2/9 @ CPPC Sydney

Searching for new EW particles at the LHC

Junichiro Kawamura

Institute for Basic Science [IBS]

Center for Theoretical Physics of the Universe [CTPU]

JK, S.Shin 2308.07814 [JHEP]
R.Dermisek, JK, E.Lunchi, N.McGinnis, S.Shin 2204.13272 [JHEP]
JK, S.Raby 2104.04461 [PRD]
L.Carpenter, H.Gilmer, JK 2110.04185 [PLB]
L.Carpenter, H.Gilmer, JK, T.Murphy 2309.07213 [PRD]

Before physics...

Junichiro Kawamura

'12-'17: Waseda U. (Ph.D)
'17-'18: U. of Tokyo
'18-'18: Keio university

~ Tokyo, Japan

'18-'20: Ohio State University ~ Columbus, USA

20-25: IBS-CTPU ~ Daejeon, Korea (140 km from Seoul)

Research area: BSM pheno.

model building, LHC, DM, neutrino,

flavor violation/hierarchy, cosmology...

Outline

- 1. Introduction
- 2. Searches for vector-like leptons [VLLs]
- 3. Searches for higgsino DM
- 4. Summary

Standard Model [SM] $SU(3)_c \times SU(2)_L \times U(1)_Y$ Yang-Mills theory

https://www.symmetrymagazine.org/standard-model/

- 3 gens. of quark/leptons
- All particles are discovered
- Basically consistent with exp.

No !!

Is this all ?

Problems of SM

- Theoretical problems
 - Higgs is unstable under quantum corrections
 - matter contents looks busy c.f. hypercharge $Y_Q = \frac{1}{6}$, $Y_u = \frac{2}{3}$, $Y_d = -\frac{1}{3}$, $Y_\ell = -\frac{1}{2}$, $Y_e = 1$
 - too many parameters with hierarchies
 - gravity is not quantized
- Experimental problems

... GUT ? ... flavor symmetry ? ...string ?

... SUSY ?

... composite ?

JK S.Raby 2212.00840 Y.Abe, T.Higaki, JK, T.Kobayashi 2301.07439, 2302.11183

- dark matter [DM] is missing
- cannot explain **baryon asymmetry/inflation**
 - JK, S.Raby 2109.08605
- there may be **anomalies** in precision measurements, e.g. g-2

How to look for new physics ?

there are many ways, but....

LHC !!

Large Hadron Collider

CERN

- pp collision, circular collider
- highest energy (~13 TeV) collider and unique TeV collider in next decade(s)
- we can prepare initial particles
- **direct probe** for new physics

 \leftrightarrow

astrophysics/cosmology

precision measurement

Large Hadron Collider [LHC]

Higgs discovery

- 125 GeV resonance discovered
- consistent with SM Higgs
- all of the SM particles are confirmed
- ➢ What's next ?

- "colored" particles, e.g. squark/gluino, have been leading targets
- while uncolored particles have not been explored well

I will talk about **<u>EW particles</u>** without **color**

Outline

- 1. Introduction
- 2. Searches for vector-like leptons
- 3. Searches for higgsino DM
- 4. Summary

Vector-like [VL] leptons

- SM fermions
 - are chiral under G_{SM} \bullet
 - there are three generations ullet
 - top Yukawa coupling is $\mathcal{O}(1)$ •

- VL fermions
 - vector-like under G_{SM}
 - masses wo/ Higgs are allowed •
 - 4th gen. (or more) is possible

Today, I focus on models with "4th" VL leptons (\overline{L}, L) and (\overline{E}, E) $SU(2)_L$ -doublet singlet $Y_L = \frac{1}{2} \qquad Y_E = -1$

- Why VL leptons?
 - ubiquitous in BSM e.g. KSVZ axion, DM models, GMSB, composite... 0
 - can explain the **recent anomalies** in the experiments \bullet

VLL in BSMs

KSVZ axion(-like particle) / gauge mediated SUSY breaking

Kim '79, Shifman, Vainshtein, Zakharov '80

Dine, Fischler;, Alvarez-Gaume, Claudson, Wise; Nappi, Ovrut, '82

VL-mass term from a singlet $X - \mathcal{L}_{VL} = \lambda X \overline{\psi} \psi$

- induce QCD anomaly if X has a global $U(1)_{PO}$ charge
- SUSY breaking in X is **mediated to visible sector**

