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Outline

@ Statistics and Likelihood

9 Probability, Conditional Probability, and Likelihood
© Maximum Likelihood Estimates and fitting

@ Statistical and systematic uncertainties

e Frequentist & Bayesian Probability, and coin-tossing
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Statistics and Likelihood

@ Statistics and Likelihood
@ What is statistics?
@ A simple Poisson process
@ A Gaussian process G(x; u, o)
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What is statistics?
What is statistics?

A deliberately vague and heuristic definition (I did not look up a reference):
if you are doing some combination of
@ extracting a single number from several numbers
@ handling numbers with uncertainties
@ making inferences from data with gaps in it
then you are probably doing statistics. For example:
NO you have the (x, y, z) of a point, and you want to know the (r, 0, ¢)
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What is statistics?
What is statistics?

A deliberately vague and heuristic definition (I did not look up a reference):
if you are doing some combination of
@ extracting a single number from several numbers
@ handling numbers with uncertainties
@ making inferences from data with gaps in it
then you are probably doing statistics. For example:
NO you have the (x, y, z) of a point, and you want to know the (r, 0, ¢)

YES wanting to measure a constant rate, you make ten measurements
{10,7,2,3,4,8,9,2,5,3}; averaging, you get 5.3
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What is statistics?
What is statistics?

A deliberately vague and heuristic definition (I did not look up a reference):
if you are doing some combination of
@ extracting a single number from several numbers
@ handling numbers with uncertainties
@ making inferences from data with gaps in it
then you are probably doing statistics. For example:
NO you have the (x, y, z) of a point, and you want to know the (r, 0, ¢)
YES wanting to measure a constant rate, you make ten measurements
{10,7,2,3,4,8,9,2,5,3}; averaging, you get 5.3
NO you want to know the force on a moving charge in a magnetic field,
and calculate F = qv X B
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What is statistics?
What is statistics?

A deliberately vague and heuristic definition (I did not look up a reference):
if you are doing some combination of

@ extracting a single number from several numbers
@ handling numbers with uncertainties
@ making inferences from data with gaps in it
then you are probably doing statistics. For example:
NO you have the (x, y, z) of a point, and you want to know the (r, 0, ¢)
YES wanting to measure a constant rate, you make ten measurements
{10,7,2,3,4,8,9,2,5,3}; averaging, you get 5.3
NO you want to know the force on a moving charge in a magnetic field,
and calculate F = qv X B
YES you have three measurements of some quantity, with uncertainties:
10+3.4, 9+ 1.2, 14 + 2.4; you take a weighted average and find 10
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What is statistics?
What is statistics?

A deliberately vague and heuristic definition (I did not look up a reference):
if you are doing some combination of
@ extracting a single number from several numbers
@ handling numbers with uncertainties
@ making inferences from data with gaps in it
then you are probably doing statistics. For example:
NO you have the (x, y, z) of a point, and you want to know the (r, 0, ¢)
YES wanting to measure a constant rate, you make ten measurements
{10,7,2,3,4,8,9,2,5,3}; averaging, you get 5.3
NO you want to know the force on a moving charge in a magnetic field,
and calculate F = qv X B
YES you have three measurements of some quantity, with uncertainties:
10+3.4, 9+ 1.2, 14 + 2.4; you take a weighted average and find 10
YES you don't see any events of a certain process:
what can you say about its rate?
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What is statistics?
What is statistics?

It seems that this all has something to do with
@ some underlying state of affairs in the world

models of that state of affairs

@ observations
@ ‘“uncertainties”, "“probabilities”, and “chance”
@ inference

and so we are also in the domain of prediction:
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It seems that this all has something to do with
@ some underlying state of affairs in the world
@ models of that state of affairs
@ observations
@ ‘“uncertainties”, "“probabilities”, and “chance”
@ inference
and so we are also in the domain of prediction:
o will it rain tomorrow?

@ what is the chance that it will rain tomorrow?
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It seems that this all has something to do with
@ some underlying state of affairs in the world
@ models of that state of affairs
@ observations
@ “uncertainties”, “probabilities”, and “chance”
@ inference
and so we are also in the domain of prediction:
@ will it rain tomorrow?
@ what is the chance that it will rain tomorrow?

This seems to be crying out for either some clear definitions,
and/or some clear recipes.
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What is statistics?
What is statistics?

It seems that this all has something to do with
@ some underlying state of affairs in the world
@ models of that state of affairs
@ observations
@ “uncertainties”, “probabilities”, and “chance”
@ inference
and so we are also in the domain of prediction:
@ will it rain tomorrow?
@ what is the chance that it will rain tomorrow?

This seems to be crying out for either some clear definitions,
and/or some clear recipes.

We will get there. First, a word about “likelihood":
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likelihood Poisson

Likelihood: A simple Poisson process
o Likelihood is the probability of the data (x), given the model (8).
@ We write it, and think of it, as a f” of the model: £(0; x) = P(x; 0)
@ For a discrete case, L= H P(x;; 0)

—2InL=-2> InP(x; 6)

e Huli

n;!

1
@ Poisson (counts of rate-governed indep® cases): Py,(n;; p) =

@ ni =10; £L = P,(10; u)

Q ni= 7 L= Py(10; p) x Pp(7; 1)

© ni= 2L =Py(10; p) x Pp(7; 1) x Pp(2; 1)

Q ni= 3; L= Pp(10; 1) x Po(7; p) x Pp(2; 1) X Pp(3; 1)

@ ni= 3; L=Py(10; p) X Po(7; ) x Pp(2; 1) X Pp(3; p) X Pp(4; 1)
XPp(8; 1) x Po(9; p1) x Pp(2; p) X Pp(5; p) X Pp(3; 1)

— ‘ maximum likelihood estimate of rate = 5.3 ‘ ; note this = the average of n;
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[TEMLI  Gaussian

Likelihood: A Gaussian process G(x; u, o;)

@ suppose some underlying parameter p (signal strength, mass, ...)
@ suppose a measurement procedure that returns values x;:

e each is an unbiased estimate of p

o each comes with a Gaussian uncertainty o;
(for now, never mind how this is determined)

@ suppose the o; are also reliably estimated

@ likelihood for a given measurement is L(u; x;) = G(xi; p, 0i)

Q 10+34 L—exp( ek )
Q@ 9+12 L=-exp (—(5(3.132 ) x exp (—%)
© 14£24 L=exp (— T ) X exp (—%) X exp (—(5(2}{;% )

—2InL = *@j)‘” + ¢ 22 + U= “’

— ‘ maximum likelihood estimate of u = 10 ‘ ; note this = the weighted average of x;
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Probability, Conditional Probability, and Likelihood

= 5 = = El= DA
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Probability, and Conditional Probability

If we consider the probability of discrete events (die 1, die 2),
we can also define the probability of derived cases (e.g. “six in total”),
and then the idea of conditional probability ...

The probability that an elementary
event known to belong to set B also
belongs to set A; defined via

P(Aand B) = P(A| B) - P(B)
= P(B|A)- P(A)

P(6 and “> one 4") = 2/36
P("> one 4") = 11/36
P(6| “> one four") = 2/11
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Probability, and Conditional Probability

If we consider the probability of discrete events (die 1, die 2),
we can also define the probability of derived cases (e.g. “six in total”),
and then the idea of conditional probability ...

The probability that an elementary
L] BT Ll B2 fel- B EEL]| event known to belong to set B also

belongs to set A; defined via
0 P R S el B8
P(Aand B) = P(A|B) - P(B)

0 R S (1 A 0 S K = P(B|A)- P(A)
EBEB ey ey gry P2 oned” and6) = 2/36
P(6) = 5/36

3 R R A e e R P(“> one four" | 6) = 2/5
£ 2/11

[-JEd LY kY LIk
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Probability, and Conditional Probability

If we consider the probability of discrete events (die 1, die 2),
we can also define the probability of derived cases (e.g. “six in total”),
and then the idea of conditional probability ... and Bayes' Theorem

3l

LT B

2l B3l

R

e B

(RN

[J&8 LY [k

LJEd
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poa ) =PI PN
P(“one 4" | "< 6") = 4/15
P("< 6" | "one 4") = 4/10
P(“one 4") = 10/36
P(“<6") =15/36

in general, P(A) # P(B)
so P(A|B) # P(B|A)
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conditional

Probability, and Conditional Probability

If we consider the probability of discrete events (die 1, die 2),
we can also define the probability of derived cases (e.g. “six in total”),
and then the idea of conditional probability ... and Bayes' Theorem

P(B|A) - P(A)

P(AIB) = == s

P(“one 4" | "<6") = 4/15
P("<6" | “one 4") = 4/10
P("“one 4") = 10/36

P("< 6") = 15/36

e 3 e

T R M R | R

in general, P(A) # P(B)
so P(A|B) # P(B|A)

[J&8 LY [k

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024-02-09 9/89




Likelihood, and Conditional Probability
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Likelihood, and Conditional Probability

@ characteristic PP problem is particle identification:

given detector response to a track, what type of particle is it?
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Likelihood, and Conditional Probability

@ characteristic PP problem is particle identification:
given detector response to a track, what type of particle is it?

@ often based on L(type; response) = P(response; type)
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Likelihood, and Conditional Probability

@ characteristic PP problem is particle identification:
given detector response to a track, what type of particle is it?

@ often based on L(type; response) = P(response; type)
o “likelihood is probability backwards”

o e.g. Belle (I1), like many experiments, uses a likelihood ratio:

B L(K; 0)
- L(K; 0)+ L(T; 0)
B P(9; K)
~ P(6; K)+ P(0; )
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Likelihood, and Conditional Probability

@ characteristic PP problem is particle identification:
given detector response to a track, what type of particle is it?

