LASY (LAser manipulationS made easY) Enabling realistic laser pulses in start-to-end simulations

K. Põder 1, R. J. Shalloo 1, I. Andriyash 2, L. Fedeli 3, A. Ferran Pousa 1, A. Huebl 4, S. Jalas 1, M. Kirchen 1, R. Lehe 4, A. Sinn 1, J.-L. Vay 4 & M. Thévenet 1

- ¹ Deutsches Elektronen Synchrotron (DESY)
- ² Laboratoire d'Optique Appliquée (LOA)
- ³ Commissariat à l'énergie atomique et aux énergies alternatives (CEA),
- ⁴ Lawrence Berkeley National Laboratory (LBNL)

A modern simulation study combines multiple codes

Simulation studies gain from being:

ecosystem

Multi-physics

- Hydrodynamics (HOFI, discharge, etc.) **COMSOL-plasma** ullet
- Beam dynamics, application ullet

Energy efficient

- Efficient codes for reduced model ullet
- Combine the most appropriate tools ullet

Realistic

- Experimental laser profiles ullet
- Experimental plasma/beam profiles ullet

Comprehensive

- Ensembles of simulations
- (Bayesian) Optimization lacksquare

(see next slide)

- We contribute to this

HiPACE++, Wake-T

- timas
- Scalable optimization on experiments and simulations

simulations of a 20 GeV stage starting at 175 GeV for a 135 nm emittance beam w/ ion motion takes 30 min on 16 GPU-equipped nodes (Frontier has 9400) \rightarrow small allocation allows thousands

S. Diederichs et al., Comput. Phys. Comm. 278: 108421 (2022) https://agenda.infn.it/event/35577/contributions/208606 **BLAST** https://github.com/Hi-PACE/hipace

Open-source, 2D (axisymmetric) quasistatic code for \succ (laser/beam-driven), incl. ion motion, Python

1 plasma stage takes seconds-to-minutes on a laptop, suitable for design studies. 20 stages + optimization to 150 GeV in < 1 hour

Fully converged (nm-scale resolution with mesh refinement) 3D simulations of a 20 GeV stage starting at 175 GeV for a 135 nm emittance beam w/ ion motion takes 30 min on 16 GPU-equipped nodes (Frontier has 9400) \rightarrow small allocation allows thousands

S. Diederichs et al., Comput. Phys. Comm. 278: 108421 (2022) https://agenda.infn.it/event/35577/contributions/208606 **BLAST** https://github.com/Hi-PACE/hipace

Open-source, 2D (axisymmetric) quasistatic code for \succ (laser/beam-driven), incl. ion motion, Python

1 plasma stage takes seconds-to-minutes on a laptop, suitable for design studies. 20 stages + optimization to 150 GeV in < 1 hour

Fully converged (nm-scale resolution with mesh refinement) 3D simulations of a 20 GeV stage starting at 175 GeV for a 135 nm emittance beam w/ ion motion takes 30 min on 16 GPU-equipped nodes (Frontier has 9400) \rightarrow small allocation allows thousands

S. Diederichs et al., Comput. Phys. Comm. 278: 108421 (2022) https://agenda.infn.it/event/35577/contributions/208606 **BLAST** https://github.com/Hi-PACE/hipace

Open-source, 2D (axisymmetric) quasistatic code for \succ (laser/beam-driven), incl. ion motion, Python

1 plasma stage takes seconds-to-minutes on a laptop, suitable for design studies. 20 stages + optimization to 150 GeV in < 1 hour

S. Diederichs et al., Comput. Phys. Comm. 278: 108421 (2022) https://agenda.infn.it/event/35577/contributions/208606 **BLAST** https://github.com/Hi-PACE/hipace

suitable for design studies. 20 stages + optimization to 150

LASY is a cornerstone of our S2E simulation ecosystem

Simulation studies gain from being:

