ−10)2

(3.4)2 + (µ−9)2

(1.2)2 + (µ−14)2

(2.4)2

→ maximum likelihood estimate of µ = 10 ; note this = the weighted average of xi
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Probability, Conditional Probability, and Likelihood
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conditional

Probability, and Conditional Probability
If we consider the probability of discrete events (die 1, die 2),
we can also define the probability of derived cases (e.g. “six in total”),
and then the idea of conditional probability . . .

and Bayes’ Theorem

0 1 probability coin-tossing intro basics Bayes’: intro personal L PP

Probability: conditional probability

The probability that an elementary
event known to belong to set B also
belongs to set A; defined via

P(A and B) = P(A | B) · P(B)

= P(B | A) · P(A)

P(6 and “≥ one 4”) = 2/36

P(“≥ one 4”) = 11/36

P(6 | “≥ one four”) = 2/11

Bruce Yabsley Statistical methods 1
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Probability: conditional probability

The probability that an elementary
event known to belong to set B also
belongs to set A; defined via

P(A and B) = P(A | B) · P(B)

= P(B | A) · P(A)

P(“≥ one 4” and 6) = 2/36

P(6) = 5/36
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conditional

Probability, and Conditional Probability
If we consider the probability of discrete events (die 1, die 2),
we can also define the probability of derived cases (e.g. “six in total”),
and then the idea of conditional probability . . . and Bayes’ Theorem

0 1 probability coin-tossing intro basics Bayes’: intro personal L PP

Probability: introduction to Bayes’ Theorem

P(A | B) =
P(B | A) · P(A)

P(B)

P(“one 4” | “≤ 6”) = 4/15

P(“≤ 6” | “one 4”) = 4/10

P(“one 4”) = 10/36

P(“≤ 6”) = 15/36

in general, P(A) �= P(B)

so P(A | B) �= P(B | A)

Bruce Yabsley Statistical methods 1
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conditional

Likelihood, and Conditional Probability

characteristic PP problem is particle identification:
given detector response to a track, what type of particle is it?
often based on L(type; response) ≡ P(response; type)
“likelihood is probability backwards”
e.g. Belle (II), like many experiments, uses a likelihood ratio:

R = L(K; θ)
L(K; θ) + L(π; θ)

= P(θ; K)
P(θ; K) + P(θ; π)

this is frequently misunderstood as a probability: here, let’s

consider particle ID examples using probabilities explicitly
see if this can clarify probabilities vs likelihoods

(it’s also a lovely example of Bayes’ Theorem)
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conditional

Likelihood, and Conditional Probability

Consider R = 0.95
näıvely, P(K ) = R = 95%

not true in general
∃ pions & kaons
consider {π |R(π) ≈ 0.95)} &
{K |R(K ) ≈ 0.95)}
rescale
we can do the rest by counting
(I am avoiding explaining the
continuum case rigorously)
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conditional

Likelihood, and Conditional Probability

Ω: tracks tagged by φ→ KK

P(K | Ω) = 0.99
P(π | Ω) = 0.01

P(K | R, Ω) = P(R | K) · P(K | Ω)
P(R | Ω)

= P(R | K) · P(K | Ω)∑
i P(R | hi ) · P(hi | Ω)

= 0.95 ∗ 0.99
0.95 ∗ 0.99 + 0.05 ∗ 0.01

= 0.9995
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conditional

Likelihood, and Conditional Probability

Ω: tracks tagged by K0
S → ππ

P(K | Ω) = 0.01
P(π | Ω) = 0.99

P(K | R, Ω) = P(R | K) · P(K | Ω)
P(R | Ω)

= P(R | K) · P(K | Ω)∑
i P(R | hi ) · P(hi | Ω)

= 0.95 ∗ 0.01
0.95 ∗ 0.01 + 0.05 ∗ 0.99

= 0.16
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conditional

Likelihood, and Conditional Probability

Ω: tracks tagged by K0
S → ππ

P(K | Ω) = 0.01
P(π | Ω) = 0.99

P(K | R, Ω) = P(R | K) · P(K | Ω)
P(R | Ω)

= P(R | K) · P(K | Ω)∑
i P(R | hi ) · P(hi | Ω)

= 0.95 ∗ 0.01
0.95 ∗ 0.01 + 0.05 ∗ 0.99

= 0.16 (rare case in Ω)

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024–02–09 11 / 89



conditional

Likelihood, and Conditional Probability

“P(K ) = R = 95%”
only in the special case where
the parent track sample Ω
has 50% kaons and 50% pions

It’s all Bayes’ Theorem

P(A|B) = P(B|A) · P(A)
P(B) . . .

. . . but without Bayesian statistics.
(We will get to Bayesian stats later.)
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ML fitting

Maximum Likelihood Estimates and fitting
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ML fitting

A simple fitting example

f (x) = N 1
σ
√

2π
exp

(
(x − µ)2

2σ2

)
+ a + b.x + c.x2

6.2. TOY MONTE CARLO EXPERIMENTS 43

Some step by step explanation is at this point necessary:

• Lines 1-3 : A simple function to ease the make-up of lines. Remember that the class TF1 inherits from TAttLine.

• Lines 5-7 : Definition of a customised function, namely a Gaussian (the “signal”) plus a parabolic function, the
“background”.

• Lines 10-12 : Some make-up for the Canvas. In particular we want that the parameters of the fit appear very
clearly and nicely on the plot.

• Lines 20-25 : Define and initialise an instance of TF1.

• Lines 27-31 : Define and fill a histogram.

• Lines 33-38 : For convenience, the same function as for the generation of the pseudo-data is used in the fit; hence,
we need to reset the function parameters. This part of the code is very important for each fit procedure, as it
sets the initial values of the fit.

• Line 41 : A very simple command, well known by now: fit the function to the histogram.

• Lines 42-46 : Retrieve the output from the fit. Here, we simply print the fit result and access and print the
covariance matrix of the parameters.

• Lines 54-end: Plot the pseudo-data, the fitted function and the signal and background components at the best-fit
values.

Figure 6.1: Fit of pseudo data: a signal shape over a background trend. This plot is another example of how making a
plot “self-explanatory” can help you better displaying your results.

6.2 Toy Monte Carlo Experiments

Let us look at a simple example of a toy experiment comparing two methods to fit a function to a histogram, the ‰2

method and a method called “binned log-likelihood fit”, both available in ROOT.

~θ = (N, µ, σ, a, b, c)
data ~y : the bin counts

L(~θ; ~y) = P(~y | ~θ)

=
N∏

i=1
P(yi | ~θ)

=
N∏

i=1
PPoisson(yi ; νi )

where νi is the sum of f (x)
over the bin i

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024–02–09 13 / 89



ML fitting

Likelihood: Maximum Likelihood fits
0 1 exp/est/test theorems µ, σ estimators/ML cov/fitting error prop.

Estimators: maximum likelihood
� independent observations X = X1, X2, . . . , XN

� likelihood L(θ; X ) = P(X | θ) =
�N

i=1 f (Xi | θ)
� maximum likelihood estimate of θ is that value θ̂ for which

L(θ; X ) has its maximum, given the particular observations X
� we use function minimization routines (!) on −2 lnL

to obtain the MLE [routines usually based on MINUIT]
� properties of the maximum likelihood:

� asymptotically consistent and unbiased
� asymptotically Normally distributed with minimum variance

V (θ̂)
N→∞−→

(
E

"„
∂ ln L
∂θ

«2
#)−1

estimator of variance V̂ (θ̂) =

( 
−

∂2 ln L
∂θ2

!˛̨
˛̨
˛
θ=θ̂

)−1

� asymptotically invariant: MLE of τ(θ) is τ̂ = τ(θ̂)
� tends to converge to asymptotic limit faster than other

asymptotically efficienct estimators (e.g. least squares) do . . .

Bruce Yabsley Statistics for HEP: Motivating tools & techniques
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ML fitting

Likelihood: Maximum Likelihood fits
0 1 exp/est/test theorems µ, σ estimators/ML cov/fitting error prop.

