

A Hybrid, Asymmetric, Linear Higgs Factory (HALHF) Updates and Upgrades

Richard D'Arcy

University of Oxford

Brian Foster, Carl A. Lindstrøm

University of Oxford/DESY & University of Oslo

Outline

> Motivation and concept
> Recent progress
> Upgrade paths
> Conclusions

Developing a credible plasma-based e^+/e^- collider design

- > Excellent experimental progress suggests hope for a plasma-based e+e- collider
- > Several proposals over the past decades:
 - > Rosenzweig et al. (1996)
 - > Pei et al. (2009)
 - > Schroeder et al. (2010)

> Adli et al. (2013)

> Very useful exercises to focus R&D at the time

Source: Pei et al., Proc. PAC (2009)

Source: Adli et al., Proc. Snowmass (2013)

Developing a credible plasma-based e^+/e^- collider design

- > Excellent experimental progress suggests hope for a plasma-based e⁺e⁻ collider
- > Several proposals over the past decades:
 - > Rosenzweig et al. (1996)
 - > Pei et al. (2009)
 - > Schroeder et al. (2010)
 - > Adli et al. (2013)
- > Very useful exercises to focus R&D at the time
- > Still one key stumbling block... positrons!
- >Plasmas = charge asymmetric \rightarrow no 'blowout' for e^+

Source: Pei et al., Proc. PAC (2009)

Source: Adli et al., Proc. Snowmass (2013)

The pragmatic approach: use **plasma** to **accelerate electrons** but **RF** to **accelerate positrons**

Can we use asymmetric e^+/e^- energies? Yes!

> Minimum centre-of-mass energy required for Higgs factory: $\sqrt{s} \approx 250$ GeV

 $E_e E_P = s/4$ $E_e + E_P = \gamma \sqrt{s}$ > Electron (E_e) and positron energies (E_p) must follow: > However, the collision products are boosted (γ): $\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right)$

Can we use **asymmetric** e^+/e^- energies? Yes!

> Minimum centre-of-mass energy required for Higgs factory:

 $E_e E_P = s/4$ $E_e + E_P = \gamma \sqrt{s}$ > Electron (E_e) and positron energies (E_p) must follow: > However, the collision products are boosted (γ): $\gamma = \frac{1}{2} \left(\frac{2E_p}{\sqrt{s}} + \frac{\sqrt{s}}{2E_p} \right)$

> A reasonable (but not necessarily optimised) choice is: > Electrons (from PWFA): > Positrons (from RF accelerator): > Boost: (HERA had a boost of $\gamma \approx 3$)

√s ≈ 250 GeV

- $E_e = 500 \text{ GeV}$ (4x higher)
- $E_{p} = 31 \,\,{\rm GeV}$ (4x lower)
- y = 2.13

Simulating asymmetric e^+/e^- collisions

>GUINEA-PIG beam-beam simulations:

E (GeV)	$\sigma_z ~(\mu { m m})$	$N (10^{10})$	$\epsilon_{nx} \ (\mu m)$	$\epsilon_{ny} (\mathrm{nm})$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L} (\mu b^{-1})$	$\mathcal{L}_{0.01} \ (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13

Use shorter bunches to compensate for smaller IP beta functions

>Asymmetric energies give similar luminosity >However, more power is required (to boost the collision products)

Asymmetries everywhere → charge

>GUINEA-PIG beam-beam simulations:

E (GeV)	$\sigma_z~(\mu{ m m})$	$N (10^{10})$	$\epsilon_{nx} \ (\mu m)$	$\epsilon_{ny} (\mathrm{nm})$	$\beta_x \ (\mathrm{mm})$	$\beta_y \text{ (mm)}$	$\mathcal{L} (\mu b^{-1})$	$\mathcal{L}_{0.01} \; (\mu b^{-1})$	P/P_0
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25

> Power consumption increase: $\frac{P}{P_0} = \frac{N_e - E_{e^-} + N_e + E_{e^+}}{N_1 \sqrt{s}}$

>Unchanged power usage if $N_e/N_p = E_p/E_e$ (here: 4x more e^+ , 4x less e^-)

Asymmetries everywhere \rightarrow emittance

>GUINEA-PIG beam-beam simulations:

