

Laser-driven production of ultra-short high quality positron beams

Gianluca Sarri

g.sarri@qub.ac.uk

School of Mathematics and Physics, The Queen's University of Belfast

ALEGRO 2024, 21/03/2024 Lisbon

Introduction

Gianluca Sarri

The problem

Plasma-based electron acceleration at a relatively mature stage, with landmark results achieved

>8 GeV electron beams

Gianluca Sarri

Femtosecond-scale duration

 30
 400

 31
 200

 32
 200

 33
 200

 34
 0.00

 0.00
 0.25

 0.00
 0.25

 0.00
 0.25

A. R. Maier et al., Phys. Rev. X 10, 031039 (2020)

Proof-of-principle staging

Programmatic experimental work currently not possible due to the lack of suitable facilities Only SLAC could in principle host plasma-acceleration experiments

Disclaimer

I am NOT proposing that we can build a fully plasma-accelerated positron beam with collider-like characteristics!

<u>Rather</u>, we are exploring the possibility of delivering positron beams of sufficient quality to be injected and accelerated in plasma accelerating cavities.

Several plasma-based facilities are currently considering this option, e.g.:

EuPRAXIA the first ESFRI plasma accelerator project

EPAC Extreme Photonics Application Centre (UK)

R. Assman et al., Eur. Phys. J. Special Topics (2020)

Gianluca Sarri

Expected output with a PW-scale laser

Numerical modelling **EPSRC**

The simplest option to generate short positron beams (\sim fs) is to propagate a laser-wakefield electron beam through a high-converter target.

For example, if one considers a PW-scale laser (5 GeV electron beam with nC-scale charge)

Gianluca Sarri

First proof-of-principle design for the capture and transport of these positron beams in EuPRAXIA

Gianluca Sarri

Proof-of-principle experiments

Setup

EPSRC

First proof-of-principle experiment carried out using the Gemini laser at the Central Laser Facility

Gianluca Sarri

Experimental results

First proof-of-principle experiment carried out using the Gemini laser at the Central Laser Facility

Simultaneous measurements of energy-dependent source size, divergence, and emittance

M. Streeter et al, Sci. Rep. 14, 6001 $\left(2024\right)$

Gianluca Sarri

Experimental results

First proof-of-principle experiment carried out using the Gemini laser at the Central Laser Facility

	CLF (2024)	Muggli et al. ²²	Corde et al. ²³	Gessner et al. ²⁴
E (GeV)	0.6	28.5	20.3	20.3
$\sigma_x (\mu \mathrm{m})$	2.7	25	< 100	50
σ_z (µm)	$\lesssim 4^*$	730	30-50	35
ε (nm)	15	14×3	5×1	7
ē (μm)	18	390 × 80	200×50	300

M. Streeter et al, Sci. Rep. 14, 6001 (2024)

Gianluca Sarri

ALEGRO 2024

EPSRC

QUEEN'S UNIVERSITY BELFAST

Experimental results

Even at this low energy and moderate spatial quality, the positron beamlet can be accelerated

Gianluca Sarri

Multi-PW lasers: expected performance

The issue of beam-loading **EPSRC**

It would be desirable to have a beam capable of beam-loading, but this requires 10s of pC

10s of pC positron beams would require a \sim 10 nC primary electron beam, which is not practically achievable with PW-scale lasers. However, **these are obtainable with 10PW lasers**.

In collaboration with ELI-NP staff, we are running the first commissioning experiment on laser-wakefield acceleration using the 10PW laser

L. Calvin et al., Front. Phys. 11:1177486 (2023)

Gianluca Sarri

10s of pC positron beams would require a ~ 10 nC primary electron beam, which is not practically achievable with PW-scale lasers. However, **these are obtainable with 10PW lasers**.

10-50 pC positron beams in a 5% bandwidth at the GeV level can be produced during the propagation of ~10 nC electron beams through mm-scale converter targets

T. Foster et al., in preparation (2024)

Gianluca Sarri

EVENTS 10s of pC positron beams **EPSRC**

These beams have femtosecond-scale duration and micron-scale normalized emittance

Gianluca Sarri

Extras

Gianluca Sarri

AI modelling of LWFA

EPSRC

Machine-learning techniques now allows for active stabilization of LWFA and high-level of predictability

Baesyan optimization of laser and plasma parameters for betatron sources

Neural network predictions

R. Shaloo et al., Nat. Comm. (2020)

M. Streeter et al., HPLSE (2023)

Gianluca Sarri

Gianluca Sarri

Dynamics

EPSRC

EPB

0.5

0.D

0.1L

6

10

-5

Gianluca Sarri

Non-invasive characterisation

EPSRC

First proof-of-principle experiments with ~ 50 TW laser producing ~ 100 MeV positrons

- Close correlation between e^- and e^+ properties
- Live, simultaneous, and non-invasive measurement of spectrum, source size, total charge, and energy-resolved emittance

A. Alejo et al., PPCF 62, 055013 (2020)

80

100

120

ALEGRO 2024

140

20

40

60 Energy (MeV)

Gianluca Sarri

Conclusions

- ⇒ Positron wakefield acceleration is significantly lagging behind, mainly due to the lack of experimental facilities suited for these studies.
- ⇒ PW-scale laser can provide narrowband (~5%) GeV-scale positron beams of sufficient quality to be guided and accelerated in a plasma wakefield.
- ⇒ A first positron beamline has been designed for the EuPRAXIA facility.
- ⇒ First proof-of-principle experime at 100 TW validate the numerical exp

⇒ Laser-driven positron sources useful also for many other applications!

(detector testing, laboratory astrophysics, material science...)

ALEGRO 2024

Gianluca Sarri

Thanks for your attention!

Gianluca Sarri

g.sarri@qub.ac.uk

Gianluca Sarri