Multi-physics

- Hydrodynamics (HOFI, discharge, etc.)
- Beam dynamics, application

Energy efficient

- Efficient codes for reduced model
- Combine the most appropriate tools

Realistic

- Experimental laser profiles
- Experimental plasma/beam profiles

Comprehensive

- Ensembles of simulations
- (Bayesian) Optimization

LASY__

A Python library to simplify laser profile manipulations

- > Use measured laser profiles in simulations
- > Combine codes together (e.g. electromagnetic & quasistatic PIC)
- LASY is a community effort

Introducing LASY

Laser initialisation in Simulations is becoming more complex This brings exciting new possibilities but can be challenging

Realistic laser profiles are key for realistic simulations of laserplasma interactions^[1]

representations

LASY simplifies these workflows with modern programming methods (Open-source, Python, CI/CD, data standards)

- ^[1] B. Beaurepaire et al., *Phys. Rev. X* **5**, 03102 (2015)
- ^[2] <u>https://fbpic.github.io/</u>
- ^[3] J. P. Palastro et al., *Phys. Rev. Lett.* **124**, 134802 (2020)
- ^[4]C. Caizergues et al., *Nat. Photon.* **14**, 475 (2020)
- ^[5] A. Debus et al., *Phys. Rev. X* **9**, 031044 (2019)
- ^[6] A. Ferran Pousa et al., *Phys. Rev. Accel. Beams* **26**, 084601 (2023)

Introducing LASY **An Open-Source Community Solution**

M. Thévenet *et al*, submitted to EAAC 2023 proceedings (arXiv:2403.12191)

Introducing LASY **An Open-Source Community Solution**

LASY-org/lasy Public Open-Source Development				
<> Code 💿 Issues 37 👫 Full requests 14 🕞 Actions 🖽 Projects 6 🔅 Security 🗠 Insights				
양 development ~ 양 ତ	Q Go to file	<> Code -	About	
hightower8083 and pre-commit-	-ci[bot] f 🚥 🗸 2d45110 · last week	🕙 216 Commits	Iasydoc.readthedocs.io Readme	
.github/workflows	Publish to PyPI on release (#159)	7 months ago	4₫8 View license	
a docs	Add ccs- longitudinal profile (#207)	2 months ago	-1/- Activity	
examples	Implement Gerchberg Saxton Algorith	8 months ago	☆ 22 stars	
🖿 lasy	fix a bug with show method for Nm>1 (#	last week	 10 watching 	
tests	tests Closes #215 , add overloading for addi		약 16 forks Report repository	
🗋 .gitignore	Make energy calibration the default (#	last year		
.pre-commit-config.yaml	[pre-commit.ci] pre-commit autoupda	2 weeks ago	Releases 5	
readthedocs.yaml Fix issues in the documentation (10 months ago	O.4.0 (Latest) on Nov 9, 2023	
🗋 .zenodo.json	Zenodo File (#172)	7 months ago	+ 4 releases	
T README.md	Update installation instructions (#192)	5 months ago	Packages	
🗋 conda.yml	Merge hackathon branch into developm	last year	No packages published	
🗋 legal.txt	[pre-commit.ci] auto fixes from pre-co	last year		
🕒 license.txt	[pre-commit.ci] auto fixes from pre-co	last year		
pyproject.toml	Pre-Commit: pydocstyle (#120)	last year	V 🐨 🤥 🖑 🚱 🖏 🧶	
requirements.txt	remove the version specifier for exipro	3 months ago	S	
🗅 setup.py	Add version number for lasy (#131)	last year	Languages	
다 README 쇼 License		≔	• Python 100.0%	
lasy				
Overview				

LASY 0.4.0 Documentation

simulations of laser-plasma interactions.

The code is open-source and hosted on github. Contributions are welcome!

✓ CodeQL / Analyze (python) (pull_request) Successful in 4m Det	ails
Visit voit (ubuntu-latest) (pull_request) Successful in 54s (Required) Det	ails
Comparison of the second	ails
Code scanning results / CodeQL Successful in 3s — No new alerts in code changed by this pull re Det	ails
✓ I docs/readthedocs.org:lasydoc — Read the Docs build succeeded! Det	ails
V 🔶 pre-commit.ci - pr — checks completed successfully Det	ails

Introducing LASY **An Open-Source Community Solution**

Ángel Ferran Pousa Sören Jalas Manuel Kirchen Rob Shalloo Alexander Sinn Maxence Thévenet

Axel Huebl Remi Lehe Jean-Luc Vay

New Contributors Highly Encouraged!