Expectations: covariance . . . and fitting
� if f (X1, X2, X3, . . .) is a multidimensional Gaussian,

then cov(Xi ,Xj) gives the tilt of the ellipsoid in (Xi ,Xj)
� for N → ∞, ML or weighted-least-squares fits return

parameter estimates θ̂ = (θ̂1, θ̂2, θ̂3, . . .) distributed as a
Gaussian about the true values θ underlying the data
— frequentist interpn: whole expt is a single random throw

� the covariances cov(θ̂i , θ̂j) form the covariance matrix
or error matrix; the fitter estimates it

� HESSE: from the second derivatives at (θ̂i , θ̂j)
� MINOS: from the shape of −2 ln L about the minimum

tan 2φ =
2 cov(θ̂i , θ̂j)

σ2
j − σ2

i

=
2ρijσiσj

σ2
j − σ2

i

! i

"

! i

j#

!j

i#

j#

i#

^

! j
^

ij   i$!!#

inner#

Bruce Yabsley Statistics for HEP: Motivating tools & techniques

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024–02–09 14 / 89



ML fitting simultaneous fits

Likelihood: Simultaneous fits
suppose you are measuring counts in the signal region:

background process with unknown rate b
signal process with unknown rate µ
L = Pp(n1; [µ+ b])

you can also make an auxiliary measurement in a bkgd-only region:
background process with unknown rate b, same as above
L = Pp(n2; b)

likelihood to determine the signal and the bkgd rate:
L = Pp(n1; [µ+ b])× Pp(n2; b) = e−[b+µ][b+µ]n1

n1! × e−bbn2
n2!

straightfwd extension of previous cases; follows from same principles
if n1 → {ni}, a series of measurements, say a histogram,
and n2 → {mj}, a histogram of the background region,
then L → L1(µ,θ; {ni})× L2(µ,θ; {mj}) ;
one performs a simultaneous fit to the histos to get the MLE’s

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024–02–09 15 / 89



stat ⊕ syst

Statistical and systematic uncertainties
1 Statistics and Likelihood

2 Probability, Conditional Probability, and Likelihood

3 Maximum Likelihood Estimates and fitting

4 Statistical and systematic uncertainties
Statistical uncertainties are well-behaved
(uncertainties on) the INPUTS to the measurement
(uncertainties on) any AUXILIARY measurements
(uncertainties on) the CALIBRATION of the apparatus
Roundup of methods
Issues, questions, and tricks of the trade

5 Frequentist & Bayesian Probability, and coin-tossing
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stat ⊕ syst stat

Statistical uncertanties: Law of Large Numbers
0 1 exp/est/test theorems large numbers central limit more tomorrow

Laws, theorems (1): The Law(s) of Large Numbers

� suppose you have a sequence of indept random variables Xi

� with the same mean µ
� and variances σ2

i
� but otherwise distributed “however”

� suppose that the variances are “not too wide”:

� if limN→∞( 1
N2 )

�N
i=1 σ

2
i = 0,

then the average X̄N = 1
N

�
Xi converges to the mean µ

“in quadratic mean”: limN→∞ E
���X̄N − µ

��2
�

= 0

� if limN→∞
��N

i=1
σi
i

�2
is finite,

the convergence is “almost certain”: P
�
limN→∞ X̄N = µ

�
= 1

(the failures have measure zero)

� i.e. eventually, you get the real mean

Bruce Yabsley Statistics for HEP: Motivating tools & techniques
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stat ⊕ syst stat

Statistical uncertanties: Central Limit Theorem
0 1 exp/est/test theorems large numbers central limit more tomorrow

Laws, theorems (2): The Central Limit Theorem
I suppose you have a sequence of indept random variables Xi

I with means µi

I and variances �2
i

I but otherwise distributed “however”

I under certain conditions on the variances,
the sum S =

�
Xi converges to a Gaussian

S ��
µi⇥�

�2
i

N�⇥�⇥ N (0, 1)

independent of what the individual sub-distributions are
I important not to confuse this with the LLN:

LLN: with enough samples, the average ⇥ the mean
CLT: if you put enough random numbers into a food processor,

the distribution of their average ⇥ N (0, 1)
cf. if you sample numbers Xi from di�erent N (µi , �

2
i ), you get . . .

an unpleasant mess

Bruce Yabsley Statistics for HEP: Motivating tools & techniques

LLN: “[For most things, the average gives you the mean.]”
CLT: “[Put enough things into a blender, and you get a Gaussian.]”
i.i.d.: In particle physics, thanks to QM (!), successive instances of a state

prepared the same way (e.g. particle decays, e+e− collisions . . . ) are
independent and identically distributed, the statistical gold standard;
statistical techniques work properly, “out of the box” . . .
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stat ⊕ syst stat

Statistical uncertainties are well-behaved . . .

. . . and systematic uncertainties are not. Well, not always.

I am not going to define systematic uncertainties in this talk.

(There are some musings about them in the appendix.)

But I am going to give you my working taxonomy of sysematics:
1 (uncertainties on) the INPUTS to the measurement
2 (uncertainties on) AUXILIARY measurements
3 (uncertainties on) the CALIBRATION of the apparatus
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stat ⊕ syst Inputs

(uncertainties on) the INPUTS to the measurement

numbers with uncertainties
theoretical uncertainties
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stat ⊕ syst Inputs

INPUTS: numbers with uncertainties, e.g. B
Belle pub632: PRD 107, 072008 (2023); e+e− → ΣΣ via ISR

e+e− → ΣΣ measurement
ISR sample, relatively clean −→
(we will discuss the background
estimation method later)
reconstruct Σ→ Λγ
signal extraction includes event
counts, efficiencies, . . .
and the known B(Λ→ pπ)

−→ 0.8% uncertainty on the result
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stat ⊕ syst Inputs

INPUTS: numbers with uncertainties, e.g. NBB, f 00

Belle II pub24: 2310.06381 → PRD; B → Kπ, ππ BFs and ACP
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stat ⊕ syst Inputs

INPUTS: numbers with uncertainties, e.g. NBB, f 00

Belle II pub24: 2310.06381 → PRD; B → Kπ, ππ BFs and ACP

number of BB, and B+B− vs B0B0 fraction, are uncertain
−→ normalisation uncertainty on all branching fractions
this is the dominant uncertainty for Kπ; disappears on the ACPs

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024–02–09 22 / 89



stat ⊕ syst Inputs

INPUTS: numbers with uncertainties, e.g. ∆m
Belle pub197: PRL 99, 131802 (2007); EPR-type flavour entanglement in B0B0
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fits to a ∆t distribn in 11 bins; functional form depends on ∆m
∆m is not interesting here, but floating it leads to loss of sensitivity
world average∗ measurement: 〈∆m〉 = (0.496± 0.014) ps−1

added to the fit by what is now called Gaussian constraint
large effect on sensitivity: see the yellow boxes
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stat ⊕ syst Inputs

INPUTS: theoretical uncertainties
Belle pub582: PRD 106, 032013 (2022); B(B+ → η(′)`nu)

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024–02–09 24 / 89



stat ⊕ syst Inputs

INPUTS: theoretical uncertainties
Belle pub582: PRD 106, 032013 (2022); B(B+ → η(′)`nu)

form factor assumptions are embedded
in signal and background shapes
uncerts in FF params propagated as systs
for some, the underlying model is
changed, and the shift in result used
these are small uncerts — see later
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stat ⊕ syst Auxiliaries

(uncertainties on) any AUXILIARY measurements

. . . of efficiencies

. . . of rates

. . . of the resolution function

. . . of the interaction region
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stat ⊕ syst Auxiliaries

AUXILIARY measurements . . . of efficiencies (1)
Belle II pub24: 2310.06381 → PRD; B → Kπ, ππ BFs and ACP

we measure the track-finding efficiency in dedicated analyses,
but the value has an uncertainty:
this appears according to the number of tracks in each mode
π0-, K 0

S -finding efficiencies likewise
again these will “cancel in the ratio” for ACP ,
up to possible charge-dependent effects that need to be checked
in a different sort of analysis, say with a normalisation mode,
they will not necessarily cancel:

they are in general p, pT , cos θ-etc.-dependent, esp. for PID
signal and normalisation modes will not have the same distribution . . .
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stat ⊕ syst Auxiliaries

AUXILIARY measurements . . . of efficiencies (2)
Belle II pub10: PRL 130, 181803 (2023); LFV τ → `α search

Knowledge of PID efficiencies can be limited by calibration on data:
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stat ⊕ syst Auxiliaries

AUXILIARY measurements . . . of efficiencies (2)
Belle II pub10: PRL 130, 181803 (2023); LFV τ → `α search

Trigger and other efficiences in this analysis are “hidden” in the L:
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stat ⊕ syst Auxiliaries

AUXILIARY measurements . . . of efficiencies (3)
Belle II pub13: PRD 107, 112009 (2023); π0π0 BF and ACP

sometimes the reported “uncertainty” of the auxiliary measurement is secondary:
the systematic is dominated by our
lack of understanding or confidence
in what is going on . . .
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stat ⊕ syst Auxiliaries