Lepton portal DM
 Y.Bai, J.Berger 1402.6696,
 S.Chang, R.Edezhath, J.Hutchinson, M.Luty, 1402.7358

Yukawa with DM X and SM lepton $-\mathcal{L}_{VL} = m_L \overline{L}L + y X \overline{L} \ell_{SM}$

- mediate DM annihilation
- can also explain g-2/B anomaly

JK, S.Okawa, Y.Omura 2002.12534, 1706.04344

Muon g-2

*Figs. from H.Wittig's slide at Moriond 2023

Muon anomalous magnetic moment g-2

 $a_{\mu}^{\exp} - a_{\mu}^{SM} = (25.1 \pm 5.9) \times 10^{-10}$

'20 muon g-2 initiative

Current status

222

- '21: Fermilab exp. confirms old BNL result
- '21: lattice result (BMW) relaxes tension
- '23: CMD3 result for HVP relaxes tension

Explanation by VL leptons

➤ 1-loop corrections to g-2

2204.07022, JK, S.Okawa, Y.Omura 2205.10480, JK, S.Raby and more ..

- **boson** *B* can be Z' **boson**, DM, (extra) Higgs and so on
- chiraly enhanced by Higgs VEV from doublet/singlet mixing
- muon g-2 can be explained if VL leptons are lighter than 1.5 TeV

Direct searches at LHC

Production

- pair production cross section is determined by gauge number
- there might be production **from new exotic particle**
- Decays
 - will decay to **SM lepton + SM boson** in minimal case
 - may decay to SM lepton + new exotic boson

Decays to SM particles

Without other new particles, signal process is

- the current limit is 900 GeV for $E \rightarrow \tau$, $\nu_{\tau} + Z$, W
- no CMS/ATLAS search at $\sqrt{s} = 13$ TeV for $E \rightarrow \mu, \nu_{\mu} + Z, W$

Limits for muon-philic VLL JK and S.Shin, 2308.07814 [JHEP]

Analysis

we recast two searches for triplet leptons in type-III seesaw ATLAS-EXOT-2018-33: 2I + 2j + MET, ATLAS-EXOT-2020-02: 3-4I (+ jets)

of signal :
$$s_{bin} = \mathcal{L} \times \sum_{P} \sum_{D} \sigma_{P} \times Br_{D} \times \epsilon_{bin}^{(P,D)}$$

 \mathcal{L} : integrated luminosity ~ 139 fb^{-1}

 σ_P : production cross section NLO using UFO by A.H.Ajjath, B.Fuks, H.S.Shao, Y.Simon Br_D : BR of decay $E \rightarrow \mu Z$ or νW .

 $\epsilon_{bin}^{(P,D)}$: (# pass cut of bin)/(# event generated) <u>MadGraph5+MadSpin+Pythia8+Delphes</u>

→ get limits by comparing with data/backgrounds

Limits for muon-philic VLL JK and S.Shin, 2308.07814 [JHEP]

Current limits

- no limit for singlet VLL with $(Br_Z, Br_W) = (0.25, 0.5)$
- 780 GeV for doublet VLL with $(Br_Z, Br_W) = (0.5, 0.0)$
- 420 (1050) GeV for singlet (doublet) by $3 ab^{-1} data$

VLL + 2HDM R.Dermisek, JK, E.Lunghi, N.McGinnis, S.Shin, 2204.13272 [JHEP]

what if there are **2** Higgs doublets ?

natural in SUSY models

f(tanβ) enhancement for e.g. muon g-2 and EDM

For $m_{VLL} < m_H < 2m_{VLL}$

 $^{2\}ell + E_T^{\text{miss}}$ or 3,4 ℓ

- single VLL from Higgs decay
- Higgs production via bb/gg fusion
- recast slepton search ATLAS-SUSY-2018-32
- recast general 3/4 lepton search ATLAS-EXOT-2019-36
- same analysis as previous analysis (but production xsec by SuShi)

Limits for $H \rightarrow \mu E (\rightarrow Z \mu)$

R.Dermisek, JK, E.Lunghi, N.McGinnis,

S.Shin, 2204.13272 [JHEP]

 \blacktriangleright tan $\beta = 10$, upper bounds on Br

 $* e_4 = E$: lightest vector-like lepton

• limit can be larger than 1 TeV by the current data

Limits for $H \rightarrow \mu E (\rightarrow Z \mu)$

R.Dermisek, JK, E.Lunghi, N.McGinnis,

S.Shin, 2204.13272 [JHEP]

