Physics considerations for laser-plasma linear colliders

Carlo Benedetti

BELLA Center, LBNL

ALEGRO 2024 Workshop IST, Lisbon, Portugal March 19=22, 2024

JIA DESCRIPTION

ALEGRO 2024

Work supported by Office of Science, US DOE, Contract No. DE-AC02-05CH11231

ACCELERATOR TECHNOLOGY & ATAP

Acknowledgements

BELLA Center D. Terzani, S.S. Bulanov, J. Osterhoff, C.B. Schroeder, E. Esarey

AMP C. Mitchell, M. Garten, R. Lehe, A. Huebl, and J.L. Vay

C.G.R. Geddes

P5 report recommends effort towards development of 10 TeV pCM collider and encourages development of self-consistent design for a wakefield-based collider.

"Recommendation 4: **Support** a comprehensive **effort** to develop the resources - theoretical, computational, and technological — essential to our 20-year vision for the field. This includes an **aggressive R&D program** that, while technologically challenging, could yield revolutionary accelerator designs that **chart a realistic path to a 10 TeV pCM collider**."

"Parallel to the R&D for a Higgs factory, **the US R&D effort should develop a 10 TeV pCM collider**, such as a muon collider, a proton collider, or **possibly** an electron-positron collider **based on wakefield** technology."

→ Challenges with all technologies...

"Wakefield concepts for a collider are in the early stages of development. A critical next step is the delivery of an end-to-end design concept, including cost scales, with self-consistent parameters throughout."

https://www.usparticlephysics.org/2023-p5-report/

Overview of the presentation

- Schematic for a multi-TeV-class LPA-based collider
 - \rightarrow Use "straw-person" design to identify key R&D challenges (<u>linac</u> only in this talk);
- Characterize LPA performance for fixed laser energy and wavelength (i.e., fixed laser technology)
 - → Max. energy gain, stage length, optimal bunch charge, etc. in different regimes (e.g., self-guided, channel-guided);
- □ Present examples of collider-relevant stages (self-guided and channel-guided)
 → Discuss beam quality preservation during staging;
- Recap of challenges & potential solutions
- Summary and conclusions

Conceptual design of a multi-TeV-class LPA-based collider: preliminary considerations

Conceptual design of a multi-TeV-class LPA-based collider: LPA and bunch properties

LPA properties determined by minimization of wall-plug power, beamstrahlung, and linac length + achieve desired luminosity (~10³⁴ cm⁻² s⁻¹ @ 1 TeV):

- $n_0 \sim 10^{17} \text{ cm}^{-3} \rightarrow 10 \text{ s of J laser / stage}$
- multi-GeV energy gain / stage
- high bunch charge (>100s pC)
- high bunch quality (emittance < 0.1 um, energy spread < 1%)
- high efficiency (10s %, laser \rightarrow wake, wake \rightarrow beam, ...)
- ~100s LPA stages/TeV

What type of LPA stage can best fulfill these requirements? Can staging preserve the required high bunch quality?

Characterization of LPA performance in different regimes for given laser technology (i.e., fixed energy and wavelength)

Laser driver: $a_0 \sim 1$, $k_p w_0 \sim 3$, $k_p L \sim 1$ (~resonant)

- \rightarrow Guiding provided by plasma channel (P/P_c~1)
- \rightarrow Operates best in quasi-linear regime (a₀<~3), nonlinear possible
- \rightarrow Fixing normalized laser parameters, wavelength, and laser energy determines on-axis density:

$$n_0 \propto rac{a_0^{4/3} (k_p w_0)^{4/3} (k_p L)^{2/3}}{\lambda_0^{4/3} U_0^{2/3}}$$

 $(n_0=1.2 \times 10^{17} \text{ cm}^{-3} \text{ for } U=10 \text{ J}, \lambda_0=0.8 \mu\text{m}, a_0=1.5, k_p w_0=3, k_p L=1)$

Energy gain: $\Delta W_{\text{bunch}} \sim n_0^{-1} \lambda_0^{-2}$

→ Energy gain in channel-guided LPAs larger than for self-guided LPAs owing to much lower density of operation (which compensates for the larger gradients available in self-guided stages)

- \rightarrow Self-guiding (P/P_c >> 1)
- \rightarrow Operates in nonlinear regime
- \rightarrow Fixing laser strength, wavelength, and laser energy determines density:

$$n_0 \propto rac{a_0^{7/3}}{\lambda_0^{4/3} U_0^{2/3}}$$

(**n₀=1.5x10¹⁸ cm⁻³** for U=10 J,
$$\lambda_0$$
=0.8 µm, a_0 =4.5)

For given laser energy and wavelength max energy gain in channel-guided LPAs is larger than in self-guided LPAs (for negligible beamloading and short bunches)

Energy gain in quasi-linear channel-guided stages can be increased with optimal (includes laser evolution effects) longitudinal density tapering