AUXILIARY measurements . . . of rates
ATLAS–CONF–2013–013; Higgs properties in H → ZZ (∗)∗ → 4`

H → ``+ µµ have “reducible” bkgds due to tt̄ & Z + jets events
normalisations are set using complementary “control regions”

1 removing µµ isolation cuts, & requiring ≥ 1 isoln failure (not shown)
2 removing µµ isolation cuts, & requiring ≥ 1 IP significance failure:

  [GeV] 12m
50 60 70 80 90 100

Ev
en

ts
/4

 G
eV

0

10

20

30

40

50

60

Data 
 fittZ+jets and t

 fittt
ZZ
Z+jets
tt

WZ

 PreliminaryATLAS
µ4-1Ldt = 20.7 fb! = 8 TeV:  s

  [GeV] 12m
50 60 70 80 90 100

Ev
en

ts
/4

 G
eV

0

5

10

15

20

25

30

35

40

45

Data 
 fittZ+jets and t

 fittt
ZZ
Z+jets
tt

WZ

 PreliminaryATLAS
µ2e2-1Ldt = 20.7 fb! = 8 TeV:  s

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024–02–09 31 / 89



stat ⊕ syst Auxiliaries

AUXILIARY measurements . . . of the resolution fn
Belle II pub16: PRD 107, L091102 (2023); B0 lifetime and ∆m measurement

Leading systematic: function params that can’t all be floated at once . . .

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024–02–09 32 / 89



stat ⊕ syst Auxiliaries

AUXILIARY measurements . . . of the IR
Belle II pub16: PRD 107, L091102 (2023); B0 lifetime and ∆m measurement

Smaller systematic: imprecise knowledge of interaction region

τ : 0.002 vs 0.008 ps total
∆m: 0.001 vs 0.005 ps−1 total
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stat ⊕ syst Calibration

(uncertainties on) the CALIBRATION of . . .

. . . of the measurement of specific quantities

. . . of “environmental” quantities

. . . of the experimental technique as a whole

. . . of the analyst: your own choices

. . . by searching for mistakes
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stat ⊕ syst Calibration

CALIBRATION . . . of measurement of specific quantities
Belle II pub15: PRL 127, 211801 (2021); D lifetime

The momentum scale is important:
default factor 1.00056
recommended range
[1.00014, 1.00107]
uncertainty is subleading:

Imperfectly known vertex resolution
is another uncertainty of this type
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stat ⊕ syst Calibration

CALIBRATION . . . of “environmental” quantities
Belle II pub15: PRL 127, 211801 (2021); D lifetime

Tracking & vertexing assumes the alignment of subdetector elements:
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stat ⊕ syst Calibration

CALIBRATION . . . of “environmental” quantities
Belle II pub15: PRL 127, 211801 (2021); D lifetime

Tracking & vertexing assumes the alignment of subdetector elements:

Dominant uncertainty for τ(D0)
~B-field anisotropy is another
classic example
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stat ⊕ syst Calibration

CALIBRATION . . . of the experimental technique as a whole

Here we are putting the whole measurement technique inside a virtual box,
as an “instrument” to be calibrated. Typical issues:

known limitations and
omissions in the method
the equations and
parameterizations
fits: linearity/bias tests
larger analysis chain:
control and validation
region studies
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stat ⊕ syst Calibration

Calibration of technique: limitations & omissions
Belle II pub15: PRL 127, 211801 (2021); D lifetime

A small background was left out of the D0 → K−π+ fit:
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stat ⊕ syst Calibration

Calibration of technique: limitations & omissions
Belle II pub15: PRL 127, 211801 (2021); D lifetime

The sideband method for D+ → K−π+π+ bkgd may be imperfect:
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stat ⊕ syst Calibration

Calibration of technique: eqns & parameterizations
Belle II pub15: PRL 127, 211801 (2021); D lifetime

Changing how the background is estimated has a negligible effect:
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stat ⊕ syst Calibration

Calibration of technique: eqns & parameterizations
Belle II pub15: PRL 127, 211801 (2021); D lifetime

Neglect of correlations in fitting has a (small) noticeable effect:
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stat ⊕ syst Calibration

Calibration of technique: eqns & parameterizations
Belle II pub13: PRD 107, 112009 (2023); π0π0 BF and ACP

some BB, a lot of continuum background under the 3D peak
continuum shapes taken from the data sideband
Mbc ∈ (5.22, 5.27) GeV/c2, ∆E ∈ (0.1, 0.5) GeV
uncertainty estimated by shifting shape params by ±1σ one-by-one
(with others shifting per fitted correlns) and checking yield changes
after ε(π0), this is the dominant uncertainty on B(B0 → π0π0)
parameterization will come up again, under another heading

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024–02–09 42 / 89



stat ⊕ syst Calibration

Calibration of technique: ML fits (1)
Belle II pub24: 2310.06381 → PRD; B → Kπ, ππ BFs and ACP
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stat ⊕ syst Calibration

Calibration of technique: ML fits (1)
Belle II pub24: 2310.06381 → PRD; B → Kπ, ππ BFs and ACP

Fits may not behave asymptotically/ideally,
even if nothing is “omitted” or wrong: hence “linearity and bias tests”, etc.

for π+π0 and K 0
Sπ

0:
this is the dominant
systematic on ACP

these modes are
statistically limited
negligible for the
branching fraction
fits . . .
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stat ⊕ syst Calibration

Calibration of technique: ML fits (2)
Belle II pub642: PRD 107, 112011 (2023) X(3872) lineshape in B → D0D∗0K

Extremely complex analysis, fitting a signal lineshape at threshold, over
background, with substantial broken signal, and unstable decay daughters.
One of the lineshapes exhibits scaling behaviour in some parameters . . .
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stat ⊕ syst Calibration

Calibration of technique: ML fits (2)
Belle II pub642: PRD 107, 112011 (2023) X(3872) lineshape in B → D0D∗0K

BW & Flatté fits
Flatté fit is very nonlinear:
significantly changes the
reported results: can’t deal
with this by just “adding a
systematic term” . . .
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stat ⊕ syst Calibration

Calibration of technique: analysis chain
Belle II pub20: PRD 108, 072012 (2023); CP asymmetries in B0 → φK0

S
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stat ⊕ syst Calibration

Calibration of technique: analysis chain
Belle II pub20: PRD 108, 072012 (2023); CP asymmetries in B0 → φK0

S

tagging algorithm and ∆t resolution
calibrated with B0 → D∗−π+ decays

this has its own uncertainties

it has to be ported to φK 0
S
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stat ⊕ syst Calibration

Calibration of technique: analysis chain
Belle II pub20: PRD 108, 072012 (2023); CP asymmetries in B0 → φK0

S

tagging algorithm and ∆t resolution
calibrated with B0 → D∗−π+ decays

this has its own uncertainties
it has to be ported to φK 0

S
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stat ⊕ syst Calibration

Calibration of technique: analysis chain
Belle II pub20: PRD 108, 072012 (2023); CP asymmetries in B0 → φK0

S

tagging algorithm and ∆t resolution
calibrated with B0 → D∗−π+ decays

this has its own uncertainties
it has to be ported to φK 0

S

procedure is a variant of the
control and validation region
studies beloved of the LHC
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stat ⊕ syst Calibration

CALIBRATION . . . of the analyst: your own choices

I went forward in time, to view all possible ways we might conduct the analysis.
How many did you see? 14,000,605.
How many gave us the right answer? 1.
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stat ⊕ syst Calibration

Calibration of choices: fitting region & other choices
Belle pub632: PRD 107, 072008 (2023); e+e− → ΣΣ via ISR

The (low) background is estimated using sidebands. But, chosen how?

try larger, smaller, shifted
choices of sidebands
leads to noticeable yield changes: the co-leading systematic at 6%
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stat ⊕ syst Calibration

Calibration of choices: parameterizations
Belle II pub13: PRD 107, 112009 (2023); π0π0 BF and ACP

reminder: 3D signal peak over BB and continuum background
previously: how well do we know the params of the continuum shape?
now consider: choices were also made in modelling the signal:
MC-based KDE in (Mbc ,∆E ); what if another shape had been used?
uncorrelated product of CB functions tried as alternative: 1.3% effect,
minor cf. 16.2% total systs, but in other cases the effect can be larger
esp. w limited samples, & limited or absent controls, no assumption-
free way to make such choices — so an uncertainty is appropriate
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stat ⊕ syst Calibration

Calibration of choices

fitting region choices
parameterizations

In both these cases it is very hard to claim that the default choices
are “inevitable” or obviously correct.