 \blacktriangleright tan β = 50, upper bounds on Br

- limit can be larger than 1 TeV by the current data
- other modes, fully-combined limits at benchmarks are in the paper
- HL-LHC sensitivities are also shown (can reach ~ 3 TeV for Br=1)

VLL + Z' JK, S.Raby 2104.04461 [PRD]

A model with VL 4th family charged under U(1)'

- chiral 3 families do **not** have U(1)' charge
- can explain **muon g-2** (and **B-anomaly**)
- JK, S.Raby, A..Trautner 1906.11297. 1911.09127

- assume **Z' is muon-philic**
- $Br(Z' \rightarrow \mu\mu) = 2/3$ motivated by RK
- recast RPV SUSY 4/5 lepton search ATLAS-SUSY-2018-02
- same analysis as previous ones

JK, S.Raby 2104.04461 [PRD]

95%C.L. limits on $Br(E \rightarrow Z'\mu)$

 \succ SU(2)_L singlet

\succ SU(2)_L doublet

Madgraph5+pythia8+Delphes3

- SR0^{tight}_{bveto} gives the strongest bound for Br($E \rightarrow Z' \mu$)
- limit is 1 (1.3) TeV for $Br(E \rightarrow Z'\mu) = 1$ for singlet (doublet)
- we also proposed search utilizing there are $m_{\mu\mu}^2 \sim m_{Z'}^2$ pairs

Summary of VLL searches

We studied signals involving muon-philic VLLs

* other cases will be studied in the future, see e.g. 2203.03852

- VLL pair-production
 - obtain first limit using the Run-2 data
 - **780 GeV** for doublet, but **no limit** for singlet
- \blacktriangleright 2HDM + VLL : $m_{VLL} < m_H < 2m_{VLL}$
 - VLL may appear in decay of exotic Higgs
 - cross section is large because of that of the Higgs via gg/bb fusion
- \succ Z' + VLL : $m_{VLL} < m_{Z'}$
 - high-multiplicity muons signal is possible
 - limit can be 1 TeV even for singlet VLL pair production

Outline

- 1. Introduction
- 2. Searches for vector-like leptons
- 3. Searches for higgsino DM
- 4. Summary

WIMP DM

- DM decouples from thermal bath and "freeze-out"
- Electro-Weak [EW] coupling and mass can explain relic density
- realized in many BSM models including supersymmetry [SUSY]

Direct detection

- null results in direct detections
- many interested parameter space has been excluded

Co-annihilating DM

$$\succ \text{ If } m_{\chi^0} \simeq m_{\chi^\pm}$$

"co-annihilation" $\chi^0 \chi^{\pm} \rightarrow SM^2$ turns on during freeze-out

 $\sigma_{ann} \gg \sigma_{scat}$ effectively due to co-annihilation

Higgsino ... example of co-annihilating DM

Supersymmetry [SUSY]

- solve hierarchy problem
- GUT/superstring
- Higgs potential
- neutralino DM

*mixture of gaugino/higgsino

Higgsino

- fermionic superpartners of Higgs bosons : h_{SM} , H, A, H^{\pm}
- there are mass degenerate higgsinos $\tilde{\chi}_{1,2}^0$, $\tilde{\chi}_1^{\pm}$

mono-Z/W signal

L.Carpenter, H.Gilmer, JK 2110.04185 [PLB] L.Carpenter, H.Gilmer, JK, T.Murphy 2309.07213 [PRD]

what if we use Z/W boson instead of mono-jet ?

- less production xs. than mono-j
- much less backgrounds

- **V+jets** is dominant bkg. (\gg diboson)
- V_{had} should be found from jets
- V_{had} tag from QCD is important

Results recast ATLAS analysis w/ 36.1 fb⁻¹data 1807.11471, ATLAS

- even LHC constraints 110 (210) GeV higgsinos at Run-2 (3)
- HL-LHC can probe higgsinos up to 520 GeV

Summary

mono-V can be an important channel for DM search

- higgsino search
 - hadronic mono-V signal is efficient for higgsinos searches
 - can fill the gap at $\Delta m_{\chi^{\pm}_1} \sim 1~GeV$
 - can test higgsinos up to 520 GeV at HL-LHC
- discussions
 - maybe applicable to **other DM particles**
 - improving mono-V signal discrimination

Thank you !!