@ often based on L(type; response) = P(response; type)
o “likelihood is probability backwards”

@ e.g. Belle (Il), like many experiments, uses a likelihood ratio:

@ this is frequently misunderstood as a probability: here, let's

e consider particle ID examples using probabilities explicitly
o see if this can clarify probabilities vs likelihoods

(it's also a lovely example of Bayes' Theorem)
CPPC 2024-02-09  10/89
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Likelihood, and Conditional Probability

Consider R = 0.95
@ naively, P(K) =R = 95%

o F = = = DA
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Likelihood, and Conditional Probability

Consider R = 0.95
@ naively, P(K) =R = 95%
@ not true in general
@ 7 pions & kaons
@ consider {7 | R ()~ 0.95)} &
{K|R(K) ~ 0.95)}

o F = = = DA
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Likelihood, and Conditional Probability

Consider R = 0.95
@ naively, P(K) =R = 95%
@ not true in general
@ 7 pions & kaons
@ consider {7 | R ()~ 0.95)} &
{K|R(K) ~ 0.95)}

@ rescale

o F = = = DA
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Likelihood, and Conditional Probability

Consider R = 0.95
@ naively, P(K) =R = 95%
@ not true in general
@ 7 pions & kaons
@ consider {7 | R ()~ 0.95)} &
{K|R(K) ~ 0.95)}
@ rescale

@ we can do the rest by counting
(I am avoiding explaining the
continuum case rigorously)
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Likelihood, and Conditional Probability

Q: tracks tagged by ¢ — KK

P(K | Q) = 0.99
P(r | Q) = 0.01
P . gy = PR PO

P(R | K)-P(K|Q)
i P(R | hi)-P(hi | Q)
_ 0.95 % 0.99
~0.95%0.99 + 0.05 % 0.01
= 0.9995
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Likelihood, and Conditional Probability

Q: tracks tagged by K% =TT

P(K | Q) = 0.01
P(r | Q) = 0.99
PR ) =R ’PI(?%' |P${ )

_ PRIK)-PK|[Q)

>i P(R | hi) - P(hi | Q)
- 0.95 % 0.01
~0.95 % 0.01 + 0.05 * 0.99
=0.16

o F = E = DA
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Likelihood, and Conditional Probability

Q: tracks tagged by K% =TT

P(K | Q) = 0.01
P(r | Q) = 0.99
PR ) =R ’PI(?%' |P${ )

__PRIK)-P(K]Q)

2 P(R | hi) - P(hi | Q)
B 0.95 % 0.01
~0.95%0.01 + 0.05 % 0.99
= 0.16 (rare case in Q)

oy <9 =» «= = Dac
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conditional

Likelihood, and Conditional Probability

“P(K) =R = 95%"

only in the special case where
the parent track sample Q2

has 50% kaons and 50% pions

It's all Bayes' Theorem

P(B|A) - P(A)

PAIB) =~ Lo

... but without Bayesian statistics.
(We will get to Bayesian stats later.)

oy <9 =» «= = Dac
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ML fitting

Maximum Likelihood Estimates and fitting
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A simple fitting example

1 _ 2
f(x)=N exp (= 1) +a+ bx+ cx?

oV 2w 202
250 g _
g Signal Peak over 1 / ndf wosjaa | 0= (N,p,0,2,b,c)
> L Prob 0.5564 - .
background Norm 57834794 | data y: the bin counts
200 + Mean 7.01+0.14
Sigma 09238 +0.1578 7N pra) A
a 200.6 +5.5 L(6; ¥)=P(V0)
1501 b -16.73£1.03 N
i c 0.4438 + 0.0464 =
g =[[Pv:16)
100[ - i=1
N N
B = H 'DPoisson(Yi; Vi)
50|— ]
N i=1
P W B T S S NP N IV where v; is the sum of f(x)
0 2 4 6 8 10 12 14 16 1

8 l2
xvals over the bin j
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Likelihood: Maximum Likelihood fits

» independent observations X = X1, Xo, ..., Xy
> likelihood L(6; X) = P(X |0) = vazl f(X;]6)
» maximum likelihood estimate of 6 is that value 6 for which
L(0; X) has its maximum, given the particular observations X
> we use function minimization routines (!) on —2In L
to obtain the MLE [routines usually based on MINUIT]
> properties of the maximum likelihood:

» asymptotically consistent and unbiased
» asymptotically Normally distributed with minimum variance

. Nesoo aincy2]) 7t
Ve {E[( £ )]}
. s {( 92 |n£> }—1
estimator of variance V(0) = —
=0

262
» asymptotically invariant: MLE of 7(6) is 7 = 7(0)
> tends to converge to asymptotic limit faster than other $
asymptotically efficienct estimators (e.g. least squares) do =

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024-02-09
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Likelihood: Maximum Likelihood fits

> if f(X1, Xa, X3, ...) is a multidimensional Gaussian,
then cov(X;, X;) gives the tilt of the ellipsoid in (Xj, X;)

» for N — oo, ML or weighted-least-squares fits return
parameter estimates 0 = (91, 0, 05, ...) distributed as a
Gaussian about the true values 6 underlying the data
— frequentist interp”: whole expt is a single random throw

> the covariances cov(f;, ;) form the covariance matrix
or error matrix; the fitter estimates it o

» HESSE: from the second derivatives at (6;, 6;)
» MINOS: from the shape of —2In £ about the minimum

A A 0;
2cov(0;,0;
tan2¢:72( ”21) .
gj ~ i 0;
_ 2p;0ioj
=2 2
of —0;

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024-02-09
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\IRSN A simultaneous fits

Likelihood: Simultaneous fits

@ suppose you are measuring counts in the signal region:
o background process with unknown rate b
o signal process with unknown rate p
o L= Py(m; [+ b])
@ you can also make an auxiliary measurement in a bkgd-only region:
o background process with unknown rate b, same as above
o L= Py(ny; b)
@ likelihood to determine the signal and the bkgd rate:
—[b+p] n —bpyn
L = Pp(n; [+ b]) x Pp(np; b) = = [b+u]™  e=>b™

n1! n2!

@ straightf*“ extension of previous cases; follows from same principles

o ifm— {n,-}, a series of measurements, say a histogram,
and ny — {m;}, a histogram of the background region,
then | £ — L1(1, 0; {n;}) x La(p,0; {m;})|;
one performs a simultaneous fit to the histos to get the MLE's
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stat @ syst

Statistical and systematic uncertainties

@ Statistical and systematic uncertainties
@ Statistical uncertainties are well-behaved
@ (uncertainties on) the INPUTS to the measurement
@ (uncertainties on) any AUXILIARY measurements
@ (uncertainties on) the CALIBRATION of the apparatus
@ Roundup of methods
@ Issues, questions, and tricks of the trade
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stat @ syst stat

Statistical uncertanties: Law of Large Numbers

> suppose you have a sequence of indep! random variables X;

» with the same mean g
» and variances cr,-2
» but otherwise distributed "however”
» suppose that the variances are “not too wide":
- 1 N
> if IlmN_)OO(Nj) Ei::l 0’[2 = 0,
then the average Xy = % > X; converges to the mean

“in quadratic mean”: limy_ E U)_(N - ,uﬂ =0

2
i My (Z,’.":l 1) is finite,
the convergence is “almost certain”: P (limy_o0 Xy = 1) = 1
(the failures have measure zero)

> i.e. eventually, you get the real mean =

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024-02-09
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stat @ syst stat

Statistical uncertanties: Central Limit Theorem

> suppose you have a sequence of indep? random variables X;
> with means p;
» and variances a,?
> but otherwise distributed “however”
» under certain conditions on the variances,
the sum S = > X; converges to a Gaussian

ST Naw w1

/oo

independent of what the individual sub-distributions are

LLN: “[For most things, the average gives you the mean.]”
CLT: “[Put enough things into a blender, and you get a Gaussian.]"

i.i.d.: In particle physics, thanks to QM (!), successive instances of a state
prepared the same way (e.g. particle decays, eTe™ collisions ...) are
independent and identically distributed, the statistical gold standard;
statistical techniques work properly, “out of the box" ...

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024-02-09 17 /89




stat @ syst stat

Statistical uncertainties are well-behaved ...

. and systematic uncertainties are not. Well, not always.
| am not going to define systematic uncertainties in this talk.
(There are some musings about them in the appendix.)

But | am going to give you my working taxonomy of sysematics:
© (uncertainties on) the INPUTS to the measurement
@ (uncertainties on) AUXILIARY measurements
© (uncertainties on) the CALIBRATION of the apparatus

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024-02-09
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(uncertainties on) the INPUTS to the measurement

@ numbers with uncertainties

@ theoretical uncertainties

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024-02-09 19/89



stat @ syst Inputs

INPUTS: numbers with uncertainties, e.g. B
Belle pub632: PRD 107, 072008 (2023); e*e~ — XX via ISR

(] e+e_ — Zf measurement * t Data

25F

. — eey,_35°MC
@ ISR sample, relatively clean — o e

20 F Background MC

@ (we will discuss the background
estimation method later)

Events / 3 MeV/c?
o

@ reconstruct ¥ — Ay S bt {
LY - 1 £ ) §
. . . ]
@ signal extraction includes event 115 _ 125
o ) M(yA) / MGR) [GeV/c?]
counts, efficiencies, ... i
FIG. 2. The invariant mass of the accepted yA and yA
and the known B(/\ — pﬂ') candidates. The points with error bars are experimental data

and the red histogram shows the e*e™ — y1gg X0 MC events

— 08% uncertainty on the result with X/%0 correctly reconstructed. The hatched histogram is a
mixture of events in e*e” — yisr AA and e*e” — ysRZ°A MC
samples and the eTe™ — ygrXX’ MC events with /%0
misreconstructed. The solid and dashed vertical lines denote
the =0/ signal and sideband regions, respectively.
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stat @ syst Inputs

INPUTS: numbers with uncertainties, e.g. Ngg,

fOO

Belle Il pub24: 2310.06381 — PRD; B — K=, wm BFs and Acp
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stat @ syst Inputs

INPUTS: numbers with uncertainties, e.g. Ngg, £00

Belle Il pub24: 2310.06381 — PRD; B — K=, wm BFs and Acp

TABLE II. Summary of the relative systematic uncertainties (%) on the branching fractions.

