CERN Colloquium, 28/04/11

THE COMMON ORIGIN OF GRAVITY

 DARK ENERGY AND MATTERErik Verlinde

药

University of Amsterdam

Matter and Forces

Current Paradigm

FUNDAMENTAL FORCES: carried by elementary particles

We may need to reconsider our current paradigms

theory \& observation

96\% of the Energy in our Universe is not understood!

String Theory

FUNDAMENTAL FORCES: carried by vibrating strings

D-branes

EMERGENCE

We use concepts and observe phenomena at a macroscopic scale, which are derived from a microscopic scale where they have no a priori meaning

Open/closed string or

gauge theory/gravity duality

Black Holes

Black Holes

Black Hole Horizon

m

Consider a particle gradually lowered into a black hole. Classically, the energy associated with the particle gets redshifted, and vanishes when the particle is at the horizon.

Black Hole Horizon

Now take a gas of particles lowered in to a black hole. What happens to the entropy?

Bekenstein
 Hawking

Black Hole Entropy

$$
S_{B H}=k_{B} \frac{A c^{3}}{4 G \hbar}
$$

Hawking Temperature

$$
T=\frac{1}{2 \pi} \frac{\hbar g}{k_{B} c}
$$

$$
g=\frac{G M}{R^{2}}
$$

Unruh Temperature

$$
T=\frac{1}{2 \pi} \frac{\hbar a}{k_{B} c}
$$

in accelerated frame

Holographic principle

The information associated with a certain part d may be (heuristicall represented as bits surface surrounding

ADS/CFT CORRESPONDENCE

EQUIVALENCE BETWEEN FIELD THEORY ON THE "BOUNDARY" AND GRAVITY INTHE "BULK"

ONE SPACE DIMENSION EMERGES CORRESPONDING TO THE "SCALE" OF THE BOUNDARY THEORY. RADIAL EVOLUTION IS LIKE RENORMALIZATION GROUP FLOW.

Black Hole In AdS space

Bulk description Particle gets lowered in to black hole

Boundary description:
Delocalized state gets thermalized by heath bath

Entropic force (wikipedia)

An entropic force is a macroscopic force whose properties are determined not by the character of an underlying microscopic force, but by the whole system's statistical tendency to increase its entropy.

Warmtebad

Polymeer

Warmtebad

Polymeer

Gravity as an Emergent Force

- At a fundamental scale our notions of space and time and matter cease to exist: they are derived concepts.
- In describing Nature in terms of space-time and matter, we ignore many degrees of freedom.
- Gravity arises because the amount of phase space (information) available for these degrees of freedom is influenced by the location of matter in space and time.