backups

Excess ?? 2311.17149, D.Agin, B.Fuks, M.Goodsell, T.Murphy

2106.01676, 2111.06296

- ATLAS & CMS found the $\sim 2\sigma$ -level excesses in 1j + soft-leptons channel
- consistent with the **mono-jet** and **mono-V** limits
- **mono-V** could be used for checking the excess

Mono-jet search for DM

$$E_{\tau}^{\text{miss}} \sim |-\vec{p}_{\tau}^{j}|$$

ightarrow

 \bullet

• jet from initial state radiation [ISR]

DM may be produced at collider

However, DM is invisible

- suffered from large bkg.
- no limits on Higgsinos at LHC

Higgsino search: higgsino decays

mass differences of higgsinos

$$\Delta m_{\chi_{2}^{0}} \sim 2\Delta m_{\chi_{1}^{\pm}} \sim 2.1 \text{ GeV} \times \left(\frac{4 \text{ TeV}}{M_{\text{wino}}}\right) \qquad \begin{aligned} \Delta m_{\chi_{2}^{0}} &:= m_{\chi_{2}^{0}} - m_{\chi_{1}^{0}} \\ \Delta m_{\chi_{1}^{\pm}} &:= m_{\chi_{1}^{\pm}} - m_{\chi_{1}^{0}} \end{aligned}$$

 \succ decays of heavier higgsinos: χ_2^0 , χ_1^{\pm}

productions of heavier states are expected

• daughter particles are "soft" due to small mass diff.

Higgsino search: current limits

soft leptons

0.50 ATLAS Preliminary $\sqrt{s} = 13$ TeV, 136 fb⁻¹ $\sqrt{s} = 13$ TeV, 36.1 fb⁻¹ few prod. Obs.)

600

800

 $m(\tilde{\chi}^{\pm})$ [GeV]

1000

disappearing track

 $\widetilde{\chi}_{\pm}^{\pm} \widetilde{\chi}_{\pm}^{0}, \widetilde{\chi}_{\pm}^{\pm} \widetilde{\chi}_{0}^{0}, \widetilde{\chi}_{\pm}^{\pm} \widetilde{\chi}_{\pm}^{+}$ production (higgsino)

 $m_{\chi} \gtrsim 100 \text{ GeV limits}$ for $\Delta m_{\chi_1^{\pm}} \sim \Delta m_{\chi_2^0}/2 \gtrsim 1.3 \text{ GeV}$

for $\Delta m_{\chi_1^{\pm}} \lesssim 0.35 \text{ GeV}$

400

- limits are at most 200 GeV
- no limits for $m_{\chi} \gtrsim 100 \text{ GeV}$ from LHC for $\Delta m_{\chi^{\pm}_1} \sim 1 \text{ GeV}$

0.20

0.15

200

Higgsino search: future limits

soft leptons

soft displaced vertex

^{1910.08065,} Fukuda, Nagata, Oide, Otono, Shirai

- limits are at most about 300 GeV at HL-LHC
- limits are ~ 100 GeV for $\Delta m_{\chi^{\pm}_1} \sim 1$ GeV, the gap remains
Summary of existing higgsino searches

- generic mono-jet search is not efficient for higgsinos
- soft leptons are available for relatively large mass diffs. $\Delta m_{\chi^{\pm}_{1}} \gtrsim 3 \text{ GeV}$
- disappearing tracks are available for very small mass diffs. $\Delta m_{\chi^{\pm}_1} \lesssim 0.8 \text{ GeV}$
- there is a gap at $\Delta m_{\chi_1^{\pm}} \sim 1 \text{ GeV}$ corresponding to $M_{\text{wino}} \sim 4 \text{ TeV}$
- known searches basically require ISR jet

Higgsino

Co-annihilating DM

there are two Higgs doublets in Minimal SUSY SM [MSSM]

• two neutral states: χ_1^0 , χ_2^0 and two charged states χ_1^{\pm}

• the lightest state χ_1^0 can be DM

 $m_Z^2 \sim -2 |\mu|^2 - 2m_{H_{ex}}^2$

mass differences are typically less than few GeV

Origin of EW scale

 $m_{Z} = 91.2 \text{ GeV},$

 μ : Higgsino mass,

 $m_{H_{\eta}}$: Higgs mass term

understanding the origin of EW scale

mono-Z/W signal

what if we use Z/W boson instead of jet ?

