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As part of the ALEGRO (Advanced LinEar collider
study GROup) Workshop 2024, we presented an invited
talk on simulations of staged plasma accelerators towards
future colliders. The talk built on theoretical foundations
for staging [1–4] and covered algorithmic options for mod-
eling, the need for a compatible ecosystem of simulation
codes and recent numerical modeling results.

a. Algorithmic Options were presented for model-
ing, from first principle simulations (with full, electro-
magnetic particle-in-cell) to effective approximations and
data (ML) models. There are general algorithmic choices
to make between speedy simulations, which are fast and
as accurate as possible, and high fidelity simulations,
which are accurate and as fast as possible. The former in-
clude reduced physics (e.g., quasi-static and electro-static
approximations, cylindrical geometry, fluid backgrounds)
and the latter high-resolution, 3D3V, electromagnetic
modeling, with a near-continuum of hybrid models in
between. Reduced physics models are required for rapid
initial designs, optimizations and operations. Full fidelity
physics models are needed for stability proofs, explo-
ration and ML training data generation.

From particle source over staged acceleration to in-
teraction point the modeling requirements vary: plasma
source/beam generation often requires full electromag-
netic PIC [5, 6], potentially with moderate boosted
frame (e.g., γ = 5). Staged plasma acceleration ben-
efits from full PIC with high relativistic gamma fac-
tor or quasi-static codes [7]. Transport is best per-
formed with electrostatic PIC in the beam frame with
s-based modeling [8, 9]. Interaction point physics at
ultra-relativistic energies can use electrostatic PIC to
model beam crossing coupled with Monte-Carlo QED
modules [10]. A compatible ecosystem of codes, im-
plementing and sharing models and data, needs to be
striven for that uses standardized input/output and com-
mon principles/practices (e.g., open source development
practices, continuous integration testing/benchmarking,
open documentation) [11, 12].

b. Community Ecosystems. The Beam, Plasma &
Accelerator Simulation Toolkit (BLAST) was presented
as a compatible toolkit striving to address these mod-
eling needs from laptop to Exascale supercomputer [6–
9, 13–16]. BLAST codes are part of the Collaboration for
Advanced Modeling of Particle Accelerators (CAMPA),
which is highly synergistic with ALEGRO goals to de-
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sign advanced plasma-based colliders. CAMPA also de-
velops novel algorithms, supports standards such as the
Particle-In-Cell Modeling Interface (PICMI) and open
particle-mesh data standard (openPMD) [17–19], codes
beyond BLAST [20, 21], laser manipulation and ex-
change (LASY) [22, 23], and ML-based optimization (op-
timas) [24, 25].
c. Modeling Staging: Levels of Realism. One of the

pressing needs of the community towards trustworthy
plasma-based collider designs is to systematically in-
crease the realism via start-to-end modeling [26]. That
requires stepwise maximizing energy gain while conserv-
ing transported charge, minimizing energy spread, con-
trolling emittance growth, and ultimately ensuring com-
pactness and energy efficiency as well as robustness un-
der realistic profiles [22], fluctuations and uncertainties in
operations. In modeling, this requires establishing work-
flows (e.g., optimization [24]) that are easy to reproduce,
automate & repeat, memorize (with ML) [27, 28], and
abstract away.
For acceleration stages, 3D WarpX simulations with

low witness beam charge were presented, increasing the
currently modeled number of stages from 3 to 50 [29,
30]. Individual stages were then optimized with electro-
static RZ modeling [13] using ML-guided optimization
(Bayesian Optimization) [24, 31] to find LPA downramp
profiles below the adiabatic limit for stages from 1GeV
to 10TeV while preserving emittance growth up to 10 pC.
Addressing a need to model the plasma-conventional

hybrid beamlines required for transport gaps in a collider,
a novel surrogate approach for including plasma elements
in beamline modeling was explored [28]. In the presented
approach, high-fidelity, full PIC simulations (WarpX)
were used to train a neutral network [27] that then en-
abled %-level accurate tracking of beam moments using
ML inference of trained LPA stages via all-GPU acceler-
ated ImpactX beamline simulations. The achieved per-
formance for GPU inference was 63 ns / particles / stage
with total simulation runtime of 15 stages and transport
as low as 2-4 simulations per GPU and second. It is
envisioned that this will enable rapid design studies of
complex transport gaps, e.g., for HALHF [32, 33].
Lastly, 3D WarpX simulations and new collaborations

were presented to study beam crossing for machines such
as ILC, HALHF and others [33–35].
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