A HEURISTIC

ARGUMENT

A HEURISTIC
 ARGUMENT

A HEURISTIC

ARGUMENT

A HEURISTIC

ARGUMENT

A HEURISTIC

ARGUMENT

$$
\Delta S=2 \pi k_{B} \frac{m c}{\hbar} \Delta x
$$

A HEURISTIC

ARGUMENT

$$
\Delta S=2 \pi k_{B} \frac{m c}{\hbar} \Delta x
$$

A HEURISTIC
 ARGUMENT

$F \Delta x=T \Delta S$

$$
\Delta S=2 \pi k_{B} \frac{m c}{\hbar} \Delta x
$$

A HEURISTIC
 ARGUMENT

$$
F \Delta x=T \Delta S
$$

$$
k_{B} T=\frac{\hbar a}{2 \pi c}
$$

$$
\Delta S=2 \pi k_{B} \frac{m c}{\hbar} \Delta x
$$

A HEURISTIC
 ARGUMENT

$$
F \Delta x=T \Delta S
$$

$$
k_{B} T=\frac{\hbar a}{2 \pi c}
$$

$F=m a$

$$
\Delta S=2 \pi k_{B} \frac{m c}{\hbar} \Delta x
$$

A HEURISTIC ARGUMENT

A HEURISTIC

 ARGUMENT

A HEURISTIC

 ARGUMENT

A HEURISTIC

 ARGUMENT

A HEURISTIC ARGUMENT

$$
\frac{1}{2} k_{B} T=E / \# b i t s
$$

A HEURISTIC ARGUMENT

$$
\frac{1}{2} k_{B} T=E / \# b i t s
$$

$$
E=M c^{2}
$$

A HEURISTIC ARGUMENT

$F \Delta x=T \Delta S$

$$
\# \text { bits }=\frac{4 \pi R^{2}}{\ell^{2}}
$$

$$
\ell^{2}=\frac{G \hbar}{c^{3}}
$$

$$
\Delta S=2 \pi k_{B} \frac{m c}{\hbar} \Delta x
$$

$$
\frac{1}{2} k_{B} T=E / \# b i t s
$$

$$
E=M c^{2}
$$

$$
\# \text { bits }=\frac{4 \pi R^{2}}{\ell^{2}}
$$

$$
\ell^{2}=\frac{G \hbar}{c^{3}}
$$

$$
\Delta S=2 \pi k_{B} \frac{m c}{\hbar} \Delta x
$$

$$
\frac{1}{2} k_{B} T=E / \# b i t s
$$

$$
E=M c^{2}
$$

A HEURISTIC ARGUMENT
$F \Delta x=T \Delta S$

$$
\# \text { bits }=\frac{4 \pi R^{2}}{\ell^{2}}
$$

$$
\ell^{2}=\frac{G \hbar}{c^{3}}
$$

$$
\Delta S=2 \pi k_{B} \frac{m c}{\hbar} \Delta x
$$

$$
\frac{1}{2} k_{B} T=E / \# b i t s
$$

$$
F=\frac{G M m}{R^{2}}
$$

$$
E=M c^{2}
$$

This is heuristic, so far...

It is bit of a "swindle" but it catches the essence.

It should be seen as a metaphore. But of what?

- Why does it work?
- What is the meaning of the temperature?
- What is the nature of this information?
- Why is it stored on screens? Can this be derived?
- Why is gravity attractive?
- What about the other forces?
- Are there observable consequences?

Holographic screens at equipotential (= equal redshift) surfaces

Adiabatic principle:

When a fast dynamical system is driven by a slow system the fast reacts back on the slow and creates a reaction force.

When the time scales are widely separated the force is determined by the principle that the phase space volume is preserved.

In quantum mechanics this is a consequence of the Born-Oppenheimer approximation.

Microscopic

 Fast Variables
$H(p, q ; x)$

The system stays in an energy eigenstate of the fast variables(adiabatic theorem).

Macroscopic Slow Variables

x

Adiabatic Reaction Force

Assuming eigenvalues don't cross, the force follows from an adiabatic argument

$$
\Omega(E, x)=\left.\int d^{N} p d^{N} q\right|_{H(p, q ; x) \leq E}
$$

$$
S(E, x)=k_{B} \log \Omega(E, x)=\text { const }
$$

$$
F=-\frac{E}{\sqrt{x} G_{S}}=T \frac{S}{\sqrt{x}} \square_{E}
$$

$$
\frac{1}{k_{B} T}=\frac{S}{E} \square_{x}
$$

NEUTRON STAR

Degenerate Fermions

GRAVITATIONAL COLLAPSE:

What happens to the phase space occupied by the fermions? What about the fermi statistics?

$$
|\Psi\rangle_{\text {particle } 1} \Leftrightarrow|\Psi\rangle_{\text {particle } 2}
$$

Statistics operation: why not continuous?

$$
|\Psi\rangle_{\text {particle } 1} \square \alpha|\Psi\rangle_{\text {particle } 1}+\beta|\Psi\rangle_{\text {particle 2 }}
$$

Positions get ambiguous

$$
\left\langle\left.\Psi\right|_{1} \hat{x} \mid \Psi\right\rangle_{2} \square 0
$$

$$
x_{1}, x_{2} \square \begin{array}{ll}
\square x_{11} & x_{12}[\\
\square x_{21} & x_{22}[
\end{array}
$$

$$
x_{i j}=\left\langle\left.\Psi\right|_{i} \hat{x} \mid \Psi\right\rangle_{j}
$$

Coordinates turn into matrices

At horizons space and time dissappear.

At horizons the separation of
 time scales between the eigenvalues and the "off diagonal modes" breaks down and the coordinates become non commuting matrices.

GRAVITATIONAL

 COLLAPSE:What happens to the phase space occupied by the fermions?

Answer: It goes into the off diagonal phase phase. Not of gravity!

After collapse one can no longer integrate out the off diagonal modes!!

Eigenvalues and off diagonal modes equilibrate and together form "black hole stuff".

Black Hole Horizon

Thought experiment
Horizon

Entropic force

Why do we need to reconsider the origin of gravity and change our current paradigms?

96\% of our Universe is not understood!

What went wrong?

Our current paradigms ignore a lot of information (phase space).

Cos

These ideas can be applied to our universe

$$
k T=\frac{\hbar H_{0}}{2 \pi}
$$

$$
S=\frac{c^{2} H_{0} V}{4 G \hbar}
$$

Dark energy and matter are made of the same stuff

At horizons space and time dissappear.

Dark Energy and Dark Matter

Clusters

Galaxies

Flattening of rotation curves

Flattening of rotation curves

$$
V^{4}=G M_{B} a_{0}
$$

$a_{0}=1.24 \pm 0.14 \times 10^{-10} \mathrm{~m} / \mathrm{s}^{2}$

