Preliminary Investigation of a Higgs Factory based on Proton-Driven Plasma Wakefield Acceleration

ALEGRO Lissabon, 19-22 March 2024

J. Farmer, A. Caldwell, and <u>A. Pukhov</u>

Introduction

A Higgs factory is a high priority for particle physics.

Plasma wakefield acceleration offers the advantage of high acceleration gradients

Proton-driven plasma wakefield acceleration would allow high energy gain in a single stage

potentially higher average gradients

positron acceleration

Motivation: plasma wakefields

Damage threshold not a concern for plasma

- already "broken"
- gradients > 1GeV/m

Wakeboarding

Plasma wakefield acceleration

Energy gain limited by choice of driver

.laser pulse

.electron bunch

proton bunch

Not enough energy in laser/electron driver to reach high witness energy. Solutions include

structured driver (stability)

.staging (alignment, average gradient)

Proton-driven PWFA

Proton beams have plenty of energy

BUT available beams "too long" to efficiently drive a wake

Short driver efficiently excites wakefield

Long driver suppresses its own wake

Proton-driven PWFA

Focussing/defocussing fields in plasma

Resulting train of microbunches can drive large wakefields

John Farmer, MPP

HALHF meeting, March 2024

Proton-driven PWFA

Focussing/defocussing fields in plasma

Resulting train of microbunches can drive large wakefields

HALHF meeting, March 2024

Short proton drivers revisited

It's worth revisiting short proton drivers.

Pros:

Higher gradients Higher efficiency Cons: Such drivers (L~150 µm) don't exist

Short proton drivers revisited

physics PUBLISHED ONLINE: 12 APRIL 2009; CORRECTED ONLINE: 24 APRIL 2009 | DOI: 10.1038/NPHYS1248

nature

Proton-driven plasma-wakefield acceleration

Allen Caldwell¹*, Konstantin Lotov^{2,3}, Alexander Pukhov⁴ and Frank Simon^{1,5}

Caldwell et al. (2009)

ARTICIES

A short proton wakefield driver is not a new idea (2009). Predates AWAKE! So why now?

Short proton drivers revisited

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 32, NO. 6, SEPTEMBER 2022

4100404

Record High Ramping Rates in HTS Based Superconducting Accelerator Magnet

H. Piekarz^(D), Senior Member, IEEE, S. Hays, B. Claypool, M. Kufer^(D), and V. Shiltsev, Fellow, IEEE

Piekarz et al. (2022)

Developments in fast-ramping magnets would allow rapid-cycling (~5 Hz) synchrotrons.

Would allow for competitive luminosities for a proton-driven Higgs factory *if* bunch length can be achieved.

Configuration

Assume a suitably short proton driver can be generated

Moderately nonlinear wakefield allows acceleration of both electrons and positrons

Configuration

Higgs–Z threshold is 216.4 GeV Add some margin \rightarrow collision energy of 250 GeV

125 GeV e⁻ colliding with 125 GeV e⁺
HAHLF considers 500 GeV e⁻ colliding with 31.3 GeV e⁺

We need to demonstrate

.efficiency

stability

Picking the driver

Assume a suitably short proton driver can be generated

Need to pick driver parameters

•High efficiency

Moderately nonlinear
 wake for positron
 acceleration

Scans with different driver length, density and radius

Optimal driver length ~driver charge density

Too-high current leads to highly-nonlinear wake

Scans with different driver length, density and radius

Optimal driver length ~driver charge density

Too-high current leads to highly-nonlinear wake

Everything scales with plasma frequency

1x10¹¹ protons gives •plasma density 3x10¹⁴ cm⁻³ .driver length 150 µm Initial wakefields ~ 0.8GV/m

Initial proton driver chosen to generate suitable wakefields

Initial proton driver chosen to generate suitable wakefields

Initial proton driver chosen to generate suitable wakefields

Driver rapidly pinches

Initial proton driver chosen to generate suitable wakefields

Driver rapidly pinches

 Highly nonlinear wakefield not suitable for positron acceleration

Good initial wakefields not sufficient:

driver needs to evolve slowly

counteract strong focussing wakefields

 $\sigma_z = 150 \ \mu m$ $\sigma_r = 240 \ \mu m$ $n_b = 1 \times 10^{11}$ $E = 400 \ \text{GeV}$ $\varepsilon_N = tailored$ $\cdot 3 \ \mu m \text{ at head}$ $\cdot \text{initially constant}$

-rises linearly to 75 μm

John Farmer, MPP

Picking the driver: stability

How can we generate a tailored emittance profile?