Source B 5 Ktr~ B > ntn Bt 5 K72° Bt 5772’ BY - Kont B” — K9n°
Tracking 0.5 0.5 0.2 0.2 0.7 0.5
Ngg 1.5 1.5 1.5 1.5 1.5 1.5
/o0 25 2.5 24 24 2.4 2.5
7° efficiency - - 3.8 3.8 - 3.8
K¢ efficiency - - - - 2.0 2.0
CS efficiency 0.2 0.2 0.7 0.7 0.5 1.7
PID correction 0.1 0.1 0.1 0.2 - -
AFE shift and scale 0.1 0.2 1.2 2.0 0.3 1.7
K signal model 0.1 0.2 0.1 <0.1 <0.1 0.1
77 signal model <0.1 0.1 <0.1 <0.1 - -
K feed-across model <0.1 0.1 <0.1 0.1 - -
77 feed-across model 0.1 0.2 <0.1 0.1 - -
KIK™* model - - - - 0.1 -
BB model - - 0.3 0.5 <0.1 0.3
qq flavor model - - - - - 0.9
Multiple candidates <0.1 <0.1 1.0 0.3 0.1 0.3
Total 3.0 3.0 5.1 5.2 3.6 5.8

@ number of BB, and B* B~ vs BYB° fraction, are uncertain
— normalisation uncertainty on all branching fractions

@ this is the dominant uncertainty for Kr; disappears on the Acps
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stat @ syst Inputs

INPUTS: numbers with uncertainties, e.g. Am
Belle pub197: PRL 99, 131802 (2007); EPR-type flavour entanglement in B°B°

g e 8 8 e[
g o g g sh
0 g —m = = == = = — | o 1
3L - 3L
] z ik ] >
aE> 0.75}F e g 0.75 Fige g 0.75F g
05 05F = 0.5
% 0.23 - E % o.zg =} 1 g 0.22 =] I
T T
L osp P < o5 F / L osp E
0.5 0.5 = 0.5
-0.75 F o oM -0.75 'I";iF_!:j sb -0.75 + o Ps
- R -1 , -1 BRE
0 10 20 0 10 20 0 10 20
At[ps] At[ps] At[ps]

o fits to a At distrib” in 11 bins; functional form depends on Am

@ Am is not interesting here, but floating it leads to loss of sensitivity
@ world average* measurement: (Am) = (0.496 + 0.014) ps~*

@ added to the fit by what is now called Gaussian constraint

o large effect on sensitivity: see the yellow boxes
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stat @ syst Inputs

INPUTS: theoretical uncertainties

Belle pub582: PRD 106, 032013 (2022); B(B* — n()¢nu)

a
8 8

+Data

Signal
+

N sno

M, [eéwﬂ
(@) Mpc(n —¥v)

M, [GeVlcz-]m-
(6) Myo(n = m+r~70)

M, [GeV/c?]
(©) Mye(n' — wta=n(yy))

»
R
g

+ +Data

gzno > 160
[} @ 140]
- 150 = 120
e < 100
Z 100 2 80
= c
3 S 60
o 50 @ 40
20
of o
g F g Q2
EEN; B ES
5=0F B 7 B T
ol [=]

A E[GeV]
(d) AE(m = vy)

Bruce Yabsley (Sydney)

AE[GeV]
(e) AE(n — ntr—n0)

s and systematics
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stat @ syst Inputs

INPUTS: theoretical uncertainties
Belle pub582: PRD 106, 032013 (2022); B(B* — n()¢nu)

@ form factor assumptions are embedded
in signal and background shapes

@ uncerts in FF params propagated as systs

@ for some, the underlying model is
changed, and the shift in result used

@ these are small uncerts — see later

The signal decays B™ — n£*v, and BT — y/¢" v, are
reweighted from the ISGW2 model [30] to the model
taken from Ref. [31] with the form factors updated to
Ref. [32], using the BZ parametrization and assuming
uncorrelated parameters. The decay B™ — ¢ v, is mod-
eled according to Ref. [33] in the MC used and reweighted to
Ref. [34] for comparison. The shape of the inclusive
component [35] of the b — uf*v, transitions is also
considered. The form factor uncertainties listed in
Table IIT are based on those reported in the publications
they were obtained from. Despite having a slowly varying
efficiency the 7 — yy mode appears to have the largest such
uncertainty.

TABLE III.  Breakdown of the systematic uncertainty in %.

Source n(ry) n(zta=a®) i
Statistical 22 39 46
Combined Systematic 11 14 11
B(B* = Xg,) 24 1.7 13
B(,,('> - X) 0.51 1.2 1.7
B — DU ¢*y, form factor  0.82 L1 13
B — 5 ¢* v, form factor 3.0 29 0.14
B — ot v, form factor 0.81 2.1 2

b — at*v, shape 0.39 0.15 0.21
Background with K9 35 8.6 3.8
Continuum 02 0.62 0.63
Nip 1.4 1.4 1.4
B(Y(4S) - B*B~) 12 12 12
b — ittv, yield 4.1 52 4.4
Monte Carlo statistics 0.86 13 23
Charged tracks 0.35 1.1 1.1
y detection 4.0 2.5 4.0
Electron PID 1.6 1.6 15
Muon PID 2.1 2.1 2
First z* PID 0 0.97 1.1
Second 7= PID 0 1.3 22
Misidentified Leptons 4.3 55 2.3
Control Mode 5.0 5.0 5.0
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stat @ syst Auxiliaries

(uncertainties on) any AUXILIARY measurements

. of efficiencies
. of rates

. of the resolution function

. of the interaction region
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stat @ syst Auxiliaries

AUXILIARY measurements ... of efficiencies (1)
Belle 1l pub24: 2310.06381 — PRD; B — K, mr BFs and Acp

TABLE II. Summary of the relative systematic uncertainties (%) on the branching fractions.

Source B° 5 K n~ B > ata BT 5 KTn° BT 5 n7a° BT - Kot B 5 Kon°
Tracking 0.5 0.5 0.2 0.2 0.7 0.5
Nps 15 15 15 15 15 15
fro/eo 2.5 2.5 2.4 24 2.4 2.5

7 efficiency - - 3.8 3.8 - 3.8
K9 efficiency - - - - 2.0 2.0

@ we measure the track-finding efficiency in dedicated analyses,
but the value has an uncertainty:
this appears according to the number of tracks in each mode

o 70-, K&-finding efficiencies likewise
@ again these will “cancel in the ratio” for Acp,
up to possible charge-dependent effects that need to be checked

@ in a different sort of analysis, say with a normalisation mode,
they will not necessarily cancel:
o they are in general p, pr, cos6-etc.-dependent, esp. for PID
o signal and normalisation modes will not have the same distribution ...
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stat @ syst Auxiliaries

AUXILIARY measurements ... of efficiencies (2)
Belle 1l pub10: PRL 130, 181803 (2023); LFV 7 — £a search

Knowledge of PID efficiencies can be limited by calibration on data:
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12 14 16 18

ics and systematics

The leading systematic uncertainties originate from the
corrections to the lepton-identification efficiency and
particle misidentification rate, based on comparison of
calibration samples in data and simulated events. These
corrections depend on the momentum and polar angle; their
typical ranges are summarized in Table II. The resulting
uncertainties are asymmetric and strongly depend on x,;
their ranges and averaged values over the standard-model
yields are also reported in the same table. The contribution
from lepton-identification efficiency partially cancels in the
ratio between signal and normalization channels; while the
contribution from particle misidentification rates does not,
as it affects only other background sources.

TABLE II.  Typical ranges for corrections to the lepton-iden-
tification efficiencies and misidentification rates, together with
ranges for their respective uncertainties and their average values.

Correction Uncertainty — Average
range range(%)  uncert.(%)

Electron identification 0.84-1.06 0.9-12.6 +53.-29

Muon identification 0.63-1.02 1.3-32.8 +11.7.-1.6
Electron misidentification ~ 0.6-6.0 ~ 4.3-34.6 +17.6,—-14.7
Muon misidentification 0.3-1.5 1.4-37.0 +18.0.-18.2
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Auilaies
AUXILIARY measurements ... of efficiencies (2)

Belle 1l pub10: PRL 130, 181803 (2023); LFV 7 — £a search

Trigger and other efficiences in this analysis are “hidden” in the L:
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ics and systematics

Uncertainties from the trigger and z° reconstruction
efficiency corrections are also taken into account.
Trigger uncertainties range in 0.1%—4% for the electron
channel and in 0.2%—1.5% for the muon channel, depend-
ing on x,. Neutral pion reconstruction efficiency is
evaluated from studies on independent samples to be
0.914 £ 0.020. Each of these systematic uncertainties is
included in the likelihood as an additional shape-correlated
nuisance parameter that is assumed to follow a Gaussian
distribution. Other sources of uncertainty from track
reconstruction efficiency, beam-energy determination,
relative reconstruction efficiency, and momentum-scale
correction have negligible impact on the results.
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stat @ syst Auxiliaries

AUXILIARY measurements ... of efficiencies (3)
Belle 1l pub13: PRD 107, 112009 (2023); 7°#° BF and Acp

sometimes the reported “uncertainty” of the auxiliary measurement is secondary:

the systematic is dominated by our
lack of understanding or confidence
in what is going on ...

The main sources of systematic uncertainties are listed in
Table I and are evaluated as follows. A 3.4% systematic
uncertainty associated with the 7 reconstruction efficiency
is determined from data using the decays D*~ — D%(—
K*a ")z~ and D'~ — D°(— K*z~)x~, where the z°
selection is identical to that of the signal. The z°
reconstruction efficiency as a function of momentum is
also measured using 7~ — 372 and 7~ — 37zv decays.
A difference of 4.7% in efficiency is observed between the
measurement based on D decays and the measurement
baseld on 7 leptons. This difference increases the systematic
uncertainty for a total of 5.8% per pion. The total
systematic  uncertainty ~ associated ~with the z°
reconstruction efficiency is then 11.6%, as there are two
pions and their errors are fully correlated.

Bruce Yabsley (Sydney) Statistics and systematics

TABLE 1. Summary of systematic uncertainties. The total is
calculated by adding all systematic uncertainties in quadrature.
Source B(%) Acp
7 reconstruction efficiency 11.6
Continuum parametrization 74 0.02
Continuum classifier efficiency 6.5 cee

L f/1% 25
Fixed BB background yield 23 0.01
Fixed signal r bin fractions 22 0.01
Knowledge of the photon-energy scale 2.0
Assumption of independence of AE from r 1.8 <0.01
Number of BB meson pairs 1.5 <0.01
Choice of (M., AE) signal model 1.3 0.02
Fixed continuum r bin fraction 1.1 <0.01
Branching fraction fit bias 1.0 e
Best candidate selection 0.2 <0.01
Mistagging parameters s 0.05
Potential nonzero BB background A¢p . 0.03
Acp fit bias e 0.02
Continuum ¢ - r asymmetry e 0.01
Total 16.2 0.07
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stat @ syst Auxiliaries

AUXILIARY measurements ... of rates
ATLAS-CONF-2013-013; Higgs properties in H — ZZ(*)x — 4¢

@ H — 00+ pp have “reducible” bkgds due to it & Z + jets events
@ normalisations are set using complementary “control regions”
@ removing pu isolation cuts, & requiring > 1 isol” failure (not shown)
@ removing pp isolation cuts, & requiring > 1 IP significance failure:
S S
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[ 4 1 £ 2u
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stat @

yst

Auxiliaries

AUXILIARY measurements ... of the resolution fn

Belle 1l pub16: PRD 107, L091102 (2023); B° lifetime and Am measurement

Leading systematic: function params that can’t all be floated at once ...
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FIG. 3.

Distribution of At, in data (points) and the fit model

(lines) for opposite-flavor candidate pairs (red) and same-flavor

pairs (blue) and their asymmetry (black).
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There are several sources of systematic uncertainty; these
are listed in Table I and described below. The dominant
systematic uncertainty is due to potential discrepancies
between the assumed values (fixed in the fit) of the
response-function parameters and the true values in the
data. For each fixed parameter, we repeat the fit with the
parameter allowed to vary. We add all the resulting changes
in the result in quadrature and include this value as a

systematic uncertainty.

