THE DIFFUSER

- 1. Requirements
- 2. Description
- 3. Components
- 4. Trials
- 5. Schedule

PHYSICS REQUIREMENTS

- Purpose
 - Inflate emittance of beam before cooling
 - i.e. heat the beam
- Introduce up to ~3 radiation lengths high Z material at upstream end of upstream Spectrometer Solenoid
 - Ability to vary amount of material
 - Steps of 0.2 radiations lengths

OPERATIONAL REQUIREMENTS

- 1. Remote control from outside high-field region of Solenoid
- 2. Manual (local) control
- 3. Condition available to EPICS system
- 4. Minimal operation time
- 5. Minimal maintenance
- 6. Maximum expected number of operations < 20,000 (?)
- 7. Long periods when not in use

SPECIAL CONSIDERATIONS

- 1. Must operate in high magnetic field (~4T)
 - Precludes:
 - Electric motors or actuators
 - Magnetic sensors
 - Any ferromagnetic materials
 - Some grades of stainless steel
- 2. Possible forces for short periods of time (a few seconds) due to eddy currents if solenoid quenches.
 - Avoid loops of high conductivity materials
 - e.g. aluminium

GENERAL DESCRIPTION

- Four in-line irises in 'cassettes' stacked in a drum inserted into bore of solenoid.
- Irises opened or closed by pneumatic rotary actuators at upstream end of drum.
- Irises of 0.2, 0.4, 0.8 and 1.6 Optical radiation lengths give 0 – 3 radiation sensors (4) lengths in 16 steps of 0.2
- Optical sensors on operating shafts give state (open/closed) of irises

Irises (4)

IRIS CASETTES

- Each cassette contains two sets of four 'petals' supported by an 'outer ring'.
- Pins on an 'inner ring' engage with slots in the 'handles' of the petals
- The inner ring has a short toothed section which engages with a gear
- Rotation of the gear (~120 degrees) will open / close petals
- Petals are adjacent to minimise longitudinal gaps
- Tufnol (proprietary SRBF) used for outer ring to minimise weight
- •Four sets of petals: 3 & 6mm brass, 3 & 6mm tungsten

Schedule meeting May 2011

CASSETTE COMPONENTS

Only seven different types of component required for all four cassettes

CONTROLS

1. Pneumatics

- Re-use air crate of old design
- Have more than enough solenoid valves &c
- Rebuild & rewire crate
- New front panel
- 2. Electronics
 - Re-use electronics crate
 - Some rewiring
 - New front panel (push buttons & indicators)
 - Reprogram FPGA
- 3. Controls
 - Modify existing LabView Code
 - Eventual migration to EPICS

Control required is minimal – only whilst changing setting

PROTOTYPE CASSETTE

- Stainless steel petals used for prototype
- ~0.3 Nm torque required to open/close
- Light hand-operation

Schedule meeting May 2011

ACTUATORS

- Need four pneumatic rotary actuators:
 - 120 degree rotation & ~1Nm at 3 bar
- Non-magnetic components not commercially available Commercial custom manufacture probably very expensive
- Make our own (~Chinese copy) Works as expected (torques v. hard to measure) But ~1.5 bar of 'stiction'

Schedule meeting May 2011

OTHER COMPONENTS

Drum	Finished
Actuators	Made; need better piston seals
Optical sensors	Finished, tested
Cassettes	All made
SS innner Rings	2 to make
	Flatness difficult to achieve
Brass petals	Finished
Tungsten	Not cut
Electronics crate	Ready; needs new front panel
Air crate	Simple; have solenoid valves
	Waiting until we know pressures required; may need some reducers

Petals cut with spark eroder & wiring machine

Easy for SS & Brass

Brass electrode for spark eroder won't cut tungsten

I am assured that copper electrodes will work...

Schedule meeting May 2011

TRIAL ASSEMBLY & TESTING

Schedule meeting May 2011

TRIAL TESTING

- 3mm Brass iris + Actuator
- Solenoid valve + oscillator
 - Cycle automatically
 - Few hundred operations
- Operates happily at ~2 bar
 - 1.5 bar for actuator stiction + 0.5 for iris
- Right kind of lubrication is important
 - Grease too thick
 - "3 in One" seems to work

KNOWN UNKNOWNS

- Piston seals for actuators
 - Bought some proprietary seals
 - Too stiff
 - Currently not using seals but close-machined pistons
 - Must find suitable soft seals
 - Service kits for commercial actuators??
- Tungsten
 - Have not yet cut it...
 - Go outside if necessary (would cost)
 - Friction
 - How to scale operating pressure?
 - Scaling by mass → 1.5 + 5 x 0.5 = 4 bar
 - Have ~6 bar available

INSTALLATION

Should be plug-and-play:

- 1. Install crates
- 2. Install pipes & cables
- 3. Install drum on patch panel & solenoid
- 4. Insert cassette assembly into drum
 - May need simple jig (bar) for support
- 5. Mount actuators
- 6. Connect pipes & cables
- 7. Test
- 8. Test with field
- 9. Quench test ??

Have allowed 16 days in schedule

SCHEDULE

ID		Task Name	Qtr 3, 2010			Qtr 4, 2010			Qtr 1, 2011			Qtr 2, 2011			Qtr 3, 2011
	0		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul
1		Diffuser principal milestones													
2		Build complete												03/06	
3		Basic tests complete												T 🌒 1	7/06
4		Labview system complete											16/05	T	
5		Acceptance tests complete											Τ	•	24/06
6		Installation on spectrometer solenoid start													T
7	11.	Diffuser installed on solenoid													
8	11.	Integation with EPICS complete													
9															
10	1	Supervision, management, testing, physics							-	-					
11	1	Prototyping & Design				1			1		(7			
12	V.	Demonstrate Prototype Iris	02/07												
13	V.	Perfect mechanics													
14	V.	Manufacture & Test prototype 'Cassette' Iris	-												
15	V.	Complete Conceptual design								-					
16	V.	Purchase Actuator for evaluation								-					
17	V.	Evaluate actuator			-	h.				-					
18		Modify actuator components & test									-		_		
19	V.	Oxford DO Review		4	25/08					-					
20	V.	MICE TB Approval			06/09										
21	V.	MICE CM 28, & Hols													
22	1	Mechanics												4	
23	1	Production drawings													
24	V	Purchase materials	-												
25	11	Manufacture components							-(
26	11	Assemble													
27	11	Test								-					
28	—	Control Hardware & Firmware	-												
29		Modify Air Crate	-				 .	🗖							
30		Modify Electronics Crate	-			· · · · · · Z			1	<u> </u>	🚍				
31		Modify LabView controls	-						1000 C						
32	11	Control Integration & Tests													
33	<u> </u>	Acceptance tests													J
34		Acceptance tests	-											·····*	
35		Installation Drawings													
37	1	Supervise installation													
38	1	Installation													
48	-	Install Tracker (quess II)													
49	-	Final Installation													
52	172	Spectrometer colonoid available (quees)													
53		Integration with EDICS													
- 33	1	mogradon with EFIC3	1						1	1					1

Man & boy enterprise

Progress determined by availability of Self * JT * Machines in workshop

Most recent estimate "350 man hours of effort" in mechanical workshop

Schedule meeting May 2011

THE END