E (GeV)	$\sigma_z ~(\mu { m m})$	$N (10^{10})$	ϵ_{nx} (µm)	$\epsilon_{ny} (nm)$	$\beta_x \text{ (mm)}$	$\beta_y \text{ (mm)}$	$\mathcal{L} (\mu b^{-1})$	$ \mathcal{L}_{0.01} $ (µb ⁻¹)	$ P/P_0 $
125 / 125	300 / 300	2 / 2	10 / 10	35 / 35	13 / 13	0.41 / 0.41	1.12	0.92	1
31.3 / 500	300 / 300	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	0.93	0.71	2.13
31.3 / 500	75 / 75	2 / 2	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.71	2.13
31.3 / 500	75 / 75	4 / 1	10 / 10	35 / 35	3.3 / 52	0.10 / 1.6	1.04	0.60	1.25
31.3 / 500	75 / 75	4 / 1	10 / 40	35 / 140	3.3 / 13	0.10 / 0.41	1.01	0.58	1.25
31.3 / 500	75 / 75	4 / 1	10 / 80	35 / 280	3.3 / 6.5	0.10 / 0.20	0.94	0.54	1.25
31.3 / 500	75 / 75	4 / 1	10 / 160	35 / 560	3.3 / 3.3	0.10 / 0.10	0.81	0.46	1.25

> Geometric emittance scales as (energy)⁻¹

 $>e^+$ must have smaller IP beta function (lower energy): 3.3/0.1 mm (CLIC-like \rightarrow possible)

> Apply similar principle for the e^- (normalised) emittance

> Decrease IP beta function to allow emittance increase

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

HALHF: A Hybrid, Asymmetric, Linear Higgs Factory

Outline

Motivation and concept Recent progress Upgrade paths Conclusions

Engagement with the community has given us a lot to think about

>A 'realistic' scheme provides a vehicle to push forward required R&D >Main challenges to 'HALHF 1.0' identified by the community:

Engagement with the community has given us a lot to think about

>A 'realistic' scheme provides a vehicle to push forward required R&D >Main challenges to 'HALHF 1.0' identified by the community: > Plasma-cell cooling (heat management will be challenging) >Transverse instabilities (too large of an emittance growth)

- >Beam ionisation (the beam density and hence peak E-field is too high)

Possible solution #1: Lower the plasma density (and beam density)

> Downside: Lower density reduces the accelerating gradient

- less true at multi-TeV)

> Upside: Everything else is easier

- heavier gases like xenon (also desired for reduced ion motion)
- > Bunches are longer, currents are lower (less compression/stretching required)

Synergy: Longer plasma cells required — starting to look a lot like AWAKE!

> It turns out the gradient is not so crucial (a major lesson learnt from HALHF, though this will be

> At ~1 GV/m (x6.4 lower) the PWFA arm is ~850 m (x2 longer \rightarrow interstage optics dominate)

> The cell cooling requirements go down (scales as E_z) from ~90 to ~15 kW/m (CLIC-like)

> Transverse instabilities are reduced (*parameter/jitter studies required to quantify exactly*)

> Ionisation potential of the beam is reduced (beam density goes down), which permits use of

> Matching, alignment, and synchronisation tolerances reduced (beta functions are larger)

Engagement with the community has given us a lot to think about

>A 'realistic' scheme provides a vehicle to push forward required R&D >Main challenges to 'HALHF 1.0' identified by the community:

>Plasma-cell cooling (heat management will be challenging)

>Transverse instabilities (too large of an emittance growth)

>High-voltage <u>and</u> high-power linac (technically challenging)

- >Beam ionisation (the beam density and hence peak E-field is too high)

Possible solution #2: Decouple the dual-purpose (e^+ & e^- -driver) linac

> Downside: Two linacs required instead of one

> Footprint may increase (more tunnel, larger CO_2 output in build)

> Upside: Everything else is easier (again)

> Low-power, high-gradient linac for e^+ (shorter, cheaper)

- > Reduced power per drive-beam dump (lower energy drivers e.g. $31 \rightarrow 10$ GeV)
- > More flexibility over drive-beam current profiles (higher transformer ratio)
- > No turnaround loops (straighter/longer tunnels but possibly less volume in total)
- > Synergy: More compatible with laser-based upgrades a like-for-like switch of driver linac for stacked high-power-laser systems