 \rightarrow Energy gain in channel-guided LPAs can be ~4 times larger than in self-guided LPAs w/ tapering \rightarrow Density tapering more effective for channel-guided/quasi-linear stages than for self-guided/nonlinear stages 9

Determining characteristic charge that can be accelerated in an LPA requires identifying bunch profile that flattens the wake (i.e., absorbs energy from the wake)

Characteristic charge $\leftarrow \rightarrow$ current profile that flattens the wakefield within the bunch (i.e., absorbs wake's energy)

• Linear regime (i.e., $E_z/E_0 <<1$) \rightarrow triangular profile (Katsouleas et al., Part. Accel., 1987)

• Blowout regime (requires $\delta n \sim n_0$, i.e., $a_0 > 8-10$) \rightarrow trapezoidal profile (Tzoufras et al., PRL, 2009)

 \rightarrow Characteristic current profile depends on the LPA regime and can be computed numerically

For given laser energy the characteristic bunch charge accelerated in self-guided LPAs is larger than in channel-guided LPAs

Scaling of the accelerated charge: $Q_{bunch}(U, \lambda_0) \sim U^{1/3} \lambda_0^{2/3}$

 \rightarrow Charge in self-guided LPAs is >2-8 times larger than for channel-guided LPAs (owing to larger acc. gradient)

Production of beams with a small energy spread requires flattening the wakefield AVERAGED over the LPA length

Current profile that flattens initial wake not optimal to minimize energy spread

 \rightarrow bunch acquires energy chirp (= energy spread) because of laser evolution

Production of beams with a small energy spread requires flattening the wakefield AVERAGED over the LPA length

• Current profile that flattens initial wake not optimal to minimize energy spread

- \rightarrow bunch acquires energy chirp (= energy spread) because of laser evolution
- Optimal beam profile: energy chirp imparted initially (overloading) compensated during acceleration
 - \rightarrow minimum energy spread achieved at the end of the stage

A self-guided stage operating in the <u>bubble</u> regime providing high-gradient, high-charge, and high-efficiency acceleration has been designed

Laser: U=50 J, λ_0 =1.0 μ m, a_0 =4.5, T_0=80 fs, w_0 =36 μ m Plasma: n_0 = 3.4x10¹⁷ cm⁻³, stage length = 3.1 cm, linear taper (+74%)

 $\begin{array}{l} \Delta W_{bunch} = \ 3.08 \ GeV \ (100 \ GV/m) \\ Q_{bunch} = \ 1.3 \ nC - L_{bunch} = 9.3 \ \mu m - I_{bunch} = 49 \ kA \\ Energy \ spread = \ 0.1\% \end{array}$

Energy considerations:

- Wake-to-bunch energy transfer = 40%
- Laser driver depletion = $20\% \rightarrow$ remaining laser driver energy could be returned to the grid with photovoltaic

→ ~320 LPA stages/TeV

→ <u>Not suitable</u> for positron acceleration (stiff required for positron arm, e. (<u>See talk by S. Corde (Thu 9.30am</u>)) me

 \rightarrow Strong focusing yields small bunch size (~nm @ ~ TeV energies for collider-relevant emittances):

challenging for inter-stage transport and alignment!

JINST (2022) Electron plasma density

Schroeder et al.,

LPA stage in the bubble regime provides quality-preserving acceleration

• **Coulomb scattering**: emittance growth from collisions with background ions (Hydrogen) is < nm for multi-TeV beams owing to strong focusing provided by bubble wake.

Betatron radiation: for low emittance beams the synchrotron radiation-induced energy spread and power loss are < 1%.

Transverse beam stability:

- \rightarrow beam hosing suppressed by spread in betatron frequency induced by background ion motion triggered by the highcharge, low-emittance, and high-energy beam;
- → beam emittance from ion motion suppressed by bunch tapering (f_{S} Diederich (Thu 9am) Results assume round beam. Flat See talk by S. Diederich to emittan

Mehrling et al., PRL (2018) Benedetti et al, PRAB (2017) Benedetti et al., Phys. Plasmas (2021)

... could be prone to emittance mixing!

Emittance preservation requires development of achromatic interstage transport elements for e-beam

Emittance preservation requires development of achromatic interstage transport elements for e-beam

Emittance preservation requires development of achromatic interstage transport elements for e-beam

Minimum coupling distance between stages determined by refocusing of tightly-focused bunch (not laser in-coupling)

A channel-guided stage operating in the <u>quasi-linear</u> regime providing highgradient, high-charge, and high-efficiency acceleration has been designed

5.0

Laser: U=8.9 J, λ_0 =1.0 um, a_0 =1.8, T₀=73 fs , w_0 =41 μ m Plasma (<u>hollow channel</u>): n_0 =0.96x10¹⁷ cm⁻³, R_c=24 μ m, stage length = 78 cm w/ optimal taper