Older analyses sometimes include such uncertainties due to
object selection (how many SVD or CDC hits)
event selection cuts
other exact cut values
dependence on any other choice that has an arbitrary element

This has gone a bit out of style — because where do you stop? —
and also for a technical reason (see later). But the basic idea is sound.
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stat ⊕ syst Calibration

CALIBRATION . . . by searching for mistakes
biases: signal of x −→ mean measurement of x + δ

instabilities: [butterfly-wingbeat] −→ measured yield changes
mis-classifications and omitted categories:
let’s say, the tt̄ bkgd has two components with different behaviour
under cuts & differing m4` distributns , unresolved by control samples

with 2× the sample, if careful, we’ll notice problems in fitting
with 4× the sample, there will be clear and nasty discrepancies

That was a made-up example, but the phenomenon is very real:
Belle D0 − D0 mixing (D → Kπ) took one year per doubling in
sample, to refine method enough to keep systematics under control
misunderstanding the relnship between auxiliary & principal measts

unknown unknowns

All are problems that should be fixed: the corresponding systematics are
estimates (guesses?) of possible residual problems
the tolerances of the tests and cross-checks used . . .
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stat ⊕ syst Calibration

Mistakes? (1) e.g. Relationship with the auxiliaries
ATLAS–CONF–2013–013; Higgs properties in H → ZZ (∗)∗ → 4`
control region 2 results for H → ``+ µµ are extrapolated to the signal
region using IP signif. & isoln requirement efficiencies from Zbb̄ MC:

what if this is wrong?
efficiency validated with another
control region, requiring Z + µ

test fails? : stop and try to
gain understanding, then
fix problem if possible, else
back up and change method

many analyses have dead-ends &
side-branches, documented or not
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test succeeded! : a 10% uncerty on the extrapoln factors is assigned
note this “data driven” bkgd estimate has embedded dependence
on {MC, physical insight, expert judgement on validation, rules of art}
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stat ⊕ syst Calibration

Mistakes? (2) coding and other bugs
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stat ⊕ syst Calibration

Mistakes? (3) unknown unknowns

Reports that say that something hasn’t happened are always interesting to
me, because as we know, there are known knowns; there are things we know
that we know. There are known unknowns; that is to say, there are things
that we now know we don’t know. But there are also unknown unknowns
— there are things we do not know we don’t know.

Donald Rumsfeld got mocked in the media for this, but he had a point
e.g. “analysis-level” information is vulnerable to subtle problems:

what if there is a distinction in response in a drift chamber with
stereo layers, never spotted because one must compare the response of
{U,V } wires to +ve and −ve tracks going forward and backward?
what if out-of-spill calorimeter clusters give a decayed but measurable
response, not tagged in analysis-level data (& some are back-to-back)?

one builds confidence with a new {detector, code, technique} by doing
basic & known things first (e.g. so-called “rediscovery” analyses)
and one relies on . . .
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stat ⊕ syst Calibration

Mistakes? (4) cross-checks
ATLAS–CONF–2013–013; Higgs properties in H → ZZ (∗) → 4`

additional studies that do not contribute directly to any of the bkgd
measurements or systematics directly, but are there to spot problems:

the tt̄ bkgd measurement for H → ``+ µµ is cross-checked
using a e±µ∓ + µ+µ− sample, with M(e±µ∓) ∈ (50, 106) GeV
the ZZ (∗) signal and
the Z + jets and tt̄ bkgds are
checked in another control region:
agreement is not bad,
but is imperfect —
how much does this matter?
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Figure 24: Shape comparison of the m4� distribution used for the Z+jets and tt̄ contributions, in a control
region where the sub-leading di-lepton fails either the isolation or the impact parameter significance
requirements of the analysis, for the

√
s = 8 TeV data sample.
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Figure 25: (a) The signal strength parameter µ = σ/σSM obtained from a fit to the data for the combined
fit to the 2011 and 2012 data samples is plotted as function of mH . (b) The signal strength µ is shown as a
function of mH when a simulated SM Higgs boson signal with mH = 125 GeV is injected into simulated
and predicted backgrounds. It should be noted that the maximum of the µ distribution is found to be at
lower mass with respect to the the best fit or the injected mH . This is due to the expected SM rate rising
rapidly with increasing mH in the low mass region and the asymmetric shape of the expected distribution
of µ.
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stat ⊕ syst Calibration

Mistakes? (4) cross-checks
ATLAS–CONF–2013–013; Higgs properties in H → ZZ (∗) → 4`

the final analysis uses a look-back plot to check the (m12, m34, m4`)
distribution in the absence of the Z-mass constraint:
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your {advisor, RC, journal referee} may ask you for such plots
“But what are you looking for?”
“I don’t know, but I may know it when I see it . . . ”
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stat ⊕ syst Methods

Roundup of methods: (1) profile likelihood
consider

a quantity of interest µ (signal strength, mass, . . . )
quantities θ, say θ = (θs , θb, nb) governing shape & bkgd normn

form the profile L ratio

λ(µ) = L(µ, ˆ̂θ(µ))
L(µ̂, θ̂)

µ̂ and θ̂ are ML estimators
ˆ̂θ(µ) is the best estimate of
θ for the given µ value
letting “nuisance parameters”
θ float at each µ will

improve the L there, and
broaden the distribution

a.k.a. “the MINUIT method”, long used intuitively in HEP
 [GeV]Hm

123 124 125 126 127

!
-2

 ln
 

0
2
4
6
8

10
12
14
16
18
20

all systematics
)µwithout MSS(e) and MSS(

(sys) GeV
 -0.3
 +0.5(stat)  -0.5

 +0.6 = 124.3Hm

PreliminaryATLAS 
-1Ldt = 4.6 fb" = 7 TeV:  s

-1Ldt = 20.7 fb" = 8 TeV:  s

 4l# (*) ZZ#H 

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024–02–09 59 / 89



stat ⊕ syst Methods

Roundup of methods: (2) Gaussian constraint
ATLAS ATL-COM-PHYS-2012-089; tt̄, WW , Z/γ∗ → ττ

Li (Nsig , αj) = Pi
(

Nobs |Nexp(Nsig , αj)
)∏

j∈syst G(αj | 0, 1)

heavily used at ATLAS:
trigger efficiency officially
measured, say ε = 0.25+0.03

−0.02
at y = 0 & pT = 20 GeV,
and rising with energy
ideally, scale for the distn

represented by some fn f (x)
approximate as G(x |µ, σ)
transform to α = (x − µ)/σ
now expressed as G(α | 0, 1)N
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Fit Parameter α Parameter Symmetric Asymmetric
Value Uncertainty Uncertainty

Electron trigger 0.00 1.00 -1.00 1.00
Electron reconstruction, ID, isolation -0.10 1.00 -1.00 1.00
Electron momentum scale 0.00 1.00 -1.00 1.00
Electron momentum resolution 0.00 1.00 -1.00 1.00
Muon reconstruction, ID, isolation -0.03 1.00 -1.00 1.00
Muon trigger 0.00 1.00 -1.00 1.00
Muon momentum scale 0.00 1.00 -1.00 1.00
Muon momentum resolution 0.00 1.00 -1.00 1.00
Jet vertex fraction -0.02 1.00 -1.00 1.00
Emiss

T Cell-out 0.00 1.00 -1.00 1.00
Pileup 0.00 1.00 -1.00 1.00
WZ/ZZ cross sections -0.03 1.00 -1.00 1.00
Wt cross section -0.21 0.99 -1.00 1.00
Luminosity -0.06 1.00 -1.00 1.00
LHC beam energy 0.00 1.00 -1.00 1.00
ISR/FSR 0.00 1.00 -1.00 1.00
tt̄ Parton Shower 0.00 1.00 -1.00 1.00
WW Parton Shower 0.00 1.00 -1.00 1.00
Z → ττ Parton Shower 0.00 1.00 -1.00 1.00
tt̄ Generator 0.00 1.00 -1.00 1.00
WW Generator 0.00 1.00 -1.00 1.00

Table 32: Values of nuisance parameters returned from likelihood fit for use in the extraction of the total
cross section. The nuisance parameter values in the fiducial cross section fit are identical at this level of
precision shown.

