

Northern Illinois University

ADVANCES IN STRUCTURE WAKEFIELD ACCELERATOR R&D FOR INTEGRATION IN A LINEAR COLLIDER

presented by Philippe Piot ppiot@anl.gov

Tuesday, March 19th, 2024

Some of the materials was originally produced by Chunguang Jing (Euclid/ANL) John Power (ANL)

APPROACHES FOR ACCELERATION

Two-Beam Acceleration (TBA) versus Collinear Wakefield Acc. (CWA)

TBA

- "drive" beam excites wakefield in power extractor → powerful (GW) short (ns) pulses
- "main" beam is accelerated in a collocated accelerating structure

CWA

- "drive" beam excites wakefield in structure → high-field wakes
- "main" beam is accelerated co-linearly in the same structure

ATTAINING HIGH GRADIENTS IN STRUCTURES

Limiting effects & pathway to high fields

- RF breakdowns limits reliability of collider, damages structure mitigation: short RF pulses, cryogenic cooling, new structure designs
- Field emission produces excess electrons that load the wake and/or can be trapped and accelerated mitigation: short RF pulses, new structure designs

TBA: POWER GENERATION Principle

- Drive bunch excites wake
- Pulse duration is related to group velocity of the mode and length of the structure L

$$\tau \simeq \frac{L}{v_g} \left(1 - \frac{v_g}{c}\right) \quad \text{group velocity}$$

Train of bunch \rightarrow "coherent stacking of the RF pulses from each bunch (arb. units)

Advantages

- Short-pulse excitation \rightarrow high power
- Can operate at any frequencies

L)

4

2

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

PATH TO GV/M FIELDS IN STRUCTURES

Short high-peak-power RF pulses

- Breakdown is a major limitation to attaining high 1.2 electric fields in structures
- Fitting of experimental data* (CERN) on breakdown suggest a scaling

 $BDR \propto E^{30} \tau^5$ RF pulse duration

accelerating field

- So far pulse duration was limited by minimum RF pulse duration available from klystrons
- RF-pulse duration produced via wakefield can be much shorter (~few ns at X-band freq.)

*A. Grudiev, et al. PRAB 10.1103/PhysRevSTAB.12.102001 (2009)

(MV/m)

E

- Q~350 nC)
- Surface fields of ~0.4 GV/m on cathode (beam-based and RF measurements)

conne National Laboratory is a ENERGY U.S. Department of Energy laboratory managed by UChicago Argonne, LLC W.H. Tan, et al. PRAB 10.1103/PhysRevAccelBeams.25.083402 (2022

60

80

laser launch phase φ_0 (deg)

100

120

TBA: STAGING

Integrated experiment capitalizing on AWA multiple e- sources

- Staging of a TBA SWFA accelerator demonstrated (2 stages)
- 100 MeV/m average gradient attained with iris-loaded GHz structure
- Scaling toward a 500-MeV demo (possible at AWA would benefit from energy upgrade)

Drive Train #1+2 on

13

12

Beam energy [MeV]

DRIVE BEAMS NEEDS FOR CWA

DB properties directly impact the field topology in CWA

 Scaling of wakefield peak amplitude in SWFA
 longitudinal form factor

$$\hat{E}_{z} \sim \frac{Q}{a^{2}} \tau_{\perp}[Q(x,y)] b_{\parallel}[\lambda,Q(z)]$$
structure aperture (SWS geom. & beam distrib.)

- Exciting large E-field amplitudes requires high charge, low emittance, short DBs
- Improving transfer of energy from drive to witness beam demands
 - low-emittance (eff. interaction length),

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

UCHICAGO

ARGONNE

Shaped temporal distribution (transformer ratio)

CWA: RECENT WORK ON EFFICIENCY

Improving transformer ratio

- Enhanced transformer ratio (TR) demonstrated using shaped beam via EEX.
- Current research focus: Demonstrate high TR with high accelerating field
 - Improve shaping capabilities (e.g. shorter pulses)
- Synergistic with PWFA

PWFA

SWFA

CWA: TRANSVERSE STABILITY

Improving beam stability

 Embed structure in quadrupole wiggler with adaptive focusing; length of quadrupole magnet scales as

$$L = L_0 \sqrt{1 - \alpha z}$$

with the DB deceleration $\gamma(s,z) = \gamma_0 \left[1 - \alpha z\right]$

- Prepare a DB distribution to dynamically chirp the beam during deceleration and insure it remains constant
 - \rightarrow modified Bane's distribution

ENERGY U.S. Department of Energy laboratory

Experimental tests on these mitigation techniques planned at AWA

TRANSVERSE STABILITY

Mitigation and new observations...

- Acceleration in alternating slab structures for beam control
- Preliminary experiment performed and confirm simulations

 Observation of skew-wakefield in slab structure (driven by tilted flat beams)

W. Lynn, et al.

NAPAC22 (2022)

ADVANCED STRUCTURES

BRIGHT FLAT E- BEAMS W/O COOLING

Removing damping ring from LC design

- State of the RF gun produce 6D brightness larger than required to reach emittance at IP
- Cascaded cross-plane phase-space manipulation can redistribute emittance of a bright beam to be consistent with requirement for linear collider

Application to e+ remains challenging

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

	ILC	CLIC	rf gun
Reference	[7]	[8]	[5]
Charge Q (nC)	3.2	0.83	2
Energy E_b (GeV)	250	380	24×10^{-3}
$\varepsilon_x (\mu m)$	10	0.9	1.3
ε_v (nm)	35	20	1.3×10^{3}
σ_{z} (mm)	0.3	0.07	2.31
σ_{δ} (%)	0.19	0.35	~0.1
ε_{7} (m)	0.27	0.18	$\sim 1.1 \times 10^{-4}$
$\mathcal{B}_6 (pC \mu m^{-3})$	3.4×10^{-2}	0.25	~11

- Ideally, high field is favorable to higher brightness; however chemical and physical topology of photocathodes sets a limit on the brightness
- The TBA XRF gun discussed earlier could be an option for bright-beam generation in an advanced collider

CONCLUDING REMARKS (I)

Multi-user soft X-ray free-electron laser combining SRF with CWA or NC with TBA Improve efficiency Beam dynamics of main bunch develop new structures

AWA energy doubler

BBU control compression 500-MeV demonstrator

High-quality beam

TeV-class e+/e- linear collider (currently TBA scheme)

Increase AWA energy, improve brightness, add compression capability (THz structures)

TODAY: Developing enabling technologies and concepts for TBA and CWA:

- precise beam control (TR, BBU supp., efficiency)
- bright beam generation
- novel structures for power extraction
 17 high-gradient acceleration

CONCLUDING REMARKS (II)

- Significant progress has been made on operating RF structure with surface field close to GV/m within the last 4 years
- Short (< 10-ns) RF-pulses naturally produced in two-beam accelerators (TBA) are critical to GW peak-power generation at X-band frequencies
- Concept for a 10-TeV collider still lacking (so far only a straw man design for a 3 TeV TBA based on the CLIC design)
- About collaboration:
 - There are many common topics between PWFA and CWA-SWFA (especially related to drive beam generation and dynamic)

QUESTIONS

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