Most likely: with difficulty

BUT emittance is initially constant before growing monotonically

How can we generate a tailored emittance profile?

Most likely: with difficulty

BUT emittance is initially constant before growing monotonically

AWAKE Collaboration, PRL (2019)

Harness plasma instabilities?

Initial proton driver chosen to generate suitable wakefields

Initial proton driver chosen to generate suitable wakefields

Tailored emittance profile stops the bunch from pinching

BUT: protons "fall back" in the light frame

Initial proton driver chosen to generate suitable wakefields

Tailored emittance profile stops the bunch from pinching

BUT: protons "fall back" in the light frame

Initial proton driver chosen to generate suitable wakefields

Protons are fast, but not that fast.

Driver evolution will also modify wakefield phase. I

Witness will "catch up" with the driver.

Protons are fast, but not that fast.

Driver evolution will also modify wakefield phase.

Witness will "catch up" with the driver.

Change plasma density to keep phase constant

Change plasma density to keep phase constant

We now have all the building blocks for Higgs factory

Large accelerating wakefields

.Regions suitable for electron and positron acceleration

•Stable accelerating phase

Just (!) need to simulate acceleration

Large focussing fields mean extremely tiny witness radius at high energy

- .~1 µm for electrons
- .~100 nm for positrons

Simulations don't resolve this

- Nonphysical emittance growth
- .Nonphysical energy spread growth

However, simulations do provide proof-of-concept for energy gain

Simulations show proof-of-concept for acceleration .10% of driver charge accelerated to 125 GeV in ~180 m

With tailored witness current profile, 20% should be possible

S. van der Meer, CLIC Note (1985)

Requires long plasma stage: •CERN is already investing in this technology

> <u>N. E. Torrado et al (2023)</u> <u>B Buttenschön, N Fahrenkamp and O Grulke (2019)</u>

Luminosity

Simulations don't resolve emittance or energy spread, so we assume that these can be controlled.

For electrons: AWAKE Run 2c

Olsen et al. (2019), Farmer et al (arXiv)

For positrons: simulation study by Hue et al.

C. S. Hue et al. (2021)

Luminosity

Combine everything:

Assume proton beams at 5 Hz, with 1000 bunches per beam

Assume witness beams with 20% driver charge, 100 nm emittance*, ILC optics, and negligible energy spread

*Flat beams should be investigated

and this scheme is competitive:

1.7x10³⁴ cm⁻²s⁻¹

Proton Accelerator Parameter	Symbol	Unit	Value
Proton energy	E_p	GeV	400
Refill Time	au	s	0.2
Bunch population	N_p	10^{10}	10
Number of bunches	n		1000
Longitudinal RMS	σ_z	μm	150
Transverse RMS	$\sigma_{x,y}$	μm	240
Normalized transverse emittance	$\epsilon_{T,p}$	μm	$3-75~\mu\mathrm{m}$
Power Usage	Р	MW	150
Plasma Parameters	Symbol	Unit	Value
e^- cell Length	$L_{e^{-}}$	m	240
e^+ cell Length	L_{e^+}	m	240
density - upstream	n_p	$10^{14} {\rm ~cm^{-3}}$	3.2
density - downstream	n_p	$10^{14} {\rm ~cm^{-3}}$	5.2
e^{\pm} Bunch Parameters	Symbol	Unit	Value
Injection Energy	$E_{e,in}$	GeV	1
Final Energy	E_e	GeV	125
Bunch population	$N_{e^{\pm}}$	10^{10}	2
Normalized transverse emittance	$\epsilon_{T,e}$	nm	100
Hor. beta fn.	β_x^*	$\rm mm$	13
Ver. beta fn.	β_y^*	$\mathbf{m}\mathbf{m}$	0.41
Hor. IP size.	σ_x^*	nm	73
Ver. IP size.	σ_y^*	nm	13
e^-e^+ Collider Parameter	Symbol	Unit	Value
Center-of-Mass Energy	$E_{\rm cm}$	GeV	250
Average Collision Rate	f	kHz	5
Luminosity	\mathcal{L}	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.7×10^{34}