on the fiducial tt̄ cross section.1115

10.1 Explicit model dependence of top quark pair production cross-section1116

Figure 19 shows the tt̄ cross-sections measured as a function of the input MC sample. Given the aim1117

was to solely measure the effect of the model, the fit likelihoods didn’t include nuisance parameters1118

associated to tt̄ modelling and parton showering uncertainties. The difference between the measured1119

results are consistent with the overall uncertainties assigned from separately studying model dependence1120

in the acceptance and shape. This study therefore reveals negligible correlation in the effects between1121

the template shape and acceptance of a given model.1122

10.2 Detailed comparison of correlated measurements with predictions1123

A unique feature of this analysis is to ability to extract the correlations between any two of the measured1124

cross-sections from the full likelihood function. These correlations are shown in comparison with the-1125

oretical calculations at NLO and NNLO (for tt̄ and Z/γ∗ → ττ where NNLO precision is available) in1126

Figures 20 and 21. Contours of the likelihood function at 68% and 90% confidence level are obtained by1127

scanning the parameter space of the two cross-sections of interest and maximizing the likelihood with1128

respect to the remaining N −2 parameters. The measured cross-section ellipses are obtained by fitting an1129

ellipse to these contours of the likelihood function. This procedure is performed for the fit using the full1130
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stat ⊕ syst Methods

Roundup of methods: (2) Gaussian constraint
ATLAS ATL-COM-PHYS-2012-089; tt̄, WW , Z/γ∗ → ττ

provides a standard system to check for strain in the fit
if an analysis had JES 2.5σ below standard, that would be suspicious
if there was a high correlation between WZ/ZZ x-section and
ISR/FSR systematics, that would be suspicious
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note that profile L and G constraint differ only the packaging;
the essence of both techniques is simultaneous fitting
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stat ⊕ syst Issues

Issues, questions, and tricks of the trade
note that biases must first be corrected!
do we know what the probability distribution is?
cancellation versus partial cancellation
rough but conservative estimates (easier/quicker than exact ones, and if the
effect still turns out to be small, the exact estimate can be safely skipped)
possible effects versus proven effects, or, against the 3σ standard
double-counting of statistical effects;
pitfalls in calculation of differences between overlapping selections
separating out a large / distinctive systematic term: e.g. f 00 in B → Kπ, ππ
every conceivable effect? every likely/possible effect?
“two point uncertainties” on complex models are a matter of expert
judgement, esp. if large (cf. the small FF uncertainties mentioned above)
combination of symmetric and asymmetric uncertainties produces a bias
(shifts the central value) and has a nontrivial residual uncertainty, in general
(example: Belle II pub31, PRL 131, 171803 (2023); D+

s lifetime)
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coin-tossing

Frequentist & Bayesian Probability, and coin-tossing

Frequentist: I gotta tell you, he’s not really my friend.
Saving his life is more a professional courtesy.

Frequentist: What is your job . . . ?
Bayesian: Protecting your reality . . . !
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coin-tossing intro

Frequentist and Bayesian Probability

What is the definition of the conditional probability P(A |B)?

Frequentist (classical) Probability:

P(A|B) = long-run relative frequency
of A occuring in identical repetitions
of an observation,
under some conditions B;
A is restricted to propositions
about random variables
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coin-tossing intro

Frequentist and Bayesian Probability

What is the definition of the conditional probability P(A |B)?

Bayesian Probability:
P(A|B) is a real-number measure of
the plausibility of proposition A,
given (conditional upon)
the truth of proposition B;
P measures degree of belief;
A can be any logical proposition
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coin-tossing intro

Application to tossing a coin

suppose I stand to win or lose money in a game of chance

my companion gives me a coin to use in the game
do I trust the coin?
to get some information, I toss the coin five times:

get 4 heads, 1 tail (4H,1T)
do I trust the coin now? what have I learned?
is my answer any different if I toss the coin ten times,
and get 8 heads, 2 tails (8H,2T)?

this simple problem incorporates all sorts of statistical questions:

simple (fair coin) versus compound ({unfair coin; pH})
cf. simple (bkgd only) versus compound ({H; mH})

data has limited statistical power
neatly illustrates how the method and interpretation
depend on the statistical framework used
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coin-tossing frequentist

Tossing a coin: frequentist treatment

What is the definition of the conditional probability P(A |B)?

Frequentist (classical) Probability:

P(A|B) = long-run relative frequency
of A occuring in identical repetitions
of an observation,
under some conditions B;
A is restricted to propositions
about random variables
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coin-tossing frequentist

Tossing a coin: frequentist treatment

pH 0H 1H 2H 3H 4H 5H
5T 4T 3T 2T 1T 0T

1.00 .00000 .00000 .0000 .0000 .00000 1.0
0.90 .00001 .00045 .0081 .0729 .32805 .59049
0.80 .00032 .00640 .0512 .2048 .4096 .32768
0.70 .00243 .02835 .1323 .3087 .36015 .16807
0.60 .01024 .00768 .2304 .3456 .2592 .07776
0.50 .03125 .15625 .3125 .3125 .15625 .03125
0.40 .07776 .2592 .3456 .2304 .00768 .01024
0.30 .16807 .36015 .3087 .1323 .02835 .00243
0.20 .32768 .4096 .2048 .0512 .00640 .00032
0.10 .59049 .32805 .0729 .0081 .00045 .00001
0.00 1.0 .00000 .00000 .00000 .00000 .00000
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coin-tossing frequentist

treatment: ∀pH, form 90% acceptance band
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coin-tossing frequentist

treatment: 90% conf. interval: {pH |(4H, 1T) ∈ A90(pH)}

pH 0H 1H 2H 3H 4H 5H
5T 4T 3T 2T 1T 0T
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coin-tossing frequentist

Tossing a coin: frequentist treatment — commentary

we asked ourselves whether the coin was fair,
but we answered “like scientists”, with technical stuff:
can’t interpret this easily in street terms

this is a feature, not a bug, of frequentist statistics:
the frequentist concept of probability is limiting frequency;

the coin has some probability pH to turn up heads,
which we can estimate with increasing precision as N →∞
the pH = 0.5 hypothesis itself has no probability . . .

the benefit:
this has been a straightforward (if tedious) calculation,
and our opinions / beliefs / prejudices have not been involved
the costs:

1 we have not directly addressed the qn, “is this a fair coin?”,
that we were originally interested in

2 not clear how to incorporate, say, suspicion about the coin

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024–02–09 68 / 89
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coin-tossing Bayesian

Tossing a coin: Bayesian treatment

What is the definition of the conditional probability P(A |B)?

Bayesian Probability:
P(A|B) is a real-number measure of
the plausibility of proposition A,
given (conditional upon)
the truth of proposition B;
P measures degree of belief;
A can be any logical proposition
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coin-tossing Bayesian

Tossing a coin: Bayesian treatment . . .
. . . provides a natural way to incorporate relevant background information,
such as the fact that you are playing coin-toss with
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coin-tossing Bayesian

Tossing a coin: Bayesian treatment

Likelihoods:

P((4H, 1T )) | fair) = 0.1563
P((4H, 1T )) | bad) = 0.3955

Priors:

P(fair |Cap) = 0.95
P(bad |Cap) = 0.05

Posterior:

P(fair | (4H, 1T ), Cap) = P((4H, 1T )) | fair) · P(fair |Cap)∑
i P((4H, 1T )) | i) · P(i |Cap)

= 0.1563 · 0.95
0.1563 · 0.95 + 0.3955 · 0.05

= 0.882
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coin-tossing Bayesian

Tossing a coin: Bayesian treatment

Likelihoods:

P((8H, 2T )) | fair) = 0.04395
P((8H, 2T )) | bad) = 0.28157

Priors:

P(fair |Cap) = 0.95
P(bad |Cap) = 0.05

Posterior:

P(fair | (8H, 2T ), Cap) = P((8H, 2T )) | fair) · P(fair |Cap)∑
i P((8H, 2T )) | i) · P(i |Cap)

= 0.04395 · 0.95
0.04395 · 0.95 + 0.28157 · 0.05

= 0.748
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coin-tossing Bayesian

Tossing a coin: Bayesian treatment . . .
. . . provides a natural way to incorporate relevant background information,
such as the fact that you are playing coin-toss with
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coin-tossing Bayesian

Tossing a coin: Bayesian treatment

Likelihoods:

P((4H, 1T )) | fair) = 0.1563
P((4H, 1T )) | bad) = 0.3955

Priors:

P(fair | Loki) = 0.50
P(bad | Loki) = 0.50

Posterior:

P(fair | (4H, 1T ), Loki) = P((4H, 1T )) | fair) · P(fair | Loki)∑
i P((4H, 1T )) | i) · P(i | Loki)

= 0.1563 · 0.50
0.1563 · 0.50 + 0.3955 · 0.50

= 0.283
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coin-tossing Bayesian