TABLE 1. Systematic uncertainties.

Source T [ps]  Amy [ps']
Fixed response-function parameters 0.0063 0.003
Analysis bias 0.004 0.001
Detector alignment 0.003 0.002
Interaction-region precision 0.002 0.001
C-distribution modeling 0.000 0.001
o,-distribution modeling 0.001 0.001
Correlations of AE or C and At, 0.001 0.000
Total systematic uncertainty 0.008 0.005
Statistical uncertainty 0.013 0.008
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Auxiliaries
AUXILIARY measurements ... of the IR

Belle 1l pub16: PRD 107, L091102 (2023); B° lifetime and Am measurement

Smaller systematic: imprecise knowledge of interaction region
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4.0

Distribution of At, in data (points) and the fit model
(lines) for opposite-flavor candidate pairs (red) and same-flavor

Because we adjust the By, decay vertex position so that
the vector connecting the IR and decay vertex is parallel to
the B, momentum, the precision to which we know the IR
affects our determination of #. We repeat our analysis on
simulated data in which we shift, rotate, and rescale the IR
within its measured uncertainties and assign the changes in
the results as systematic uncertainties. We perform an
analogous check with changes to /s and the magnitude
and direction of the boost vector and find that the results
change negligibly.

0.002 vs 0.008 ps total
0.001 vs 0.005 ps~! total
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Calibration
(uncertainties on) the CALIBRATION of ...

. of the measurement of specific quantities
. of “environmental” quantities
. of the experimental technique as a whole

. of the analyst: your own choices

. by searching for mistakes
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CALIBRATION ... of measurement of specific quantities
Belle Il pub15: PRL 127, 211801 (2021); D lifetime

The momentum scale is important:

104 Belle 11
\ JLa=72m" @ default factor 1.00056
10
102 } Data @ recommended range
= A [1.00014, 1.00107]
2 @ uncertainty is subleading:
Q
j§ N TABLE . Systematic uncertainties.
g 10°
S ) Source 7(DP) [fs] 7(D7) [fs]
10
Resolution model 0.16 0.39
10 Backgrounds 0.24 252
Detector alignment 0.72 1.70
1 1 T Momentum scale 0.19 0.48
h Total 0.80 3.10

-2 0 2 4 6 8 10 12
Decay time [ps]

Imperfectly known vertex resolution
FIG. 2. Decay-time distributions of (top) D" — K~z" and . . .
(bottom) D" — K~ z"z" candidates in their respective signal IS anOther Uncertalnty Of thlS type

regions with fit projections overlaid.

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024-02-09 35/89



G
CALIBRATION ... of “environmental” quantities

Belle 1l pub15: PRL 127, 211801 (2021); D lifetime

Tracking & vertexing assumes the alignment of subdetector elements:

104 Belle 11
, [Ldr=7216"
10°
102 ¢} Data
& —Fit
< 10
S ES ¥, - Background
L
a1
2
]
g .
g 10°
<
© 2
10°
10
| ti

=2 0 2 4 6 8 10 12
Decay time [ps]

FIG. 2. Decay-time distributions of (top) D’ — K~z and
(bottom) D' — K~z z" candidates in their respective signal
regions with fit projections overlaid.

Bruce Yabsley (Sydney) Statistics and systematics

background, and cosmic-ray events [26]. Unaccounted-for
misalignment can bias the measurement of the charmed
decay lengths and hence their decay times. Two sources of
uncertainties associated with the alignment procedure are
considered: the statistical precision and a possible system-
atic bias. Their effects are evaluated using simulated signal-
only decays reconstructed with a misaligned detector.
For the statistical contribution, we consider configurations
derived from comparison of alignment parameters deter-
mined from data acquired on two consecutive days. These
configurations have magnitudes of misalignment compa-
rable to the alignment precision as observed in data
averaged over a typical alignment period. For the system-
atic contribution, we consider configurations derived from
simulation studies in which coherent global deformations
of the vertex detectors (e.g., radial expansion) are intro-
duced [27]. These deformations have magnitudes, deter-
mined by the most misaligned sensors, ranging from about
50 to 700 ym. The alignment procedure determines the
magnitude of these deformations within 4 ym accuracy.
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G
CALIBRATION ... of “environmental” quantities

Belle 1l pub15: PRL 127, 211801 (2021); D lifetime

Tracking & vertexing assumes the alignment of subdetector elements:

104 Belle 11
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FIG. 2. Decay-time distributions of (top) D’ — K~z and
(bottom) D' — K~z z" candidates in their respective signal
regions with fit projections overlaid.

Bruce Yabsley (Sydney) Statistics and systematics

We consider configurations in which the CDC is perfectly
aligned and configurations in which it is misaligned.
Possible effects on the determination of the IR are also
introduced by using parameters measured on misaligned
samples of simulated et e~ — p*u~ events, to fully mimic
the procedure used for real data. For each misalignment
configuration, we fit to the reconstructed signal candidates
and estimate the lifetime bias. We estimate the systematic
uncertainty due to imperfect detector alignment as the sum
in quadrature of the largest biases observed in each of the
statistical and systematic contributions. The resulting
uncertainties are 0.72 and 1.70 fs for D® — K~z and
D' — K~ z'z" decays, respectively. The absolute length
scale of the vertex detector is determined with a precision
significantly better than 0.01% and contributes negligibly
to the systematic uncertainty.

@ Dominant uncertainty for 7(D°)
o B-field anisotropy is another
classic example
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CALIBRATION ... of the experimental technique as a whole

Here we are putting the whole measurement technique inside a virtual box,
as an “instrument” to be calibrated. Typical issues:

@ known limitations and
omissions in the method

@ the equations and
parameterizations

o fits: linearity/bias tests

@ larger analysis chain:
control and validation
region studies
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Calibration of technique: limitations & omissions
Belle Il pub15: PRL 127, 211801 (2021); D lifetime

A small background was left out of the D — K= fit:

The background neglected in the D’ — K~z* fit could
result in a systematic bias on the measured lifetime. To
f Ldt=721fb" estimate the size of the bias, we fit our model that neglects
the background to 500 resampled sets of simulated e e~

¢t Data collisions, each having the same size and signal-to-
— Fit background proportion as the data. The measured lifetimes
are corrected by subtracting the bias due to the neglected ¢
vs o, correlations. The average absolute difference between
the resulting value and the simulated lifetime, 0.24 fs, is
assigned as a systematic uncertainty due to the neglected
background contamination in the D® — K~z* fit.

Belle 11

----- Background

Candidates per 70 fs

TABLE 1. Systematic uncertainties.

Source (D) [fs] (D) [fs]

Resolution model 0.16 0.39
t T Backgrounds 0.24 252
Detector alignment 0.72 1.70

4 6 S 10 12 Momentum scale 0.19 0.48
Decay time [ps] Total 0.80 3.10

T L

-2 0 2

FIG. 2. Decay-time distributions of (top) D’ — K~z and
(bottom) D" — K-zt candidates in their respective signal
regions with fit projections overlaid.
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Calibration of technique: limitations & omissions
Belle Il pub15: PRL 127, 211801 (2021); D lifetime

The sideband method for DT — K~ 7" n+ bkgd may be imperfect:

The background contamination under the D' —

104 Belle 11 K- n'n" peak is already accounted for in the fit of the
J'L dr =72 fb! D™ lifetime using sideband data. In simulation, the side-
10° band (z,0,) distribution describes the background (7, a,)
102 ¢ Data djstrib.ution in t.he signal region vs.le]l. The same might not
- . hold in data given that some disagreement is observed
S 10 — Fit between data and simulation in the ¢ distribution of the
S EH 0 Y, Background candidates populating the sideband. We fit to one thousand
2 1 samples of simulated data obtained by sampling the fit PDF
8 for the signal region and by resampling from the simulated
g et e collisions for the sideband. The resulting samples
] 10° feature sideband data that differ from the background in the
S signal region with the same level of disagreement as
10? observed between data and simulation. The absolute
average difference between the measured and simulated
10 lifetimes, 2.52 fs, is assigned as a systematic uncertainty
t T due to the modeling of the background (z, ;) distribution.
1
5 0 o ‘:‘ (; 3 IIO 1 Source 7(DP) [fs] 7(D") [fs]
Decay time [ps] Resolution model 0.16 0.39
Backgrounds 0.24 252
FIG. 2. Decay-time distributions of (top) D" - K~z and Detector alignment 0.72 1.70
(bottom) D" — K-zt candidates in their respective signal Momentum scale 0.19 048
regions with fit projections overlaid. Total 0.80 3.10
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Calibration of technique: eqns & parameterizations
Belle Il pub15: PRL 127, 211801 (2021); D lifetime

Changing how the background is estimated has a negligible effect:

In the lifetime fit, the fraction of backérouﬁd candidates
10* Belle I in the signal region is constrained from the fit to the
3 Jrar=721m" m(K-z"x") distribution, When we change this back-
10 ground fraction to values obtained from fitting to the
102 t Data m(K~z"7") distribution with alternative signal and back-
& —Fit ground PDFs, the change in the measured lifetime is
% -1 S "SR Background negligible.
L
=T |
8
<
g .
'E 10
O
10
10
! ft
g 1 1

-2 0 2 8 10 12

4 6
Decay time [ps]
FIG. 2. Decay-time distributions of (top) D’ — K~z and

(bottom) D" — K-zt candidates in their respective signal
regions with fit projections overlaid.
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Calibration of technique: eqns & parameterizations
Belle Il pub15: PRL 127, 211801 (2021); D lifetime

Neglect of correlations in fitting has a (small) noticeable effect:

The decay time and decay-time uncertainty are observed

104 Belle 11 to be correlated in data and simulation reproduces these
5 det =72 16" effects well. The dominant effect is that small o, values
10° correspond to larger true decay times (and vice versa).
102 ¢t Data These correlations, when neglected in the fits, result in an
— Fit imperfect description of the ¢ distribution as a function of

O A Y Backeround o;. To quantify the impact on the results, our model that

neglects the correlations is fit to 1000 samples of signal-
only simulated decays, each the same size as the data. The
samples are obtained by resampling, with repetition, a set
of simulated e " e~ collisions corresponding to an integrated
luminosity of 500 fb~'. Upper bounds of 0.16 and 0.39 fs
on the average absolute deviations of the measured life-
times from their true values are derived and assigned as the
systematic uncertainty due to the imperfect resolution
t T model for the D° - K~z and D™ — K- z*z" cases,