Luminosity

	Proton Accelerator Parameter	Symbol	Unit	Value
	Proton energy	E_p	GeV	400
Cortaine everything:	Refill Time	au	s	0.2
e e g	Bunch population	N_p	10^{10}	10
	Number of bunches	n		1000
•As $a_1 \circ a_2$	Longitudinal RMS	σ_z	μm	150
	Transverse RMS	$\sigma_{x,y}$	μm	240
Whe Meline:	Normalized transverse emittance	$\epsilon_{T,p}$	μm	$3-75~\mu m$
Nased "Ininam.	Power Usage	Р	MW	150
on providiy Invoice	Plasma Parameters	Symbol	Unit	Value
10ton D'Vestigat	e^- cell Length	L_{e^-}	m	240
"9d[lon or	11 Length	L_{e^+}	m	240
J. For Ven Pla VI a Li		n_p	10^{14} cm^{-3}	3.2
armer A a aSma wa 17/00	0 F		10^{14} cm^{-3}	5.2
and the second s	° ranta		Unit	Value
and nog	la actory		GeV	1
*Elat beams should be investigated	Acos		GeV	125
That beams should be investigated	······································		10^{10}	2
	s'allo	n 📕	nm	100
		'	$\mathbf{m}\mathbf{m}$	13
		ý v	$\mathbf{m}\mathbf{m}$	0.41
and this scheme is competitive.		\hat{x}	nm	73
		σ_y^*	nm	13
	e^-e^+	ymbol	Unit	Value
$1.7 \times 10^{34} \text{ cm}^2 \text{s}^1$	Center-of-Mass E.	$E_{\rm cm}$	GeV	250
	Average Collision Rate	f	kHz	5
	Luminosity	\mathcal{L}	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.7×10^{34}

Outlook

Key challenges:

- .rapid-cycling proton synchrotron with short bunches
- .demonstration of drive bunches with tailored emittance
- •experimental demonstration of emittance control for PWFA acceleration of positron bunches
- acceleration of flat witness bunches
- .long plasma stages at high rep rate

~ Backups ~

Footprint

Fits on the Fermilab site (P5 review)

Emittance

Simulations for AWAKE Run 2c how that a blowout is *not* required to have emittance control.

Obviously a big gap between this and positron beams with sub-µm emittance!

Adapted from Farmer et al (arXiv)

2 μm, 100 pC 16 μm, 100 pC

Extension to HALHF

Acceleration limited by dispersion, not energy depletion: scales as $1/\gamma^2$.

Use a 800 GeV driver, accelerate to ~500 GeV in ~1 km.

Cooling

Witness with 10% driver charge absorbs ~20% of wakefield energy

Witness with 20% driver charge absorbs ~40% of wakefield energy

Assume acceleration over 240m, gives required cooling as 12.5 kW/m

Moderately nonlinear wakefields retain their structure after loading.

Could use a second witness bunch to "mop up" excess wakefield

Scan driver length.

Solid line: $k_p r = 1.0$

Scan driver length.

Optimal length depends on beam charge density.

High current leads to nonlinear plasma response.

Dashed line:	$k_{p}r = 0.8$
Solid line:	$k_{p}r = 1.0$
Dotted line:	$_{48}k_{p}r = 1.2$

Replot wakefield as a function of beam charge.

Replot wakefield as a function of beam charge.

Optimal is best gradient per unit charge.