Tossing a coin: Bayesian treatment

Likelihoods:

P((8H, 2T )) | fair) = 0.04395
P((8H, 2T )) | bad) = 0.28157

Priors:

P(fair | Loki) = 0.50
P(bad | Loki) = 0.50

Posterior:

P(fair | (8H, 2T ), Loki) = P((8H, 2T )) | fair) · P(fair | Loki)∑
i P((8H, 2T )) | i) · P(i | Loki)

= 0.04395 · 0.50
0.04395 · 0.50 + 0.28157 · 0.50

= 0.135
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coin-tossing Bayesian

Tossing a coin: Bayesian treatment — commentary

N.B. biased coin should have pH free (not fixed pH = 0.75)

Bayesian model comparison with (simple) fair-coin model:
implements Occam’s razor; integrn over pH , with prior π(pH)
application to the Higgs case is left for discussion . . .

we need to be explicit about our prior beliefs in this problem;
change in the prior −→ change in the result
this is a feature, not a bug, of Bayesian statistics:

Bayesian probability includes beliefs: no fundamental objection
different prior, different problem: no absurdity in the conclusion

the benefits:

1 we are directly addressing the question, “is this a fair coin?”
2 we can straightforwardly incorporate external/prior information

the cost:
we cannot avoid committing ourselves (perhaps provisionally)
in the course of the method
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change in the prior −→ change in the result
this is a feature, not a bug, of Bayesian statistics:

Bayesian probability includes beliefs: no fundamental objection

different prior, different problem: no absurdity in the conclusion

the benefits:

1 we are directly addressing the question, “is this a fair coin?”
2 we can straightforwardly incorporate external/prior information

the cost:
we cannot avoid committing ourselves (perhaps provisionally)
in the course of the method
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coin-tossing Bayesian

BH merger parameters: mass, spin, distance

following section and are consistent with our expect-
ations for an astrophysical BBH source. The inferred
component masses of LVT151012 lie roughly between
the masses of GW150914 and GW151226, as shown
in Fig. 4.

IV. SOURCE PROPERTIES

In this section, we present the inferred properties of the
sources of GW150914, LVT151012, and GW151226,
assuming that the signals each originate from a binary
coalescence as described by general relativity. Tests of the
consistency of the signal with the predictions of general
relativity are presented in Sec. V. Full results for
GW150914 have been provided in Refs. [39,40], and
key results for LVT151012 have been given in
Ref. [44]. Here, we give results based upon an updated
calibration of the data. The analyses of all three signals

closely mirror the original analysis of GW150914, as
detailed in Ref. [39] and described in Appendix B.
The analysis makes use of two waveform models, the

double aligned spin waveform model (EOBNR) [8,9] and
an effective precessing spin model (IMRPhenom) [36–38].
Results from the two waveforms are similar, and the data
give us little reason to prefer one model over the other. We
therefore average the posterior distributions from two
waveforms for our overall results. These are used for the
discussion below, except in Sec. IV B, where we also
consider measurements of spin alignment from the pre-
cessing IMRPhenom waveform.
The results match our expectations for a coherent

signal in both detectors and give us no reason to suspect
that any of the signals are not of astrophysical origin. All
three signals are consistent with originating from BBHs.
Key parameters for the three events are included in
Table I and plotted in Figs. 4,5, and 6. Detailed results
are provided in Table IV in Appendix B.

FIG. 4. Posterior probability densities of the masses, spins, and distance to the three events GW150914, LVT151012, and GW151226.
For the two-dimensional distributions, the contours show 50% and 90% credible regions. Top left panel: Component massesmsource

1 and
msource

2 for the three events. We use the convention that msource
1 ≥ msource

2 , which produces the sharp cut in the two-dimensional
distribution. For GW151226 and LVT151012, the contours follow lines of constant chirp mass (Msource ¼ 8.9þ0.3

−0.3M⊙ and
Msource ¼ 15:1þ1.4

−1.1M⊙, respectively). In all three cases, both masses are consistent with being black holes. Top right panel: The
mass and dimensionless spin magnitude of the final black holes. Bottom left panel: The effective spin and mass ratios of the binary
components. Bottom right panel: The luminosity distance to the three events.

B. P. ABBOTT et al. PHYS. REV. X 6, 041015 (2016)
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BH merger parameters: dimnless component spins

A. Masses

The binary component masses of all three systems lie
within the range expected for stellar-mass black holes. The
least massive black hole is the secondary of GW151226,
which has a 90% credible lower bound that msource

2 ≥
5.6M⊙. This is above the expected maximum neutron star
mass of about 3M⊙ [80,81] and beyond the mass
gap where there is currently a dearth of black holes
observed in x-ray binaries [82–84]. The range of our
inferred component masses overlaps with those for stellar-
mass black holes measured through x-ray observations but
extends beyond the nearly 16M⊙ maximum of that
population [85–87].
GW150914 corresponds to the heaviest BBH system

(Msource ¼ 65.3þ4.1
−3.4M⊙) we observed, and GW151226

corresponds to the least massive (Msource ¼ 21.8þ5.9
−1.7M⊙).

Higher mass systems merge at a lower gravitational-wave
frequency. For lower-mass systems, the gravitational-wave

signal is dominated by the inspiral of the binary compo-
nents, whereas for higher-mass systems, the merger and
ringdown parts of the signal are increasingly important.
The transition from being inspiral dominated to being
merger and ringdown dominated depends upon the sensi-
tivity of the detector network as a function of frequency;
GW150914 had SNR approximately equally split between
the inspiral and post-inspiral phases [41]. Information
about the masses is encoded in different ways in the
different parts of the waveform: The inspiral predominantly
constrains the chirp mass [70,88,89], and the ringdown is
more sensitive to the total mass [90]; hence, the best-
measured parameters depend upon the mass [91–93]. This
is illustrated in the posterior probability distributions for the
three events in Fig. 4. For the lower-mass GW151226 and
LVT151012, the posterior distribution follows curves of
constant chirp mass, but for GW150914, the posterior is
shaped more by constraints on the total mass [94].

FIG. 5. Posterior probability distributions for the dimensionless component spins cS1=ðGm2
1Þ and cS2=ðGm2

2Þ relative to the normal to
the orbital plane L, marginalized over the azimuthal angles. The bins are constructed linearly in spin magnitude and the cosine of the tilt
angles, and therefore have equal prior probability. The left plot shows the distribution for GW150914, the middle plot is for LVT151012,
and the right plot is for GW151226.

FIG. 6. Posterior probability distributions for the sky locations of GW150914, LVT151012, and GW151226 shown in a Mollweide
projection. The left plot shows the probable position of the source in equatorial coordinates (right ascension is measured in hours and
declination is measured in degrees). The right plot shows the localization with respect to the Earth at the time of detection. Hþ and Lþ
mark the Hanford and Livingston sites, and H− and L− indicate antipodal points; H-L and L-H mark the poles of the line connecting the
two detectors (the points of maximal time delay). The sky localization forms part of an annulus, set by the difference in arrival times
between the detectors.

BINARY BLACK HOLE MERGERS IN THE FIRST … PHYS. REV. X 6, 041015 (2016)
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BH merger parameters: sky locations

A. Masses

The binary component masses of all three systems lie
within the range expected for stellar-mass black holes. The
least massive black hole is the secondary of GW151226,
which has a 90% credible lower bound that msource

2 ≥
5.6M⊙. This is above the expected maximum neutron star
mass of about 3M⊙ [80,81] and beyond the mass
gap where there is currently a dearth of black holes
observed in x-ray binaries [82–84]. The range of our
inferred component masses overlaps with those for stellar-
mass black holes measured through x-ray observations but
extends beyond the nearly 16M⊙ maximum of that
population [85–87].
GW150914 corresponds to the heaviest BBH system

(Msource ¼ 65.3þ4.1
−3.4M⊙) we observed, and GW151226

corresponds to the least massive (Msource ¼ 21.8þ5.9
−1.7M⊙).

Higher mass systems merge at a lower gravitational-wave
frequency. For lower-mass systems, the gravitational-wave

signal is dominated by the inspiral of the binary compo-
nents, whereas for higher-mass systems, the merger and
ringdown parts of the signal are increasingly important.
The transition from being inspiral dominated to being
merger and ringdown dominated depends upon the sensi-
tivity of the detector network as a function of frequency;
GW150914 had SNR approximately equally split between
the inspiral and post-inspiral phases [41]. Information
about the masses is encoded in different ways in the
different parts of the waveform: The inspiral predominantly
constrains the chirp mass [70,88,89], and the ringdown is
more sensitive to the total mass [90]; hence, the best-
measured parameters depend upon the mass [91–93]. This
is illustrated in the posterior probability distributions for the
three events in Fig. 4. For the lower-mass GW151226 and
LVT151012, the posterior distribution follows curves of
constant chirp mass, but for GW150914, the posterior is
shaped more by constraints on the total mass [94].