- > High-power, low-gradient linac for e^- drivers (possibly cheaper in combination with e^+ linac)

Engagement with the community has given us a lot to think about

>A 'realistic' scheme provides a vehicle to push forward required R&D >Main challenges to 'HALHF 1.0' identified by the community:

>Plasma-cell cooling (heat management will be challenging)

>Transverse instabilities (too large of an emittance growth)

>High-voltage and high-power linac (technically challenging)

>Flat beams (emittance mixing from transverse coupling)

- >Beam ionisation (the beam density and hence peak E-field is too high)

Possible solution #3: Flat beam drivers?

> More info:

- > S. Diederich's talk tomorrow morning
- arXiv:2403.05871 (2024)

> S. Diederichs et al., "Resonant emittance mixing of flat beams in plasma accelerators",

Outline

> Motivation and concept
 > Recent progress
 > Upgrade paths → Lindstrøm,
 > Conclusions

Lindstrøm, D'Arcy, Foster, arXiv:2312.04975 (2024)

Upgrade: Polarised positrons

> Produce e+ polarisation via ILC-like scheme:

- > **Pro**: minimally disrupted electron beam
- > **Pro**: ideas exist for E(e-) 500 GeV
- > Con: wiggler probably longer and more expensive
- >Cost increase of 5–10% of original (+ ~100M€)

Source: Lindstrøm, D'Arcy, Foster, arXiv:2312.04975 (2024)

Upgrade: 380 GeV centre of mass

> Operation at the t-tbar threshold (346 GeV) typically motivates a c.o.m. up to 380 GeV

- > ... which is in fact the minimum energy proposed for CLIC >Two options:
 - > 31 GeV positrons / **1165 GeV electrons** (more plasma stages, higher y, lower efficiency) \rightarrow +1 km PWFA linac
 - > 47.5 GeV positrons / 760 GeV electrons (same # of [longer] stages, same y as original) \rightarrow +130 m PWFA linac
- >Second option preferred
 - > Increased length ~10%
 - > Added cost $\sim 10\%$
 - > ~25% more power overall

Upgrade: Two interaction points

> Opportunity for HALHF:

Upgrade: TeV y-y collider (optical laser version)

- > Collide high-energy γ beams (up to 1 TeV c.o.m. with original HALHF scheme) $>\gamma$ produced from Compton backscattering off lasers > Several additional challenges: > Requires lower emittances (but can have round beams)
 - > Requires shorter BDS
 - > Laser technology (*very high power*) currently does not exist

Upgrade: TeV y-y collider (XFEL version)

>New concept from C^3 /SLAC colleagues > Somewhat advanced but has benefits: >Would be the most powerful XFEL ever:

photon scientists may wish to collaborate

Barklow et al., arXiv:2203.08484 (2022)

Conclusions – HALHF

- > HALHF benefits from maximal asymmetry: energy charge emittance
- > Upgrade path to higher energy and output: not just a one-trick pony!
- design decisions towards HALHF 2.0
- towards a pre-CDR

Foster, D'Arcy, & Lindstrøm, New J. Phys. 25, 093037 (2023)

> The HALHF concept proposes a compact, cheaper, greener, possibly quicker Higgs factory

> Challenges outlined by the community identify issues requiring more R&D and help guide

> Continued community engagement required to discuss and conclude on the path forward

Come and join us...

> HALHF Kick-off meeting (DESY)

> 23/10/23

> HALHF Monthly meetings (online)

> 18/12/23, 29/01/24, 04/03/24

> HALHF Workshop (Oslo, Norway)

> 04-05/04/24

> HALHF Experts meeting (Erice, Sicily) > 03-08/10/24

remote participation still possible

Overview

Scientific Program

Timetable

Contribution List

Registration

Participant List

About the venue

Sightseeing in Oslo

Travel information

Committees

HALHF: "A hybrid, asymmetric, linear Higgs factory based on plasma-wakefield and radio-frequency acceleration" - B. Foster et al., New J. Phys. 25 093037 (2023)

Welcome to Oslo, Norway!

Let's continue the discussion on HALHF and how to make it a reality.