Igor Andriyash

Luca Fedeli Thomas Clark

Spencer Jolly

Page 10

Defining A Laser Pulse

Laser Profile Initialisation Analytic Profiles

Large variety of transverse analytic profiles already included

- Gaussian
- Supergaussian
- Jinc
- Laguerre Gaussian
- Hermite Gaussian

Longitudinal Profiles can be defined separately

Profiles can then be Combined

Laser Profile Initialisation From Experimental Measurements

Incorporate Laser Fluence Measurements (e.g. Camera) Some post-processing available in LASY

DESY. | **Kristjan Põder** | ALEGRO Workshop 2024 | 💭 github.com/LASY-org/LASY | March 20th, 2024

Page 13

Laser Profile Initialisation From Simulation to Simulation

FBPIC^[1]: Electromagnetic PIC code capturing injection

Laser pulse: self-consistent electric and magnetic fields

Wake-T^[2]: Quasi-static code for fast & accurate simulations on a laptop Laser pulse: envelope of the vector potential

FBPIC

- Run simulation
- Output data

LASY

- Directly read openPMD data from FBPIC
 - Convert full-field to envelope representation
 - Convert electric field to vector potential
- Save to standard format

Wake-T

- Initialise LASY data
- Continue Simulation

Laser Profile Initialisation From Simulation to Simulation

FBPIC^[1]: Electromagnetic PIC code capturing injection

Laser pulse: self-consistent electric and magnetic fields

Wake-T^[2]: Quasi-static code for fast & accurate simulations on a laptop Laser pulse: envelope of the vector potential

FBPIC

- Run simulation
- Output data

LASY

- Directly read openPMD data from FBPIC
 - Convert full-field to envelope representation
 - Convert electric field to vector potential
- Save to standard format

Wake-T

- Initialise LASY data
- Continue Simulation

^[1] R. Lehe et al., *Comput. Phys. Commun.* **203**, 66 (2016)

^[2] A. Ferran Pousa et al., *Journ. Phys.* 1350.1 IOP Publishing (2019)

Laser Profile Initialisation From Simulation to Simulation

FBPIC^[1]: Electromagnetic PIC code capturing injection

Laser pulse: self-consistent electric and magnetic fields

Wake-T^[2]: Quasi-static code for fast & accurate simulations on a laptop Laser pulse: envelope of the vector potential

FBPIC

- Run simulation
- Output data

LASY

- Directly read openPMD data from FBPIC
 - Convert full-field to envelope representation
 - Convert electric field to vector potential
- Save to standard format

Wake-T

- Initialise LASY data
- Continue Simulation

[1] R. Lehe et al., *Comput. Phys. Commun.* 203, 66 (2016)
 [2] A. Ferran Pousa et al., *Journ. Phys.* 1350.1 IOP Publishing (2019)

		-

From Simulation to Simulation

^[1] R. Lehe et al., *Comput. Phys. Commun.* **203**, 66 (2016) ^[2] A. Ferran Pousa et al., *Journ. Phys. 1350.1 IOP Publishing* (2019)

Laser Profile Initialisation Spatio-Temporal Couplings (STCs)

Lasers with STCs are possible in LASY

- Currently under development
- First implementation of spatial chirp ready for review
- Possibility to incorporate flying focus and other pulses of interest

Spa	ce time profile #182			
다. Ope 및 Co	en spencerjolly wants to merge 10 commits into LASY-org:development from spencerjolly:spectrometers of the spencerjolly spectrometers of the spectrometers of the spencerjolly spectrometers of the spectrometers	ace-time 💭		
(a) <	spencerjolly commented on Sep 13 - edited -	Member ····		
	This adds the ability to create a pulse with space-time couplings. Spatial chirp at the focus (z=0) can be added with a real-valued parameter 'sc'. This uses the highest level 'Profile' class. An interesting test is if the propagator works properly to propagate such pulses to the beginning of a simulation box. Analytical equations could also be used to directly calculate the fields at a user-defined z-position.			