Candidates per 70 fs

T L

2 0 2 4 6 3 10 12 Source 7(D°) [fs] o(D*) [fs]
Decay time [ps] Resolution model 0.16 0.39
. . . 0 Backgrounds 0.24 2.52
FIG. 2. Decay-time distributions of (top) D" — K~z and  puracior alignment 072 170
(bottom) D* — K~z*z" candidates in their respective signal — ppoooone S0 0.19 048

regions with fit projections overlaid. Total 0.80 3.10
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Calibration of technique: eqns & parameterizations
Belle 1l pub13: PRD 107, 112009 (2023); 7°#° BF and Acp

% ig Belle Il < Data . gg Belle Il Data 30 Betlet +Data
E gg Ldt=189.91" :;‘;‘i'}"r‘rn”n 8 oF Jrat=1809m :;‘;‘:":ﬂﬂﬂ o 25f JLat=1ee0n’ :;‘g'i""!nﬂn
8 3 ~Continuum | & 25 ~Continuum | 50 «Continuum
g o > o o
g s 88 $ 20 B8 . 88
g 20 5 15 g
2 15 2 1 & 10F
g 10 } 2 - 13
G 5 . 5 T T .
. sy . 28 S, - g
g.ZB 5265 527 5275 528 5285 5.29 9{].3 -0.2 -0.1 0 0.1 0.2 073 -2 -1 0 1 2 3
M,, [GeV/c?] AE [GeV] Te
4 be 4 4
=3 S I R — o PPN B R - |
,4F . ] 4t- N g | 4F |

@ some BB, a lot of continuum background under the 3D peak

@ continuum shapes taken from the data sideband
Mpe € (5.22,5.27) GeV/c?, AE € (0.1,0.5) GeV

@ uncertainty estimated by shifting shape params by +10 one-by-one
(with others shifting per fitted correl”) and checking yield changes

e after ¢(7°), this is the dominant uncertainty on B(B° — 797°)

@ parameterization will come up again, under another heading
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Calbration
Calibration of technique: ML fits (1)

Belle Il pub24: 2310.06381 — PRD; B — K, wm BFs and Acp

1750 F 700 F N
Belle Il (Preliminary) B>K*m +c.c. Belle Il (Preliminary)
> 1500 | [} dt =362 fb? Bt +c.c > 600 | [1 dt =362 fb="
[} Background [} F
21250} S 500
S 1000 S 400 f
- -
5 70 5
c
500 ]
8 S
250
[
= 25 = 25
>
g =25 . . . . a =25 i L
-0.10 —0.05 0.00 0.05 0.10 0.15 0.20 -0.3 -0.2 -0.1
AE [GeV]
800 [gajie 11 (Preliminary) e BOomtm 4 c.c. 200 | Belle It (Preliminary)
> [Ldt=362fb2 . 80Kt +c.c JLdt=362 b~
9 600 Background 3 10l
= s
o
s 2
- 400 ~ 100
° °
5 g
& 200 O s
0 = .
= 25 =
S —_—— o 5
a =25 . . i X o
-010 -0.05 000 005 010 015 020 03 02 o1
AE [GeV]
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- B*oKIT* +c.C.
. B KK +c.c.
8B background

Continuum
background

00 0.1 0.2 0.3
AE [GeV]

--—- B°>Kn+c.c.
= 85 background
Continuum background

0
25
-25 L L L L

0. 0.1 0.2 0.3
AE [GeV]
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Calbration
Calibration of technique: ML fits (1)

Belle Il pub24: 2310.06381 — PRD; B — K, wm BFs and Acp

Fits may not behave asymptotically/ideally,
even if nothing is “omitted” or wrong: hence "linearity and bias tests”, etc.

for 7770 and K2r0:

@ this is the dominant
systematic on Acp

@ these modes are
statistically limited

@ negligible for the
branching fraction
fits . ..

Bruce Yabsley (Sydney) Statistics and systematics

ACPy=a

0.20

0.15
0.10
0.05
0.00 |
—0.05
-0.10
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-0.20

Linearity Test m* n® ACP

slope: 1.014 + 0.010
intercept: -0.007 * 0.001 »

ACP+o

-0.20 -0.15 -0.10 -0.05 0.00
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Calbration
Calibration of technique: ML fits (2)

Belle 11 pub642: PRD 107, 112011 (2023) X(3872) lineshape in B — D'D*'K

£ signal 2~ Broken signal - ==+ Generic background — Total
30F ~

— — 20 |
kS L o5f
> > 10
jol jo)
o O 20F l {
o (8] 0
S 8
= s 15F
P 5 10F i | i
5 5 ||
2 g st AL S

3.87 3875 3.88 3.885 3.89 3.895 3.9 3.87 3875 3.88 3 885 3 89 3 895 3.9

—*0,
M(D°D ") (GeV/c?) M(D°D ) (GeV/c?)

Extremely complex analysis, fitting a signal lineshape at threshold, over
background, with substantial broken signal, and unstable decay daughters.
One of the lineshapes exhibits scaling behaviour in some parameters . ..
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Calbration
Calibration of technique: ML fits (2)

Belle 11 pub642: PRD 107, 112011 (2023) X(3872) lineshape in B — D'D*'K

o BW & Flatté fits ok

o Flatté fit is very nonlinear: o o12f
3

@ significantly changes the £ o

o E

reported results: can't deal 5 0%

. . . " . < 0.06 |-

with this by just “adding a 2 ook

systematic term” . .. s

0.02:—

O 1 1 1 1 1

1
0 005 01 015 02 025 03
Input g

FIG.5. The median of output values of the coupling constant g,
as a function of the input g, evaluated using pseudo-
experiments. The dotted black line represents perfect linearity
Gout = Yin- The solid blue curve represents the threshold function

Gour = 0.14(1 — exp(=9gin))-
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Calibration of technique: analysis chain
Belle 1l pub20: PRD 108, 072012 (2023); CP asymmetries in B® — ¢K?

80 T T 250 T T T T
° Belle Il ¢ Btoag (= +1) - Belle Il ¢ Bé'g (q=+1)
— —1 — -1 _ ]
a 60_f£dt—362fb 5 B, (= —1) g 200 | [rdt=36210 4 Ba,(@=-1)
g g 150
8 40 8
g g 100
8 S 50
0 0
2 05 2 05F E
£ £ 1 L Iy
g 00 g 00 ¥ ¥ b
2 @ f
< _0 5 3 L L ] < _0 5 E L 1 1 L 1 E
-5 0 5 -6 -4 =2 0 2 4 6
At [ps] At [ps]

FIG. 3. Distributions, and fit projections, of At for flavor-tagged (left) B® — K% and (right) B* — ¢K* candidates subtracted of
the continuum background. The fit PDFs corresponding to ¢ = —1 and g = +1 tagged distributions are shown as dashed and solid
curves, respectively. The yield asymmetries, defined as (N(¢ = +1) — N(¢ = —1))/(N(q = +1) + N(¢q = —1)), are displayed in the
bottom subpanels.
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stat @ syst Calibration

Calibration of technique: analysis chain
Belle 1l pub20: PRD 108, 072012 (2023); CP asymmetries in B® — ¢K?

tagging algorithm and At resolution
calibrated with B® — D*~7T decays

@ this has its own uncertainties

We assess the uncertainty associated with the resolution
function and flavor tagging parameters using simplified
simulated samples. We generate ensembles assuming for
each an alternative value for the above parameters sampled

from the statistical covariance matrix determined in the
B® — D¥)=z" control sample. Each ensemble is fitted
using the nominal values of the calibration parameters and
the standard deviation of the observed biases is used as a
systematic uncertainty.

A similar procedure is used to assess a systematic
uncertainty due to the systematic uncertainties on the
calibration parameters, in which the ensembles are gen-
erated by varying each parameter independently within
their systematic uncertainty.

TABLE II.  Summary of systematic uncertainties.
Source (C) a(S)
Calibration with B® — D)~z +
decays
Calibration sample size 40.010 40.009
Calibration sample systematic +0.010 +0.012
Sample dependence +0.005 +0.021
Fit model
Fit bias o0 o062
BY — K*K~K$ backgrounds +0.020 —0.011
Fixed fit shapes +0.009 +0.022
7po and Amy, +0.006 +0.022
Cirg-ko and Sgig-go +0.014 +0.013
BB badiground asymmetry oo oo
Tag-side interference <0.001 +0.012
Candidate selection —-0.032 —-0.002
At measurement
Tracker misalignment —-0.002 —0.002
Momentum scale 40.001 40.001
Beam spot +0.002 +0.002
At approximation <0.001 —-0.018
i 0.046 X
Total systematic e 1008
Statistical +0.201 +0.256
CPPC 2024-02-09 48 /89
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stat @ syst

Calibration

Calibration of technique: analysis chain
Belle 1l pub20: PRD 108, 072012 (2023); CP asymmetries in B® — ¢K?

tagging algorithm and At resolution
calibrated with B® — D*~7T decays

@ this has its own uncertainties
@ it has to be ported to gng

We estimate the impact of differences in the resolu-
tion function and tagging performance between the signal
and calibration samples. We apply the resolution function
and flavor-tagging calibration obtained from a simulated
B — D®)=z* sample and repeat the measurement of C
and S over an ensemble of simulated B’ — K events.
The average deviation of the CP asymmetries from their
generated values is assigned as a systematic uncertainty.

TABLE II.  Summary of systematic uncertainties.
Source o(C) a(S)
Calibration with B® — D)~z +
decays
Calibration sample size 40.010 40.009
Calibration sample systematic +0.010 +0.012
Sample dependence +0.005 +0.021
Fit model
Fi ias g A
BY — K*K~KY backgrounds +0.020 —0.011
Fixed fit shapes +0.009 +0.022
7po and Amy, +0.006 +0.022
Cirgko and Sgiggo +0.014 +0.013
BB badiground asymmetry oo oo
Tag-side interference <0.001 +0.012
Candidate selection —-0.032 —-0.002
At measurement
Tracker misalignment —-0.002 —0.002
Momentum scale 40.001 40.001
Beam spot +0.002 +0.002
At approximation <0.001 —-0.018
i 0.046 X
Total systematic e 1008
Statistical +0.201 +0.256
CPPC 2024-02-09 48 /89
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Calibration of technique: analysis chain
Belle 1l pub20: PRD 108, 072012 (2023); CP asymmetries in B® — ¢K?

tagging algorithm and At resolution
calibrated with B® — D*~7T decays

@ this has its own uncertainties
@ it has to be ported to gng

We estimate the impact of differences in the resolu-
tion function and tagging performance between the signal
and calibration samples. We apply the resolution function
and flavor-tagging calibration obtained from a simulated
B — D®)=z* sample and repeat the measurement of C
and S over an ensemble of simulated B’ — K events.
The average deviation of the CP asymmetries from their
generated values is assigned as a systematic uncertainty.