- ✓ less production cross section
- (much) less backgrounds

mono-Z/W signal

hadronic mono-V

production cross section

- W associated production is much larger than prod. with Z
- hadronic BRs $\sim 70\%$ are larger than leptonic BRs $\sim 10~(30)\%$ for Z (W)

significantly large production rate

Analysis

- Recast ATLAS analysis w/ 36.1 fb⁻¹data 1807.11471, ATLAS
 - one V_{had} jet with $p_T > 250$ GeV and $E_T^{miss} > 200$ GeV
 - 50% efficiency for V_{had} tagging
 - cuts for multi jet bkg. are applied
 - leptons with $p_T > 7$ GeV are vetoed

Assumptions

- all of higgsino states $\chi_{1,2}^0$, χ_1^{\pm} are invisible $\iff \Delta m_{\chi_1^{\pm}} \lesssim 3.5 \text{ GeV}$
- large R jet from Z/W is V-tagged with 50% efficienty
- events simulated by Madgraph5, pythia8 and Delphes
- only uncertainties in backgrounds are taken into account

E_T^{miss} distribution

- signals are $\mathcal{O}(0.1 1\%)$ of the SM bkg.
- higher E_T^{miss} is expected for heavier masses

Results: μ - M_2 plane

 fb^{-1} expected mono-V excl. at HLLHC

Results: μ - M_2 plane

mono-V is most important for pure higgsino region

mono-Z/W signal

V+jets is dominant bkg.

p

p

topologically same signal •

V+jets is dominant bkg. (\gg diboson) \bullet

• V_{had} should be found from jets

 V_{had} -tag efficiency ~ 50% (1.7%) for true W/Z jets (QCD jets) ATLAS-PHYS-PUB-2015-033

→ well discriminate signal/bkg.

Higgsino search: soft leptons

1401.1235 Han, Kribs, Martin Menon 1409.7058, Baer, Mustafayev, Tata

di-leptons are visible

if $\Delta m_{\chi^0_2} \gtrsim 10~{
m GeV}$

$\succ j + \ell^+ \ell^- + E_T^{\text{miss}}$

- productions $pp \rightarrow \chi_2^0 \chi_1^0, \chi_2^0 \chi_1^{\pm}$
- ISR jet is necessary to trigger
- $m^2_{\ell^+\ell^-} < 10~{
 m GeV}$ cut is effective

Higgsino search: disappearing tracks

disappearing track search

0610277 Ibe, Moroi, Yanagida 1703.05327 Mahbubani, Schwaller, Zurita 1703.09675 Fukuda, Nagata, Otono, Shirai

charged state χ_1^{\pm} is long-lived if $\Delta m_{\chi_1^{\pm}} \sim \mathcal{O}(100 \text{ MeV})$

flight length of $\mathcal{O}(cm)$

- charged track disappear in detector
- ISR jet is required to trigger

1703.09675, Fukuda, Nagatam Otono, Shirai

V_{had} tagging ATLAS-PHYS-PUB-2015-033

tagging by jet mass $m_I \sim 90 \text{ GeV}$ and D_2

 V_{had} jet and D_2

$$V$$
 where $\binom{j}{j}$ arge-R (= 1.0) jet: J

mass of large R jet : m_I should be around $m_V \sim 90 \text{ GeV}$

$$D_2 = e_3 / e_2^3$$

$$e_2 = \frac{1}{p_{TJ}^2} \sum_{i < j \le n_i} p_{Ti} p_{Tj} R_{ij} \qquad e_3 = \frac{1}{p_{TJ}^3} \sum_{i < j < k \le n_i} p_{Ti} p_{Tk} R_{ij} R_{ik} R_{jk}$$

- e_2, e_3 are smaller when more soft/collinear pair exists
- $e_3 \ll e_2$ is expected for V_{had} since there two hard jets