FIG. 5. Posterior probability distributions for the dimensionless component spins cS1=ðGm2
1Þ and cS2=ðGm2

2Þ relative to the normal to
the orbital plane L, marginalized over the azimuthal angles. The bins are constructed linearly in spin magnitude and the cosine of the tilt
angles, and therefore have equal prior probability. The left plot shows the distribution for GW150914, the middle plot is for LVT151012,
and the right plot is for GW151226.

FIG. 6. Posterior probability distributions for the sky locations of GW150914, LVT151012, and GW151226 shown in a Mollweide
projection. The left plot shows the probable position of the source in equatorial coordinates (right ascension is measured in hours and
declination is measured in degrees). The right plot shows the localization with respect to the Earth at the time of detection. Hþ and Lþ
mark the Hanford and Livingston sites, and H− and L− indicate antipodal points; H-L and L-H mark the poles of the line connecting the
two detectors (the points of maximal time delay). The sky localization forms part of an annulus, set by the difference in arrival times
between the detectors.
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BH mergers: post-Newtonian parameters
relativity violations that would occur predominantly at a
particular PN order (or in the case of the intermediate and
merger-ringdown parameters, a specific power of frequency
in the relevant regime), although together they can capture
deviations that are measurably present at more than
one order.
In Ref. [41], for completeness, we have also shown

results from analyses where the parameters in each of the
regimes (i)–(iii) are allowed to vary simultaneously, but
these tests return wide and uninformative posteriors. By
contrast, analyses where the testing parameters δp̂i are
varied one at a time have much smaller statistical

uncertainties. Moreover, as demonstrated in Ref. [144],
checking for a deviation from zero in a single testing
parameter is an efficient way to uncover GR violations that
occur at multiple PN orders, and one can even find
violations at powers of frequency that are distinct from
the one that the testing parameter is associated with
[145,146]. Hence, such analyses are well suited to search
for generic departures from GR, though it should be
stressed that if a violation is present, the measured values
of the δp̂i will not necessarily reflect the predicted values of
the correct alternative theory. To reliably constrain theory-
specific quantities such as coupling constants or extra

FIG. 7. Posterior density distributions and 90% credible intervals for relative deviations δp̂i in the PN parameters pi (where ðlÞ denotes
the logarithmic correction), as well as intermediate parameters βi and merger-ringdown parameters αi. The top panel is for GW150914
by itself and the middle one for GW151226 by itself, while the bottom panel shows combined posteriors from GW150914 and
GW151226. While the posteriors for deviations in PN coefficients from GW150914 show large offsets, the ones from GW151226 are
well centered on zero, as well as being tighter, causing the combined posteriors to similarly improve over those of GW150914 alone. For
deviations in the βi, the combined posteriors improve over those of either event individually. For the αi, the joint posteriors are mostly set
by the posteriors from GW150914, whose merger-ringdown occurred at frequencies where the detectors are the most sensitive.

B. P. ABBOTT et al. PHYS. REV. X 6, 041015 (2016)
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charges, one should directly apply full inspiral-merger-
ringdown waveform models from specific modified gravity
theories [147], but in most cases, these are not yet available.
However, in the present work, the focus is on model-
independent tests of general relativity itself.
Given the observation of more than one BBH merger,

posterior distributions for the δp̂i can be combined to yield
stronger constraints. In Fig. 7, we show the posteriors from
GW150914, generated with final instrumental calibration,
and GW151226 by themselves, as well as joint posteriors
from the two events together. We do not present similar
results for the candidate LVT151012 since it is not as
confident a detection as the others; furthermore, its smaller
detection SNR means that its contribution to the overall
posteriors is insignificant.
For GW150914, the testing parameters for the PN

coefficients, δφ̂i and δφ̂il, showed moderately significant
(2σ–2.5σ) deviations from their general relativity values of
zero [41]. By contrast, the posteriors of GW151226 tend to
be centered on the general relativity value. As a result, the
offsets of the combined posteriors are smaller. Moreover,
the joint posteriors are considerably tighter, with a 1σ
spread as small as 0.07 for deviations in the 1.5PN
parameter φ3, which encapsulates the leading-order effects
of the dynamical self-interaction of spacetime geometry
(the “tail” effect) [148–151], as well as spin-orbit inter-
action [67,152,153].
In Fig. 8, we show the 90% credible upper bounds on the

magnitude of the fractional deviations in PN coefficients,
jδφ̂ij, which are affected by both the offsets and widths of
the posterior density functions for the δφ̂i. We show bounds

for GW150914 and GW151226 individually, as well as the
joint upper bounds resulting from the combined posterior
density functions of the two events. Not surprisingly, the
quality of the joint bounds is mainly due to GW151226
because of the larger number of inspiral cycles in the
detectors’ sensitive frequency band. Note how at high PN
order, the combined bounds are slightly looser than the
ones from GW151226 alone; this is because of the large
offsets in the posteriors from GW150914.
Next, we consider the intermediate-regime coefficients

δβ̂i, which pertain to the transition between inspiral and
merger-ringdown. For GW151226, this stage is well inside
the sensitive part of the detectors’ frequency band.
Returning to Fig. 7, we see that the measurements for
GW151226 are of comparable quality to GW150914, and
the combined posteriors improve on the ones from either
detection by itself. Last, we look at the merger-ringdown
parameters δα̂i. For GW150914, this regime corresponded
to frequencies of f ∈ ½130; 300" Hz, while for GW151226,
it occurred at f ≳ 400 Hz. As expected, the posteriors from
GW151226 are not very informative for these parameters,
and the combined posteriors are essentially determined by
those of GW150914.
In summary, GW151226 makes its most important

contribution to the combined posteriors in the PN inspiral
regime, where both offsets and statistical uncertainties have
significantly decreased over the ones from GW150914, in
some cases almost to the 10% level.
An inspiral-merger-ringdown consistency test as per-

formed on GW150914 in Ref. [41] is not meaningful for
GW151226 since very little of the signal is observed in the
post-merger phase. Likewise, the SNR of GW151226 is too
low to allow for an analysis of residuals after subtraction of
the most probable waveform. In Ref. [41], GW150914 was
used to place a lower bound on the graviton Compton
wavelength of 1013 km GW151226 gives a somewhat
weaker bound because of its lower SNR, so combining
information from the two signals does not significantly
improve on this; an updated bound must await further
observations. Finally, BBH observations can be used to test
the consistency of the signal with the two polarizations of
gravitational waves predicted by general relativity [154].
However, as with GW150914, we are unable to test the
polarization content of GW151226 with the two, nearly
aligned aLIGO detectors. Future observations, with an
expanded network, will allow us to look for evidence of
additional polarization content arising from deviations from
general relativity.

VI. BINARY BLACK HOLE MERGER RATES

The observations reported here enable us to constrain the
rate of BBH coalescences in the local Universe more
precisely than was achieved in Ref. [42] because of the
longer duration of data containing a larger number of
detected signals.

FIG. 8. The 90% credible upper bounds on deviations in the PN
coefficients, from GW150914 and GW151226. Also shown are
joint upper bounds from the two detections; the main contributor
is GW151226, which had many more inspiral cycles in band than
GW150914. At 1PN order and higher, the joint bounds are
slightly looser than the ones from GW151226 alone; this is due to
the large offsets in the posteriors for GW150914.
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coin-tossing Bayesian

BH mergers: dependence on priors
results for these population assumptions are also shown in
Table II and in Fig. 10. The inferred overall rate is shown in
Fig. 11. As expected, the population-based rate estimates
bracket the one obtained by using the masses of the
observed black hole binaries.