@ procedure is a variant of the
control and validation region
studies beloved of the LHC

TABLE II.  Summary of systematic uncertainties.
Source o(C) a(S)
Calibration with B® — D)~z +
decays
Calibration sample size 40.010 40.009
Calibration sample systematic +0.010 +0.012
Sample dependence +0.005 +0.021
Fit model
Fi ias g A
BY — K*K~KY backgrounds +0.020 —0.011
Fixed fit shapes +0.009 +0.022
7po and Amy, +0.006 +0.022
Cirgko and Sgiggo +0.014 +0.013
BB bacliground asymmetry oo oo
Tag-side interference <0.001 +0.012
Candidate selection -0.032 —0.002
At measurement
Tracker misalignment —-0.002 —0.002
Momentum scale 40.001 40.001
Beam spot +0.002 +0.002
At approximation <0.001 —-0.018
Total systematic 10040 10058
Statistical +0.201 +0.256
CPPC 2024-02-09 48 /89
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Gz
CALIBRATION ... of the analyst: your own choices

| went forward in time, to view all possible ways we might conduct the analysis.
How many did you see? 14,000,605.
How many gave us the right answer? 1.
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Calibration of choices: fitting region & other choices
Belle pub632: PRD 107, 072008 (2023); e*e~ — XX via ISR

The (low) background is estimated using sidebands. But, chosen how?

1.25 TABLE IV. Summary of systematic uncertainties for the
etem — ;/ISRZDEO cross section measurement.
Source Systematic uncertainty (%)
& Tracking 1.4
2 PID 2.7
% 120 A reconstruction 54
O, %0/50 mass resolution 0.6
= Sideband method 6
= ete™ — ysrEE 7" background 39
= Other two £/ background 2-6
Integrated luminosity 14
1.15F ISR emission probability 1
PHOKHARA simulation 1
1 1 A — pr~ branching fraction 0.8
1.15 1.20 1.25 Modeling of angular dependence 3-5
M(yR) [GeV/c?] Mf)de]mg of energy dependence 1-5
Trigger 3
@ try larger, smaller, shifted The fit to efficiency !
Sum in quadrature 11-16

choices of sidebands
@ leads to noticeable yield changes: the co-leading systematic at 6%
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Calibration of choices: parameterizations
Belle 1l pub13: PRD 107, 112009 (2023); =« BF and Acp

50 40

N§ 8 e - :1D'§:;ﬁl %) 35 et -1 :'?:::Im 3U_Be"e ' ol :1?:::Iﬁl

] gg Ldt=189.9 b T o | 8 aof JLdt=1ee0m T o | o osf JLdt=te00m B0 w0

N 30 wContinuum | & 25 ~Continuum | 50 «Continuum

S BB S BB -3 BB

S 25 S 20

8 20 * 13 £ 15

3 S5 5

2 15 £ @ 10

§ 10 { g 10 3

& 5 wes .
g R . . 0 s 0 b e e
.26 5265 527 5275 528 5285 529 03 02 0.1 0 0.1 0.2 -3 3
. M, [GeV/c?] . AE [GeV] . T,

5 ] 5 ofF | 5 o |

& LE ] & LF | & LE |
o

reminder: 3D signal peak over 55 and continuum background
@ previously: how well do we know the params of the continuum shape?
@ now consider: choices were also made in modelling the signal:
MC-based KDE in (Mpc, AE); what if another shape had been used?
@ uncorrelated product of CB functions tried as alternative: 1.3% effect,
minor cf. 16.2% total systs, but in other cases the effect can be larger
@ esp. w limited samples, & limited or absent controls, no assumption-
free way to make such choices — so an uncertainty is appropriate
CPPC 2024-02-09  51/89



Calibration of choices

o fitting region choices
@ parameterizations

In both these cases it is very hard to claim that the default choices
are “inevitable” or obviously correct.

Older analyses sometimes include such uncertainties due to
object selection (how many SVD or CDC hits)

@ event selection cuts
@ other exact cut values
@ dependence on any other choice that has an arbitrary element

This has gone a bit out of style — because where do you stop? —
and also for a technical reason (see later). But the basic idea is sound.
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ELED
CALIBRATION ... by searching for mistakes

@ biases: signal of x — mean measurement of x + ¢
@ instabilities: [butterfly-wingbeat] — measured yield changes

@ mis-classifications and omitted categories:
let’s say, the tt bkgd has two components with different behaviour
under cuts & differing myy distribut™, unresolved by control samples
o with 2x the sample, if careful, we'll notice problems in fitting
o with 4x the sample, there will be clear and nasty discrepancies
That was a made-up example, but the phenomenon is very real:
Belle D — D° mixing (D — Kn) took one year per doubling in
sample, to refine method enough to keep systematics under control

@ misunderstanding the rel”ship between auxiliary & principal meas®

@ unknown unknowns

All are problems that should be fixed: the corresponding systematics are
@ estimates (guesses?) of possible residual problems

@ the tolerances of the tests and cross-checks used ...
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Mistakes? (1) e.g. Relationship with the auxiliaries
ATLAS-CONF-2013-013; Higgs properties in H — ZZ(*)x — 4¢

control region 2 results for H — ¢ + pyu are extrapolated to the signal
region using IP signif. & isol” requirement efficiencies from Zbb MC:

@ what if this is wrong? ,ATLAs Preliminary pons 3
e |
- 5=8TeV: fLt=20710" ' 4

350

o
o

o efficiency validated with another
control region, requiring Z + u

Events/4 GeV
N
O

* Data

. 30F — Z+jets and tt fit 9
@ test fails? : stop and try to 250 Bt E
e gain understanding, then zoi— =‘Zi*'lets 3

o fix problem if possible, else wz

e back up and change method

@ many analyses have dead-ends &

. 0
side-branches, documented or not 50 60 70 80 90 100

m,, [GeV]
@ test succeeded! : a 10% uncert” on the extrapol” factors is ‘assighed

@ note this “data driven” bkgd estimate has embedded dependence
on {MC, physical insight, expert judgement on validation, rules of art}
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Calbration
Mistakes? (2) coding and other bugs

int getRandomNumber ()

return Y. // chosen by fair dice roll.
/ quaranteed to be random.

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024-02-09 55 /89



Mistakes? (3) unknown unknowns

Reports that say that something hasn’'t happened are always interesting to
me, because as we know, there are known knowns; there are things we know
that we know. There are known unknowns; that is to say, there are things
that we now know we don’'t know. But there are also unknown unknowns
— there are things we do not know we don't know.

@ Donald Rumsfeld got mocked in the media for this, but he had a point
@ e.g. “analysis-level” information is vulnerable to subtle problems:

o what if there is a distinction in response in a drift chamber with
stereo layers, never spotted because one must compare the response of
{U, V'} wires to +ve and —ve tracks going forward and backward?

o what if out-of-spill calorimeter clusters give a decayed but measurable
response, not tagged in analysis-level data (& some are back-to-back)?

@ one builds confidence with a new {detector, code, technique} by doing
basic & known things first (e.g. so-called “rediscovery” analyses)

@ and one relies on ...
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Mistakes? (4) cross-checks
ATLAS-CONF-2013-013; Higgs properties in H — ZZ*) — 4¢

additional studies that do not contribute directly to any of the bkgd
measurements or systematics directly, but are there to spot problems:

o the 7 bkgd measurement for H — ¢/ + pu is cross-checked
using a e“uT + ptp~ sample, with M(e* ,u:F) € (50 106) GeV

. > n T T T
o the ZZ*) signal and & soF ATLAS Prellmlnary
. - o] E o Dat B
the Z + jets and tt bkgds are 2 [ H-zZ"-a o
. . ® 251 Lt = 2071 W2z 3
. > _
checked in another control region: & =°F /g g1oy Wzsets, template 1
@ agreement is not bad, 20F E

but is imperfect —
how much does this matter?

300
m, [GeV]
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Mistakes? (4) cross-checks

ATLAS-CONF-2013-013; Higgs properties in H — ZZ*) — 4¢

o the final analysis uses a look-back plot to check the (mja,

distribution in the absence of the Z-mass constraint:

my, [GeV]

R T SRR AT R T
m,=125 GeV ATLAS Preliminary

—
[ Bk (120<m, <130 GeV) .
v Data (120<m, <130 GeV) H-2zZ"— a1
Vs =7TeV:[Ldt= 4.6 fb"
s Vs =8TeV:[Ldt = 20.7 fb”"

SIS T NI AT SAEA M W IR

70 80 90

1 [m,=125 GeV
- ::: [l Bkg
v v Data
Y ATLAS Preliminary
H-2Z" a1
Vs=7TeV:fLdt=4.6fo"
¥ Vs=8TeV:[Ldt=20.71b"

70 80 El]

60 100
m;; [GeV]

@ your {advisor, RC, journal referee} may ask you for such plots

@ “But what are you looking for?”

@ “l don't know, but | may know it when | see it ..."
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Methods
Roundup of methods: (1) profile likelihood

consider
@ a quantity of interest p (signal strength, mass, ...)