mono-jet bounds

1504.02472, Barducci, Belyaev, Bharucha, Porod, Sanz

backgrounds

number of events 1807.11471, ATALS

	Merged topology							
Process	0 <i>b</i> -HP	0b-LP	1 <i>b</i> -HP	1 <i>b</i> -LP	2b			
Vector-mediator model,								
$m_{\chi} = 1 \text{ GeV}, m_{Z'} = 200 \text{ GeV}$	814 ± 48	759 ± 45	96 ± 18	99 ± 16	49.5 ± 4.3			
$m_{\chi} = 1 \text{ GeV}, m_{Z'} = 600 \text{ GeV}$	280.9 ± 9.0	268.5 ± 8.8	34.7 ± 3.6	33.8 ± 3.1	15.38 ± 0.84			
Invisible Higgs boson decays ($m_H = 125 \text{ GeV}, \mathcal{B}_{H \to \text{inv.}} = 100\%$)								
VH	408.4 ± 2.1	299.3 ± 2.0	52.06 ± 0.85	44.06 ± 0.82	27.35 ± 0.52			
ggH	184 ± 19	837 ± 35	11.7 ± 3.8	111 ± 30	12.3 ± 4.2			
VBF	29.1 ± 2.5	96.0 ± 4.6	2.43 ± 0.36	5.83 ± 0.43	0.50 ± 0.07			
W+jets	3170 ± 140	10120 ± 380	218 ± 28	890 ± 110	91 ± 12			
Z+jets	4750 ± 200	15590 ± 590	475 ± 52	1640 ± 180	186 ± 12			
tī	775 ± 48	937 ± 60	629 ± 27	702 ± 34	50 ± 11			
Single top-quark	159 ± 12	197 ± 13	89.7 ± 6.7	125.5 ± 8.7	16.1 ± 1.7			
Diboson	770 ± 110	960 ± 140	88 ± 14	115 ± 18	54 ± 10			
Multijet	12 ± 35	49 ± 140	3.7 ± 3.3	15 ± 13	9.3 ± 9.4			
Total background	9642 ± 87	27850 ± 150	1502 ± 31	3490 ± 52	407 ± 15			
Data	9627	27856	1502	3525	414			

Statistics

ATLAS, CMS and LHC Higgs Combination Group Collab. "Procedure for the Higgs boson search combination in Summer 2011"

test statistics

$$q^n_{\mu} := -2\log\frac{L(n|\mu, \hat{\hat{b}})}{L(n|\hat{\mu}, \hat{b})},$$

 n_i : # data, s_i : # signal, b_i : # bkg. $\lambda_i = s_i \mu + b_i$

likelihood

$$L(n|\mu, b) := \prod_{i}^{N_{\text{bin}}} \frac{\lambda_i^{n_i}}{n_i!} e^{-\lambda_i} \times \frac{1}{\sqrt{2\pi}\Delta b_i} \exp\left(-\frac{(b_i - b_i^0)^2}{2(\Delta b_i)^2}\right),$$

CLs and significances

$$CL_s = \frac{1 - \Phi\left(\sqrt{q_1^{n_{obs}}}\right)}{\Phi\left(\sqrt{q_1^{b_0}} - \sqrt{q_1^{n_{obs}}}\right)}, \quad Z_{excl} = \sqrt{q_1^{b_0}}, \quad \text{and} \quad Z_{disc} = \sqrt{q_0^{s+b_0}},$$

Light higgsino from mirage mediation

mirage = modulus + anomaly mediation K.Choi, T.Kobayashi, et.al, 050829

gaugino masses:
$$M_a = \frac{F^T}{T + T^*} + \frac{b_a g_0^2}{16\pi^2} \frac{F^C}{C}$$
 $b_a = (\frac{55}{3}, +1, -3)$

→ ratio M_2/M_3 increases for positive interference at GUT scale → $|\mu|^2 \sim -m_{H_u}^2$ decreases through RGE $|\mu|^2 \sim -m_{H_u}^2$ (TeV) $\sim -0.17 M_2^2 + 0.20 M_2 M_3 + 3.09 M_3^2$ H.Abe, J.K, H.Otsuka, 1208.5328

light higgsino scenarios

• light higgsino together with 125 GeV Higgs is realized

H.Abe, J.K, 1405.0779, 1405.3754

• there are more scenarios for light higgsino

ex) non-universal higgs mass, generalized gauge mediation,

Lepton portal dark matter

Junichiro Kawamura

Institute for Basic Science, CTPU

based on [hep-ph] 2002.12534 (JHEP), 2204.07022 (PRD)

in collaboration with S.Okawa (Barcelona U. \rightarrow KEK) and Y.Omura (Kindai U.)