The inferred rates of BBH mergers are consistent with
the results obtained in Refs. [42,155], following the
observation of GW150914. The median values of the rates
have decreased by approximately a factor of 2, as we now
have three likely signals (rather than two) in 3 times as
much data. Furthermore, because of the observation of an
additional highly significant signal GW151226, the uncer-
tainty in rates has reduced. In particular, the 90% range of
allowed rates has been updated to 9–240 Gpc−3 yr−1,
where the lower limit comes from the flat in log mass
population and the upper limit from the power-law pop-
ulation distribution.
With three significant triggers, GW150914, LVT151012,

and GW151226, all of astrophysical origin to high prob-
ability, we can begin to constrain the mass distribution of
coalescing BBHs. Here, we present a simple, parametrized
fit to the mass distribution using these triggers; a non-
parametric method that can fit general mass distributions
will be presented in future work. Our methodology is
described more fully in Appendix D.
We assume that the distribution of black hole masses in

coalescing binaries follows

pðm1Þ ∝ m−α
1 ; ð7Þ

with Mmin ≤ m2 ≤ m1 and m1 þm2 ≤ 100M⊙, and a uni-
form distribution on the secondary mass between Mmin ¼
5M⊙ and m1. With α ¼ 2.35, this mass distribution is the
power-law distribution used in our rate estimation. Our
choice ofMmin is driven by a desire to incorporate nearly all
the posterior samples from GW151226 and because there is
some evidence from electromagnetic observations for a
minimum BH mass near 5M⊙ [82,156] (but see Ref. [84]).
We use a hierarchical analysis [156–159] to infer α from

the properties of the three significant events— GW150914,
GW151226, and LVT151012— where all three are treated
equally and we properly incorporate parameter-estimation
uncertainty on the masses of each system. Our inferred
posterior on α is shown in Fig. 12. The value α ¼ 2.35,
corresponding to the power-law mass distribution used
above to infer rates, lies near the peak of the posterior, and
the median and broad 90% credible interval is

α ¼ 2.5þ1.5
−1.6 : ð8Þ

It is not surprising that our fit peaks near α ∼ 2.5 because
the observed sample is consistent with a flat distribution and
the sensitive space-time volume scales roughly as M15=6.
The mass distribution of merging black hole binaries

cannot be constrained tightly with such a small number of
observations. This power-law fit is sensitive to a number of
arbitrary assumptions, including a flat distribution in the
mass ratio and a redshift-independent merger rate and mass
distribution. Most critically, the fit is sensitive to the choice
of the lower-mass cutoff Mmin: Larger values of Mmin lead

FIG. 10. The posterior density on the rate of GW150914-like
BBH, LVT151012-like BBH, and GW151226-like BBH merg-
ers. The event-based rate is the sum of these. The median and
90% credible levels are given in Table II.

FIG. 11. The posterior density on the rate of BBH mergers. The
curves represent the posterior assuming that BBH masses are
distributed flat in logðm1Þ − logðm2Þ (Flat), match the properties
of the observed events (Event based), or are distributed as a power
law inm1 (Power law). The posterior median rates and symmetric
90% symmetric credible intervals are given in Table II.
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Analysis relies on priors on
detector properties
distributions of sources in space
BH masses in coalescing binaries
BH spins . . .
. . . and all sorts of things
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6 Probability

7 What are systematics?
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probability intro

Probability: introduction

Intuitively:
chance that something is true (“it will rain tomorrow”),
or that a parameter has some value (“the coin shows heads”)
Mathematical foundation dates only from last century:

consider Ω = {Xi}, all possible exclusive elementary events Xi ;
e.g. die showing 1, 2, 3, 4, 5, or 6
a “probability” function P must satisfy:

P(Xi ) ≥ 0 ∀i
P(Xi or Xj) = P(Xi ) + P(Xj)∑

Ω P(Xi ) = 1
more than one sort of thing obeys these rules:

frequentist probability: “limiting frequency”
P(Xi ) = limn→∞ ni/n
i.e. the fraction if you repeat the “experiment” endlessly
Bayesian “degree of belief”

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024–02–09 83 / 89



probability basics

Probability: illustrations using two dice

X11 is an elementary event

X12, X21 indistinguishable
in practice, so define a set
Y12 = {X12, X21} & treat like
an event: “a one and a two”
{Xij | i + j = 6} contains
distinguishable events, but
useful anyway: “I threw a six”
{Xij | i + j ≤ 6}: “six or less”
{Xij | i = 4 OR j = 4}:
“at least one four”
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probability basics

Probability: addition law for sets

Elementary events add simply, so

P({Xij | i + j = 6}) =
∑

i+j=6
P(Xij)

It follows that for sets

P(A or B) = P(A) + P(B)
− P(A and B)

So far, this is mere counting.
But consequences flow from this.
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probability basics

Probability: conditional probability

The probability that an elementary
event known to belong to set B also
belongs to set A; defined via

P(A and B) = P(A |B) · P(B)
= P(B |A) · P(A)

P(6 and “≥ one 4”) = 2/36
P(“≥ one 4”) = 11/36

P(6 | “≥ one four”) = 2/11
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Probability: conditional probability

The probability that an elementary
event known to belong to set B also
belongs to set A; defined via

P(A and B) = P(A |B) · P(B)
= P(B |A) · P(A)

P(“≥ one 4” and 6) = 2/36
P(6) = 5/36

P(“≥ one four” | 6) = 2/5
6= 2/11
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probability basics

Probability: independence

Consider a more symmetric case:
P(“≥ one 2”) = 11/36
P(“≥ one 4”) = 11/36

P(“≥ one 4” | “≥ one 2”) = 2/11
P(“≥ one 2” | “≥ one 4”) = 2/11

6= 11/36

so getting a 2 and getting a 4 are not
independent: for independent sets,

P(A |B) = P(A)
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probability basics

Probability: independence

Very hard to find nontrivial
independent sets in this example . . .
contrary to what you might think.
Obvious fix doesn’t work:

P(“one 2”) = 10/36
P(“one 4”) = 10/36

P(“one 4” | “one 2”) = 2/10
P(“one 2” | “one 4”) = 2/10

6= 10/36

(see the pre-reading for more)
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probability Bayes’: intro

Probability: introduction to Bayes’ Theorem

P(A |B) = P(B |A) · P(A)
P(B)

P(“one 4” | “≤ 6”) = 4/15
P(“≤ 6” | “one 4”) = 4/10

P(“one 4”) = 10/36
P(“≤ 6”) = 15/36

in general, P(A) 6= P(B)
so P(A |B) 6= P(B |A)
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systematics

What are systematics? (1) Old-fashined experimentalist answer

Imagine the answer of Kyūzō-san (Skill Guy from Seven Samurai):

Counting uncertainties go as
√

N, and are reliable.
Everything else is systematic uncertainty,
and is governed only by judgement and rules of thumb.
I know my techniques and my mental bank of examples. So I know a
systematic uncertainty when I see one, and use an appropriate estimate.
This new-fangled tool MINUIT also returns uncertainty estimates, and
empirically it seems reliable when it works (I always check by reading the
verbose output carefully). I perk its results in as “statistical uncertainties”,
but only on sufferance.
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systematics

What are systematics? (2) Time-constrained student answer

Imagine the answer of a student six months from submission:

My advisor / Working Group / RC has a standard list of systematics
for this sort of analysis, and methods for estimating them.
I have never seen an analysis make it to journal without all of these
systematic terms, and only occasionally see an extra term
(and then only because a collaborator insisted during CWR).
I have looked at papers from past experiments,
and these standard systematics are in most of them.
One seems to be new in Tom Browder’s CLEO paper.
I asked him about it once at a Belle II party. He said that this systematic
was actually brought to the Hawaiian islands by Maui, and handed down.
I am not sure whether he was joking.
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systematics

What are systematics? (3) New-fashined experimentalist . . .

Imagine the answer of an ATLAS/CMS analysis contact:

Most uncertainties are statistical uncertainties in disguise.
It is straightforward to include them in the fit using Gaussian constraint
(or Log-Normal or other constraints if necessary, for extra credit).
Correlations do not scare me, as they can be handled by covariance
matrices; complex effects can be modelled by toy Monte Carlo.
As for effects that are only present in the data, these can be accessed
via bootstrapping.
My old thesis advisor still includes some systematic terms by hand, and
even uses ±1σ estimates sometimes. We still collaborate (she is a member
of the 50-person team on our paper), and I cannot stop her from doing
this, but it is seriously embarrassing when I have to show such estimates
to the Editorial Board.
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systematics

What are systematics? A taxonomy

My basic answer is that all three of these answers are correct as far as they
go. But they have something to learn from each other.
To the student I would add:
There is a weak presumption in favour of all of the uncertainties on the
standard list. Individually they are likely to be appropriate, but maybe not
all of them. And some extra terms may be necessary.
But how do you know which uncertainties to drop, and which ones to add?
That is the purpose of this talk

My working taxonomy of systematics:
1 (uncertainties on) the INPUTS to the measurement
2 (uncertainties on) AUXILIARY measurements
3 (uncertainties on) the CALIBRATION of the apparatus
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