@ quantities 0, say 8 = (05, 6, np) governing shape & bkgd norm”
20 :

. . <
e form the profile £ ratio e ATLAS Preliminary Hﬁzzuﬂu
e 0 Q [s=7TeV: [Ldt=461"
/\(M) _ L(,:LL)) 16- {s=8TeV: [Ldt=20.7 fb"
E(:“’ 0) 14; —all systematics
n ~ . 12F; - without MSS(e) and MSS(w) =
@ (i and O are ML estimators 1o '

2 o Ry= 1248000t Poeys) Gev [

@ O(u) is the best estimate of
0 for the given  value

@ letting “nuisance parameters”

0 float at each p will R T
e improve the L there, and 123 124 125 126 127

e broaden the distribution m,, [GeV]

@ a.k.a. “the MINUIT method”, long used intuitively in HEP
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Roundup of methods: (2) Gaussian constraint

ATLAS ATL-COM-PHYS-2012-089; tt, WW, Z/v* — 771

ﬁi(Nsig, Oéj) = Pi (NObS | NeXP(N5ig7 aj)) HjEsyst g(aj ‘ 07 1)

heavily used at ATLAS:

o trigger efficiency officially

measured, say € = 0-25J_r8j8§

at y =0 & p1t = 20GeV,
and rising with energy

@ ideally, scale for the dist”
represented by some " f(x)

@ approximate as G(x | i, o)
@ transform to a = (x — p)/o

@ now expressed as G(a |0, 1)

Bruce Yabsley (Sydney) Statistics and systematics

Fit Parameter Parameter | Symmetric | Asymmetric

Value Uncertainty | Uncertainty
Electron trigger 0.00 1.00 -1.00 | 1.00
Electron reconstruction, ID, isolation -0.10 1.00 -1.00 | 1.00
Electron momentum scale 0.00 1.00 -1.00 | 1.00
Electron momentum resolution 0.00 1.00 1.00 | 1.00
Muon reconstruction, ID, isolation -0.03 1.00 1.00 | 1.00
Muon trigger 0.00 1.00 -1.00 | 1.00
Muon momentum scale 0.00 1.00 1.00 | 1.00
Muon momentum resolution 0.00 1.00 1.00 | 1.00
Jet vertex fraction -0.02 1.00 -1.00 | 1.00
ER™ Cell-out 0.00 1.00 1.00 | 1.00
Pileup 0.00 1.00 1.00 | 1.00
WZ/ZZ cross sections -0.03 1.00 -1.00 | 1.00
W1 cross section -0.21 0.99 1.00 | 1.00
Luminosity -0.06 1.00 1.00 | 1.00
LHC beam energy 0.00 1.00 1.00 | 1.00
ISR/FSR 0.00 1.00 1.00 | 1.00
1f Parton Shower 0.00 1.00 -1.00 | 1.00
WW Parton Shower 0.00 1.00 1.00 | 1.00
Z — 7t Parton Shower 0.00 1.00 1.00 | 1.00
1 Generator 0.00 1.00 -1.00 | 1.00
WW Generator 0.00 1.00 1.00 | 1.00
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stat @ syst

Roundup of methods: (2) Gaussian constraint
ATLAS ATL-COM-PHYS-2012-089; tt, WW, Z/v* — 771
@ provides a standard system to check for strain in the fit
@ if an analysis had JES 2.50 below standard, that would be suspicious

o if there was a high correlation between WZ/ZZ x-section and
ISR/FSR systematics, that would be suspicious

Nuisance Parameters Correlation of Coefficients

osf

|
1

@ note that profile £ and G constraint differ only the packaging;
the essence of both techniques is simultaneous fitting

o & = = == QR

R N
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=1
Issues, questions, and tricks of the trade

@ note that biases must first be corrected!

@ do we know what the probability distribution is?
@ cancellation versus partial cancellation
°

rough but conservative estimates (easier/quicker than exact ones, and if the
effect still turns out to be small, the exact estimate can be safely skipped)

possible effects versus proven effects, or, against the 30 standard

@ double-counting of statistical effects;
pitfalls in calculation of differences between overlapping selections

@ separating out a large / distinctive systematic term: e.g. f° in B — K, n7
@ every conceivable effect? every likely/possible effect?

@ “two point uncertainties” on complex models are a matter of expert
judgement, esp. if large (cf. the small FF uncertainties mentioned above)

@ combination of symmetric and asymmetric uncertainties produces a bias
(shifts the central value) and has a nontrivial residual uncertainty, in general
(example: Belle Il pub31, PRL 131, 171803 (2023); D/ lifetime)
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coin-tossing

Frequentist & Bayesian Probability, and coin-tossing

Frequentist: | gotta tell you, he's not really my friend.
Saving his life is more a professional courtesy.

Frequentist: What is your job ... ?
Bayesian: Protecting your reality ... !
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coin-tossing intro

Frequentist and Bayesian Probability

What is the definition of the conditional probability P(A|B)?

Frequentist (classical) Probability:

P(A|B) = long-run relative frequency

of A occuring in identical repetitions
of an observation,
under some conditions B;

A is restricted to propositions
about random variables
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5D
Frequentist and Bayesian Probability

What is the definition of the conditional probability P(A|B)?

Bayesian Probability: VW
P(A|B) is a real-number measure of 7
the plausibility of proposition A, i
given (conditional upon)

the truth of proposition B;

P measures degree of belief;

A can be any logical proposition
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do | trust the coin?

to get some information, | toss the coin five times:
o get 4 heads, 1 tail (4H,1T)
o do | trust the coin now? what have | learned?

o is my answer any different if | toss the coin ten times,
and get 8 heads, 2 tails (8H,2T)?

e simple (fair coin) versus compound ({unfair coin; py})
cf. simple (bkgd only) versus compound ({H; my})
o data has limited statistical power
o neatly illustrates how the method and interpretation
depend on the statistical framework used
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BTSN  frequentist

Tossing a coin: frequentist treatment

What is the definition of the conditional probability P(A|B)?

Frequentist (classical) Probability:

P(A|B) = long-run relative frequency

of A occuring in identical repetitions
of an observation,
under some conditions B;

A is restricted to propositions
about random variables
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Tossing a coin: frequentist treatment

PH

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00
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OH
5T

.00000
.00001
.00032
.00243
.01024
.03125
07776
.16807
.32768
.59049

1.0

1H
4T
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.00045
.00640
.02835
.00768
.15625
.2592

.36015
4096

.32805
.00000

2H
3T
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.0512
1323
.2304
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5H
0T

1.0

.59049
.32768
.16807
07776
.03125
.01024
.00243
.00032
.00001
.00000
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treatment: 90% conf. interval: {py|(4H,1T) € Ag(pn)}
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Tossing a coin: frequentist treatment — commentary

@ we asked ourselves whether the coin was fair,

but we answered “like scientists”, with technical stuff:
can’t interpret this easily in street terms
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Tossing a coin: frequentist treatment — commentary

@ we asked ourselves whether the coin was fair,
but we answered “like scientists”, with technical stuff:
can’t interpret this easily in street terms

o this is a feature, not a bug, of frequentist statistics:
the frequentist concept of probability is limiting frequency;

o the coin has some probability py to turn up heads,
which we can estimate with increasing precision as N — oo
o the py = 0.5 hypothesis itself has no probability . ..

o the benefit:
this has been a straightforward (if tedious) calculation,
and our opinions / beliefs / prejudices have not been involved

@ the costs:

@ we have not directly addressed the q", “is this a fair coin?”,
that we were originally interested in
@ not clear how to incorporate, say, suspicion about the coin
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Tossing a coin: Bayesian treatment

What is the definition of the conditional probability P(A|B)?

Bayesian Probability: VW
P(A|B) is a real-number measure of 7
the plausibility of proposition A, i
given (conditional upon)

the truth of proposition B;

P measures degree of belief;

A can be any logical proposition
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Tossing a coin: Bayesian treatment ...

provides a natural way to incorporate relevant background information,
such as the fact that you are playing coin-toss with
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Tossing a coin: Bayesian treatment

Likelihoods:

P((4H,1T)) | fair) = 0.1563
P((4H,1T))|bad) = 0.3955

Priors:

P(fair | Cap) = 0.95
P(bad| Cap) = 0.05
Posterior:
_ P((4H,1T)) | fair) - P(fair|Cap)
P(fair| (4H,1T), Cap) = - -
(Rirl (B AT), o) = 5 p(@h, 1T)) 1) P(i  Cap)
- 0.1563 - 0.95
~0.1563 - 0.95 + 0.3955 - 0.05

=0.882
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Tossing a coin: Bayesian treatment

Likelihoods:

P((8H,2T)) | fair) = 0.04395
P((8H,2T)) | bad) = 0.28157

Priors:

P(fair | Cap) = 0.95
P(bad| Cap) = 0.05
Posterior:
_ P((8H,2T)) | fair) - P(fair | Cap)
P(fair| (8H,2T), Cap) = - -
(fair | (8H,2T). Cop) = "~ b((8H,27)) 1) - P(7 ] Cap)
- 0.04395 - 0.95
~0.04395 - 0.95 + 0.28157 - 0.05

=0.748
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coin-tossing Bayesian

Tossing a coin: Bayesian treatment ...

. provides a natural way to incorporate relevant background information,
such as the fact that you are playing coin-toss with
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Tossing a coin: Bayesian treatment

Likelihoods:

P((4H,1T)) | fair) = 0.1563
P((4H,1T))|bad) = 0.3955

Priors:

P(fair | Loki) = 0.50
P(bad | Loki) = 0.50
Posterior:
) . P((4H,1T)) |fair) - P(fair| Loki)
P(fair| (4H,1T), Loki) = S~ P((@H.1T)) | 1) - P(7| Loki)
- 0.1563 - 0.50
~0.1563 - 0.50 + 0.3955 - 0.50

=0.283
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Tossing a coin: Bayesian treatment

Likelihoods:

P((8H,2T)) | fair) = 0.04395
P((8H,2T)) | bad) = 0.28157

Priors:

P(fair | Loki) = 0.50
P(bad | Loki) = 0.50
Posterior:
) . P((8H,2T)) |fair) - P(fair| Loki)
P(fair | (8H,2T), Loki) = S~ P((8H,2T))|7) - P(7] Lok])
- 0.04395 - 0.50
- 0.04395 - 0.50 4 0.28157 - 0.50

=0.135
Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024-02-09

75/89



coin-tossing

Tossing a coin: Bayesian treatment — commentary

@ N.B. biased coin should have py free (not fixed py = 0.75)
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Tossing a coin: Bayesian treatment — commentary

@ N.B. biased coin should have py free (not fixed py = 0.75)
o Bayesian model comparison with (simple) fair-coin model:
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implements Occam’s razor; integr” over py, with prior w(py)
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@ we need to be explicit about our prior beliefs in this problem;
change in the prior — change in the result
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implements Occam's razor; integr” over py, with prior w(py)

o application to the Higgs case is left for discussion ...

@ we need to be explicit about our prior beliefs in this problem;

change in the prior — change in the result

o this is a feature, not a bug, of Bayesian statistics:

e Bayesian probability includes beliefs: no fundamental objection
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Tossing a coin: Bayesian treatment — commentary
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Tossing a coin: Bayesian treatment — commentary

@ N.B. biased coin should have py free (not fixed py = 0.75)

o Bayesian model comparison with (simple) fair-coin model:
implements Occam's razor; integr” over py, with prior w(py)
o application to the Higgs case is left for discussion ...

@ we need to be explicit about our prior beliefs in this problem;
change in the prior — change in the result
o this is a feature, not a bug, of Bayesian statistics:

o Bayesian probability includes beliefs: no fundamental objection
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o the benefits:
@ we are directly addressing the question, “is this a fair coin?”
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Tossing a coin: Bayesian treatment — commentary

@ N.B. biased coin should have py free (not fixed py = 0.75)

o Bayesian model comparison with (simple) fair-coin model:
implements Occam's razor; integr” over py, with prior w(py)
o application to the Higgs case is left for discussion ...