Watch this space!

Laser Pulse Manipulation

Laser Pulse Manipulation Propagation in Vacuum

DESY. | **Kristjan Põder** | ALEGRO Workshop 2024 | 💭 github.com/LASY-org/LASY | March 20th, 2024

Powered by Axiprop

Laser can be defined in one plane and then numerically propagated to where it is needed

Propagation algorithms

- Cartesian or cylindrical geometry
- On CPU or GPU

Laser Pulse Manipulation Adding Optical Elements

Plans to add optical elements to LASY (PR #199)

Example: Axiparabola

Example: Defining laser based on NF measurements from <u>Online Diagnostics</u>

Calculate focal profile and use for simulations

Laser Pulse Manipulation Gerchberg Saxton Algorithm

Iterative algorithm to calculate laser phase

. phaseBackward, phaseForward, amp_error = gerchberg_saxton_algo(laser1, laser2, propDist)

^[1] L. T. Dickson et al. *Phys. Rev. Accel. Beams* **25**, 101301 (2022)

Modelling complex experimental pulses LASY allows leveraging existing openPMD infrastructure to visualise and simulate complex pulses

Generate

Longman et al, Phys Plaamas 29, (2022)

Measure

Visualise

Simulate

Getting Started with LASY Installation and First Simulation

from lasy.profiles.gaussian_profile import GaussianProfile from lasy.laser import Laser

wavelength polarization	= 800e-9 = (1,0)	<pre># Laser wavelength in meters # Linearly polarized in the x direction</pre>
energy	= 1.5	<pre># Energy of the laser pulse in joules</pre>
spot_size	= 25e-6	# Waist of the laser pulse in meters
pulse_duration	= 30e-15	<pre># Pulse duration of the laser in seconds</pre>
t_peak	= 0.0	<pre># Location of the peak of the laser pulse in time</pre>

laser_profile = GaussianProfile(wavelength,polarization,energy,spot_size,pulse_duration,t_peak)

```
dimensions
               = 'rt'
                                                   # Use cylindrical geometry
               = (0,-2.5*pulse_duration)
                                                  # Lower bounds of the simulation box
lo
               = (5*spot_size,2.5*pulse_duration) # Upper bounds of the simulation box
hi
                                                   # Number of points in each dimension
               = (300, 500)
num_points
laser = Laser(dimensions,lo,hi,num_points,laser_profile)
```


Installation Inst	tructions
-------------------	-----------

pip install lasy

Import functions and classes

Define the laser based on physical characteristics

Define the grid initialise the laser object

Propagate the pulse upstream of the focal plane

Propagate or manipulate as you want

Dump to file

Initialisation of Laser Pulse with Experimental Data Example

from lasy.profiles.transverse.transverse_profile_from_data import TransverseProfileFromData from lasy.profiles.longitudinal.longitudinal_profile_from_data import LongitudinalProfileFromData from lasy.profiles.CombinedLongitudinalTransverseProfile import CombinedLongitudinalTransverseProfile

```
# Import the fluence data
                                    # Camera calibration in um/pixel
                                   # Import temporal data
                                    # Central Wavelength
                                    # Polarisation
                                    # Laser Energy
= TransverseProfileFromData(fluence, (0, 0), (cols*calib, rows*calib)
= LongitudinalProfileFromData(temporalData, (-150e-15,150e-15))
= CombinedLongitudinalTransverseProfile(wavelength, pol, laser_energy, longProf, transProf)
                           hi = (75e-6, 75e-6, 150e-15); npts = (100, 100, 100)
```


LASY enables contemporary high quality simulations Flexible open-source toolkit to simulate realistic laser pulses in most efficient manner

LASY allows

- Creating and manipulating (complex) laser pulses
- Importing and manipulating experimentally measured spatial, temporal or spatio-temporal laser profiles
- Interfacing full EM codes with efficient, reduced-model codes

in a modern, standard-embracing codebase.

Contributions to the code (very) welcome!

Need more information? github.com/LASY-org/LASY maxence.thevenet@desy.de

Page 24