 $\begin{array}{l} \Delta W_{bunch} = \ 5.05 \ GeV \ (6.5 \ GV/m) \\ Q_{bunch} = \ 0.24 \ nC - L_{bunch} = 30 \ \mu m - I_{bunch} = 5 \ kA \\ Energy \ spread = \ 0.8\% \end{array}$

Energy considerations:

- Wake-to-bunch energy transfer = 68%
- Laser driver depletion = 20% → remaining laser driver energy could be returned to the grid with photovoltaic
- \rightarrow ~200 LPA stages/TeV + suitable for positron acceleration
- → Negligible emittance growth from Coulomb scattering and no energy spread from synchrotron radiation
- → Unstable w/o strong focusing: stabilization based on structured channel under investigation
- → Hollow-channel allows for large (~um-scale) beam size: relaxed constraints on inter-stage transport and alignment!

Electron plasma density

Schroeder et al.,

NIMA (2016)

Use of large bunch sizes (enabled by hollow channel) results in suppression of chromatic emittance growth, relaxes alignment tolerances, and enables compact staging

21

LPA stage #

Recap of LPA-based collider challenges and potential solutions (some requiring <u>significant</u> R&D)

- Laser diffraction -Self-guiding in nonlinear regime
- -Guiding in pre-formed plasma channel
- Laser-particle beam dephasing
 Plasma tapering
- Laser energy depletion (with high gradient) -Staging with compact driver in-coupling
- Positron focusing and acceleration (with high quality)
 Use plasma columns/filaments
 Use hollow channels
- High laser-to-beam efficiency (no energy spread growth)
 Shaped particle beams
 Laser energy recovery
- Heating of plasma
 -Use an "energy recovery" pulse
- High-average laser power -Fiber laser combining

- Scattering in plasma
 Strong plasma focusing
 Use (near-) hollow channels
- Emittance growth via ion motion -Use hollow channel -Adiabatic, slice-by-slice, matching
- Beamstrahlung mitigation -Short bunches
- -Flat beams in hollow channels
- Beam break-up / other transverse beam instabilities -Detune betatron freq. (e.g., ion motion or energy spread) -Stagger tuning
- Alignment tolerances in linac: -Control beam size
- Non-linac subsystems requiring (major) R&D:
 -beam (e+/e-) source (this could be laser-based)
 -beam cooling
 -polarization
 -BDS. ...

Summary and conclusions

High-level e-/e+ collider parameters based on hollow channel LPAs

Center-of-mass energy [TeV]	15
Beam energy [TeV]	7.5
Luminosity $[10^{34} \text{ cm}^{-2} \text{ s}^{-1}]$	50
Particles/bunch $[10^9]$	1.2
Beam power [MW]	65
RMS bunch length $[\mu m]$	8.5
Repetition rate [kHz]	47
Time between collisions $[\mu s]$	21
Beam size at IP, x/y [nm]	4/0.25
Linac length [km]	3.3
Facility site power (2 linacs) [MW]	1100

High-level γ/γ collider parameters based on **bubble regime** LPAs

Center-of-mass photon energy	15 TeV
Photon beam energy	7.5 TeV
Electron beam energy	9.1 TeV
Beam power	12.5 MW
Repetition rate	1.1 kHz
Time between collisions	0.9 ms
Vertical beam emittance	100 nm
Horizontal beam emittance	100 nm
Final focus beta functions, $\beta_x^* = \beta_y^*$	0.15 mm
Scattering wavelength	36 µm
Geometric luminosity	$2 \times 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-2}$
Facility site power (2 linacs)	415 MW

- Energy frontier particle physics community desires ~10 TeV pCM collider (P5 recommendation);
- LPAs potential candidates as drivers: high-gradient (relatively short linac), accelerate short bunches (saves power);
- Schematic for a LPA-based collider developed to guide R&D:
- Linac issues analyzed in this talk:
 - Characterization of LPAs operating in different regimes with fixed laser energy and wavelength (energy gain, optimal bunch current profile for high-efficiency and low-energy spread, tapering, etc.);
 - Designed collider-relevant LPA stages providing highenergy, high-efficiency, high-quality acceleration;
 - Emittance preservation during staging;
- Self-consistent design and integration of all sub-systems requires strong community effort (and \$\$).

Backup

Wall-to-ebeam energy efficiency could be improved using a <u>lower energy</u> laser pulse to recover part of the unused energy in the plasma (and reduce heating of plasma)

- Drive laser deposits energy into plasma wave (frequency red-shifts)
- Energy-recovery laser absorbs energy from wake(frequency blue-shifts)
 - \rightarrow Re-use laser in another LPA stage
 - → Send to photovoltaic (targeted to laser wavelength) [energy recovery]
 - → Reduce unused energy in the plasma [heat management]

Requires tuning of the LPA stage so energy absorption for bunch and recovery pulse is optimized. Presence/absence of <u>actual</u> Improvement depends on efficiencies (laser -> wake, wake->bunch, photovoltaic recovery, pulse creation)

25