Dark Matter [DM]

- dark matter
 - dark and cold (particle)
 - 27% of energy of the universe
 - discovered only by gravitational int.
- particle candidates
 - Weakly Interacting Massive Particle [WIMP]
 - axion, ALP
 - SIMP, FIMP, asymmetric, self-interacting, …

WIMP is still an interesting candidate

Freeze-out of WIMP

- DM decouples from thermal bath and "freeze-out"
- Electro-Weak [EW] coupling and mass can explain relic density
- WIMP can be in beyond SM e.g. models for muon anomalies

Probes of WIMP

annihilation

- indirect detection
- annihilation in DM rich env.
- e.g. Fermi-LAT, CTA, HESS,

- > scattering
 - direct detection
 - scattering with nucleus/e
 - e.g. XENON, PANDA, LZ

Fermion portal model

SM + EW singlet DM + mediator

- Yukawa coupling, DM and mediator masses are parameter
- co-annihilation of DM and mediator occurs if degenerate
- pure bino + slepton in SUSY is in this class
- We focus on EW singlet DM cf. non-singlet case:

0512090 M.Cirelli, N.Fornengo, A.Strumia (DM) 1804.00009, L.Calibbi, R.Ziegler, J.Zupan (DM+g-2) 59

Outline

- 1. Introduction
- 2. Minimal lepton portal dark matter
- 3. Relations to recent anomalies
- 4. Summary

Minimal lepton portal model

SM + EW singlet DM + 1 mediator (s)lepton

there are $2 \times 2 \times 2 = 8$ possibilities

Scalar DM models

- fermion mediator should be vector-like
- Yukawa coupling is non-zero only for muon
- Higgs portal is neglected
- Fermion DM models
 - mediator is "s"lepton (complex scalar)
 - special case of Majorana DM (= bino) is realized in SUSY

LHC limits

mediator decays to DM and muon

 $\rightarrow p p \rightarrow L L \rightarrow \mu \mu + MET$ is the same as SUSY slepton signal.

limit from 139 fb⁻¹ data at ATLAS [1908.08215]

FeynRules, Madgraph5

Annihilation

2-2 annihilation

velocity expansion: $\sigma v = a + b v^2 + cv^4 + \cdots$ $\langle v^2 \rangle \simeq 0.24, \langle v^4 \rangle \simeq 0.1$ s-wavep-waved-waveat freeze-out

- s-wave is helicity suppressed, i.e. $\propto m_{\mu}^2/m_X^2$, except Dirac DM
- p-wave is also helicity suppressed for real DM

Annihilation

relative importance of higher-order processes

Ratio = $\frac{\langle \sigma(XX \to \mu\mu V/VV')v \rangle}{\langle \sigma(XX \to \mu\mu)v \rangle}$

$$m_X = 500 \text{ GeV}$$

 $r = m_L/m_X$

- higher-order processes can be sizable for real DM
- these are less than 0.1 for other cases

Virtual Internal Bremsstrahlung

e.g. 1203.1312 T.Bringmann, X.Huang et.al

Final State Radiation [FSR]

Virtual Internal Bremsstrahlung [VIB]

photon spectrum from VIB

$$r = m_L/m_X$$

- peak at $E_{\gamma} \sim m_X$ if $m_L \sim m_X$
- γ from $XX \rightarrow \gamma\gamma$, $Z\gamma$ also has

sharp spectral structure 1405.6917 A.Ibarra, T.Toma et.al

- dominant in complex scalar DM
- $\mathcal{L}_{\rm eff} \supset C \ i \left(X^{\dagger} \partial_{\mu} X \partial_{\mu} X^{\dagger} \cdot X \right) \overline{N} \gamma^{\mu} N$

Current status of scalar DM

$$r = m_E/m_X$$

Yukawa is fixed to explain thermal relic density via (co-)annihilation

- \checkmark excluded by direct detection
- ✓ Δa_{μ} is too small

- co-annihilation is needed for abundance
- direct detection bound is absent
- indirect detections give bounds

Current status of fermion DM

 $r = m_E/m_X$

Yukawa is fixed to explain thermal relic density via (co-)annihilation

- ✓ XENON excludes wide region
- ✓ Δa_{μ} is too small

- p-wave allows larger mass difference
- direct detection bound is absent
- indirect detections give no bound

Summary of minimal models

	real	complex	Majorana	Dirac
relic density $XX \rightarrow \mu\mu$	d-wave	p-wave	p-wave	s-wave
direct det. $XN \rightarrow XN$	2-loop	1-loop	1-loop <i>v</i> -suppressed	1-loop
indirect det. $\sigma_{\mu\mu\gamma}/\sigma_{\mu\mu}$	$\gtrsim 0.1$	≲ 0.1	$\lesssim 0.1$	≲ 0.1

- complex/Dirac DM is strongly constrained by XENON
- real DM is partially constrained by indirect detections due to VIB
- Majorana DM is less constrained
- Analytic formulas are in paper

Outline

- 1. Introduction
- 2. Minimal lepton portal dark matter
- 3. Relations to recent anomalies
- 4. Summary

Anomalies in EW model ?