@ we need to be explicit about our prior beliefs in this problem;
change in the prior — change in the result

o this is a feature, not a bug, of Bayesian statistics:
o Bayesian probability includes beliefs: no fundamental objection
o different prior, different problem: no absurdity in the conclusion

@ the benefits:
@ we are directly addressing the question, “is this a fair coin?”
@ we can straightforwardly incorporate external/prior information

o the cost:
we cannot avoid committing ourselves (perhaps provisionally)

in the course of the method
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BH merger parameters: mass, spin, distance
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FIG. 4. Posterior probability densities of the masses, spins, and distance to the three events GW 150914, LVT151012, and GW151226.
For the two-dimensional distributions, the contours show 50% and 90% credible regions. Top left panel: Component masses m}{*""* and
my*¢ for the three events. We use the convention that m{*"*® > m5"™*, which produces the sharp cut in the two-dimensional
distribution. For GW151226 and LVTI51012, the contours follow lines of constant chirp mass (M*"* =8.9703M, and
Mo — 15,144 M,, respectively). In all three cases, both masses are consistent with being black holes. Top right panel: The
mass and dimensionless spin magnitude of the final black holes. Bottom left panel: The effective spin and mass ratios of the binary
components. Bottom right panel: The luminosity distance to the three events.
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BH merger parameters: dim”less component spins
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FIG. 5.

Posterior probability distributions for the dimensionless component spins ¢S, /(Gm?) and ¢S,/(Gm3) relative to the normal to
the orbital plane L, marginalized over the azimuthal angles. The bins are constructed linearly in spin magnitude and the cosine of the tilt

angles, and therefore have equal prior probability. The left plot shows the distribution for GW 150914, the middle plot is for LVT151012,
and the right plot is for GW151226.
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BH merger parameters: sky locations
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FIG. 6. Posterior probability distributions for the sky locations of GW150914, LVT151012, and GW 151226 shown in a Mollweide
projection. The left plot shows the probable position of the source in equatorial coordinates (right ascension is measured in hours and
declination is measured in degrees). The right plot shows the localization with respect to the Earth at the time of detection. H4+ and L+
mark the Hanford and Livingston sites, and H— and L— indicate antipodal points; H-L and L-H mark the poles of the line connecting the

two detectors (the points of maximal time delay). The sky localization forms part of an annulus, set by the difference in arrival times
between the detectors.

Bruce Yabsley (Sydney)

ics and systematics CPPC 2024-02-09 79/89



coin-tossing

BH mergers:
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post-Newtonian parameters
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FIG.8. The 90% credible upper bounds on deviations in the PN
coefficients, from GW150914 and GW151226. Also shown are
joint upper bounds from the two detections; the main contributor
is GW 151226, which had many more inspiral cycles in band than
GW150914. At 1PN order and higher, the joint bounds are
slightly looser than the ones from GW 151226 alone; this is due to
the large offsets in the posteriors for GW150914.
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BH mergers: dependence on priors
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FIG. 11.

curves represent the posterior assuming that BBH masses are
distributed flat in log(m;) — log(m,) (Flat), match the properties
of the observed events (Event based), or are distributed as a power
law in m,; (Power law). The posterior median rates and symmetric
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The posterior density on the rate of BBH mergers. The

90% symmetric credible intervals are given in Table II.
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Analysis relies on priors on

detector properties

distributions of sources in space

°
@ BH masses in coalescing binaries
@ BH spins ...

°

and all sorts of things
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APPENDIX

© Probability

@ What are systematics?
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probability intro

Probability: introduction

Intuitively:
chance that something is true (“it will rain tomorrow”),
or that a parameter has some value (“the coin shows heads")

Mathematical foundation dates only from last century:

o consider Q = {X;}, all possible exclusive elementary events Xi;
e.g. die showing 1, 2, 3, 4, 5, or 6
@ a “probability” function P must satisfy:
o P or X)) = P(X;) + P(X)
o Y o P(X)=1
@ more than one sort of thing obeys these rules:
o frequentist probability: “limiting frequency”
P(X;) = limy00 ni/n
i.e. the fraction if you repeat the “experiment” endlessly
o Bayesian “degree of belief”

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024-02-09 83/89



probability basics

Probability: illustrations using two dice
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Statistics and systematics

@ Xi1 is an elementary event
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probability basics

Probability: illustrations using two dice
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@ Xi1 is an elementary event

@ Xip, Xp1 indistinguishable
in practice, so define a set
Yio = {X12, X21} & treat like
an event: “a one and a two”
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probability basics

Probability: illustrations using two dice
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@ Xi1 is an elementary event

@ Xip, Xp1 indistinguishable
in practice, so define a set
Yo = {X12, X21} & treat like
an event: “a one and a two”
e {Xjj|i+j =6} contains
distinguishable events, but
useful anyway: “l threw a six”
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probability

Probability: illustrations using two dice

@ Xii is an elementary event

@ Xio, Xo1 indistinguishable
in practice, so define a set
Yio = {X12, X21} & treat like
an event: “a one and a two”
e {Xjj|i+j=6} contains
distinguishable events, but
useful anyway: “l threw a six”

o {Xj|i+j <6} “sixor less”
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probability

Probability: illustrations using two dice

@ Xjj is an elementary event
@ Xio, Xo1 indistinguishable
in practice, so define a set
Yio = {X12, X21} & treat like
an event: “a one and a two"
@ {Xj|i+j=6} contains
distinguishable events, but
useful anyway: “l threw a six”
@ {Xj|i+j<6}: "sixor less”
o {Xj|i=40R =4}
“at least one four”
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Probability: addition law for sets
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Statistics and systematics

Elementary events add simply, so

P({Xjli+j=6})= > P(Xy)

i+j=6

It follows that for sets

P(A or B) = P(A) + P(B)
— P(A and B)

So far, this is mere counting.

But consequences flow from this.

CPPC 2024-02-09 84 /89



probability

Probability: conditional probability

The probability that an elementary
event known to belong to set B also
belongs to set A; defined via

P(A and B) = P(A|B) - P(B)
= P(B| A)- P(A)

P(6 and “> one 4") = 2/36
P("> one 4") =11/36
P(6 | "> one four") = 2/11
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Probability: conditional probability
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Statistics and systematics

The probability that an elementary
event known to belong to set B also
belongs to set A; defined via

P(A and B) = P(A|B) - P(B)
= P(B|A) - P(A)

P(*> one 4" and 6) = 2/36
P(6) = 5/36

P(*> one four” | 6) = 2/5
£ 2/11
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Probability: independence

Consider a more symmetric case:

P J L) R0 B B P(“> one 2") = 11/36

P(“> one 4") =11/36

LT G ("= one 4%) =11/
P(">one 4" |">one2")= 2/11
P(">one2" | "> oned4")= 2/11

+11/36

so getting a 2 and getting a 4 are not
independent: for independent sets,

P(A|B) = P(A)
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probability

Probability: independence

Bruce Yabsley (Sydney)

Consider a more symmetric case:
P("> one 2") =11/36

P(“> one 4”) = 11/36
P("> one 4" |">one 2") = 2/11
P(">one2" | "> oned4")= 2/11

+11/36

so getting a 2 and getting a 4 are not
independent: for independent sets,

P(A|B) = P(A)
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probability

Probability: independence

Very hard to find nontrivial
BT e 3] (2] Rl independent sets in this example . ..

contrary to what you might think.
- .’ L= TR Gl

Obvious fix doesn't work:

HHE P(“one 2") =10/36

P(“one 4") = 10/36

N R i A | A Y R R R A

P(“one 4" | “one 2") = 2/10
()& CIE P("one 2" | “one 4") = 2/10
£10/36

(e g fl e & 78 LI

(see the pre-reading for more)
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probability

Probability: introduction to Bayes'’ Theorem

P(“one 4" | "< 6"

P(*<6" | “one 4"

(&g L7k

B

e

P(B|A) - P(A)

P(AIB) = ==

4/15
4/10
10/36
15/36

P(“one 4"
P("< 6"

~— — ~— ~—
I

in general, P(A) # P(B)
so P(A|B) # P(B|A)
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Probability: introduction to Bayes'’ Theorem
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What are systematics? (1) Old-fashined experimentalist answer

Imagine the answer of Kyiizo-san (Skill Guy from Seven Samurai):

Counting uncertainties go as v /N, and are reliable.

Everything else is systematic uncertainty,
and is governed only by judgement and rules of thumb.

| know my techniques and my mental bank of examples. So | know a
systematic uncertainty when | see one, and use an appropriate estimate.

This new-fangled tool MINUIT also returns uncertainty estimates, and
empirically it seems reliable when it works (I always check by reading the
verbose output carefully). | perk its results in as “statistical uncertainties”,
but only on sufferance.
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What are systematics? (2) Time-constrained student answer

Imagine the answer of a student six months from submission:
My advisor / Working Group / RC has a standard list of systematics
for this sort of analysis, and methods for estimating them.

| have never seen an analysis make it to journal without all of these
systematic terms, and only occasionally see an extra term
(and then only because a collaborator insisted during CWR).

| have looked at papers from past experiments,
and these standard systematics are in most of them.

One seems to be new in Tom Browder's CLEO paper.

| asked him about it once at a Belle Il party. He said that this systematic
was actually brought to the Hawaiian islands by Maui, and handed down.
| am not sure whether he was joking.

Bruce Yabsley (Sydney) Statistics and systematics CPPC 2024-02-09 87/89



What are systematics? (3) New-fashined experimentalist . ..

Imagine the answer of an ATLAS/CMS analysis contact:

Most uncertainties are statistical uncertainties in disguise.

It is straightforward to include them in the fit using Gaussian constraint
(or Log-Normal or other constraints if necessary, for extra credit).

Correlations do not scare me, as they can be handled by covariance
matrices; complex effects can be modelled by toy Monte Carlo.

As for effects that are only present in the data, these can be accessed
via bootstrapping.

My old thesis advisor still includes some systematic terms by hand, and
even uses t1o estimates sometimes. We still collaborate (she is a member
of the 50-person team on our paper), and | cannot stop her from doing
this, but it is seriously embarrassing when | have to show such estimates
to the Editorial Board.
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What are systematics? A taxonomy

My basic answer is that all three of these answers are correct as far as they
go. But they have something to learn from each other.

To the student | would add:

There is a weak presumption in favour of all of the uncertainties on the
standard list. Individually they are likely to be appropriate, but maybe not
all of them. And some extra terms may be necessary.

But how do you know which uncertainties to drop, and which ones to add?

That is the purpose of this talk

My working taxonomy of systematics:
© (uncertainties on) the INPUTS to the measurement
@ (uncertainties on) AUXILIARY measurements
© (uncertainties on) the CALIBRATION of the apparatus
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