*Figs. from H.Wittig's slide at Moriond 2023

Muon anomalous magnetic moment g-2

 $a_{\mu}^{\exp} - a_{\mu}^{SM} = (24.9 \pm 4.8) \times 10^{-10}$

'20 muon g-2 initiative

Current status

- '21: Fermilab exp. confirms old BNL result
- '21: lattice result (BMW) relaxes tension
- '23: CMD3 result for HVP relaxes tension
- '23: Fermilab new result (\rightarrow 5.1 σ ?)

<u>;;;</u>

Anomalies in EW model ?

➤ W boson mass

- CDF measurement $m_W = 80.4335 (94) \text{ GeV}$
- PDG average
 - $m_W = 80.379 (12) \text{ GeV}$
- S M value PDG $m_W = 80.361 (6) \text{ GeV}$

new value is 7σ larger than the SM expectation

Δa_{μ} in lepton portal model

SM + singlet DM + 2 mediator (s)leptons

$$\mathcal{L} \supset \lambda_L \overline{\ell_L} X L_R + \lambda_R \overline{E}_L X^* \mu_R + \kappa \overline{L}_L H E_R \qquad E'_{L(R)} \in L_{L(R)}$$
$$\longrightarrow \qquad \left(\begin{array}{cc} E'_R \\ E_R \end{array} \right) = \begin{pmatrix} c_R & s_R \\ -s_R & c_R \end{pmatrix} \begin{pmatrix} E_{R_1} \\ E_{R_2} \end{pmatrix}, \quad \begin{pmatrix} E'_L \\ E_L \end{pmatrix} = \begin{pmatrix} c_L & s_L \\ -s_L & c_L \end{pmatrix} \begin{pmatrix} E_{L_1} \\ E_{L_2} \end{pmatrix}$$

mixing is induced by Yukawa coupling κ

$$\Delta a_{\mu} \sim \frac{m_{\mu}}{16\pi^2 m_X^2} \left[\lambda_L \lambda_R \ c_R s_L m_{E_1} + \mathcal{O}(m_{\mu}) \right]$$

sizable Δa_{μ} comes only from mixing

Correlation to DM density

Annihilation rate

$$\langle \sigma v \rangle \sim \frac{|\lambda_L \lambda_R|^2}{\pi} \left(\frac{c_R s_L m_{E_1}}{m_X^2 + m_{E_1}^2} - \frac{c_L s_R m_{E_2}}{m_X^2 + m_{E_2}^2} \right)^2$$

no suppression by muon mass in the s-wave contribution

 \succ Correlation to Δa_{μ}

 $\langle \sigma v \rangle \sim 3 \times 10^{-26} \, [\mathrm{cm}^3/s]$

 $\rightarrow \Delta a_{\mu} \sim \frac{m_{\mu}}{16\pi^2} \sqrt{2\pi \langle \sigma v \rangle} \sim 5 \times 10^{-8}$ is too large for maximal mixing

 \leftarrow co-annihilation and/or $\lambda_L \ll \lambda_R (\lambda_R \ll \lambda_R)$ is/are needed

Result in real DM

 λ_R is fixed to explain relic density

 $\overline{m_{E_2} - m_{E_1}} = 100 \; {
m GeV}$ $r = m_{E_1}/m_X$

 Δa_{μ} can be explained if $m_{E_1} \sim 1.1 \times m_X$ and $\lambda_L \sim 0.01 \times \lambda_R$

Result in Majorana DM

 λ_R is fixed to explain relic density

- Δa_{μ} can be explained if $m_{E_1} \sim 1.1 \times m_X$ and $\lambda_L \sim 0.01 \times \lambda_R$
- requirement for degeneracy is relaxed from the real scalar case

W boson mass 2204.07022

$$W \longrightarrow E \longrightarrow W$$

- 1-loop corr. from VL-lepton
- chiral enhancement by Higgs VEV

- CDF-value is realized only for VLL lighter than 200 GeV
- only degenerate (co-annihilation) region is allowed by LHC

Conclusion

- Minimal lepton portal DM (DM + 1 mediator)
 - complex and Dirac DM are almost excluded by direct detection
 - real DM may predict peaked signal
 - Majorana DM is toughest to be tested
- Simultaneous explanation with anomalies
 - Δa_{μ} can be explained in models with both singlet and doublet
 - CDF W-mass can be explained only with VLL lighter than 200 GeV

Thank you !!