ALEGRO Workshop 21/03/2024

Beam quality preservation using multi-staged rectangular waveguide

O. Apsimon, G. Burt, R. Appleby, R. Apsimon, D. Graham and S. Jamison The University of Manchester and Lancaster University

Outline

Fourier decomposition of the longitudinal THz electric field into multipole components (monopole, dipole, quadrupole, sextupole, octupole, etc.)

Quadrupolar field and correlated transverse energy distribution

Orthogonal-multistaging configuration and matching to preserve the 6D phase space

Conclusions and outlook

Six-dimensional phase space preservation in a terahertzdriven multistage dielectric-lined rectangular waveguide accelerator
Öznur Apsimon, Graeme Burt, Robert B. Appleby, Robert J. Apsimon, Darren M. Graham, and Steven P. Jamison

Phys. Rev. Accel. Beams 24, 121303 - Published 7 December 2021

TM 11 for acceleration

$$
E_{z}(x, y, z, \omega)=A\left(-i k_{z}\right) k_{y}^{a} \sin \left(\frac{\pi}{w}\left(x+\frac{w}{2}\right)\right) \cos \left(k_{y}^{a} y\right) e^{i \omega \frac{z}{c}-k_{z}+\phi}
$$

Synchronisation with a relativistic beam

\square Find the roots of the dispersion relation to find $\beta=k_{0}$ using Newton-Raphson method. Alisa Healy, Thesis, Lancaster

$$
k_{y}^{a} \sin \left(k_{y}^{b}(b-a)\right) \sin \left(k_{0} a\right)=\epsilon_{r} k_{0} \cos \left(k_{0} a\right) \cos \left(k_{y}^{b}(b-a)\right)
$$

\square A single frequency of 0.465 THz synchronises to the relativistic beam, $\mathrm{v}_{\mathrm{p}} \sim \mathrm{c}$.

$$
\beta=k_{z}=k_{0} \simeq 9746
$$

The propagation constant in vacuum is defined as,

$$
E_{z}(x, y, z, \omega)=A\left(-i k_{z}\right) k_{y}^{a} \sin \left(\frac{\pi}{w}\left(x+\frac{w}{2}\right)\right) \cos \left(k_{y}^{a} y\right) e^{i \omega \frac{z}{c}-k_{z} z+\phi}
$$

Synchronisation with a relativistic beam

\square Find the roots of the dispersion relation to find $\beta=k_{0}$ using Newton-Raphson method. Alisa Healy, Thesis, Lancaster

$$
k_{y}^{a} \sin \left(k_{y}^{b}(b-a)\right) \sin \left(k_{0} a\right)=\epsilon_{r} k_{0} \cos \left(k_{0} a\right) \cos \left(k_{y}^{b}(b-a)\right)
$$

- A single frequency of 0.465 THz synchronises to the relativistic beam, $\mathrm{v}_{\mathrm{p}} \sim \mathrm{c}$.

$$
\beta=k_{z}=k_{0} \simeq 9746
$$

The propagation constant in vacuum is defined as,

$$
k_{y, m n}^{a}=\sqrt{k_{0}^{2}-\left(\frac{m \pi}{w}\right)^{2}-\beta_{m n}^{2}} \quad k_{y, 11}^{a}=i 2.62 \times 10^{3}=i \frac{\pi}{w}
$$

Fourier decomposition of TM_{11}

$$
V_{z}(r, \theta)=-i A \beta L k_{y}^{a} \cos \left(\frac{\pi}{w} r \cos (\theta)\right) \cos \left(k_{y}^{a} r \sin (\theta)\right)
$$

Voltage induced on longitudinal axis due to TM_{11} in polar coordinates.

$$
V_{z}(x, y)=\int_{0}^{L} E_{z}(x, y) d z=E_{z}(x, y) L
$$

Multipole components $=\left(\right.$ Fourier components) $/ \mathrm{V}_{0}$ (axial monopole field), Transverse voltage induced according to Panofsky-Wenzel theorem.

$$
V_{\perp}=-\frac{i c}{\omega} \int_{0}^{L} d z \nabla_{\perp} E_{z}(z, z / c)
$$

Transverse Voltage Seen by Particles

- Amplitude of the deflection voltage (DC) is related to slice emittance (ignore time dependence)No DC contribution from monopole components.Quadrupole: linear effect, no slice emittance growth (only phase space rotation) but small projected emittance growth.DC octupole component prominent for larger radii.Time dependent voltage (AC) introduces projected emittance increase.

Max. deflection at min. acceleration

Correlated Energy Spread and Correction

CST - Beam Real Space

[^0]Beam dynamics with CST, not ideal.

- Computationally heavy for systematic studies.
- Custom thin lens tracking code using multipole components calculated.

Thin Lens Tracking: Single DLW

Total interaction length, 4 mm

$\mathrm{E}_{0}(\mathrm{MeV})$	45
Trans. emittance (mm mrad)	0.01
Beam Size (10, mm)	10
Divergence (10, mrad)	1
Bunch length (fs)	25
Accelerating Field ($\mathrm{M} \mathrm{V} / \mathrm{m}$)	100
Max. Energy Gain (keV)	400

$\leftarrow--\mathbf{O m m}--\rightarrow \leftarrow-$-Ld $--\rightarrow$

Kick Drift

$$
\Delta \theta=\frac{e V_{\perp}}{E_{0}} \quad R_{d r i f t}=\left(\begin{array}{cc}
1 & L_{d} \\
0 & 1
\end{array}\right)
$$

Multiple slices of kick-drift

Apply deflection	Update positions
due to V_{\perp}	
$\theta_{\text {kick }}=\theta_{0}+\Delta \theta$	
$\Delta \theta=e V_{\perp} / E_{0}$	$x_{\text {drift,2 }}=x_{\text {drift }}+\theta_{\text {kick }} L_{d}$
$\theta_{\text {drift }}=\theta_{\text {kick }}$	

Interaction length is assumed to be 4 mm .
Multi step tracking:

- Thin lens kick (zero-length) due to V_{\perp} applied,
- Phase space tracked for the slice length.

Energy distribution at $x-y$ plane

- Same repeated N time with linearly decreased kick amplitude.

Quadrupolar transverse energy distribution after single DLW

Benchmarking against CST

Energy gain: 400 keV , 10um, 1 mrad and 45 MeV beam total energy.

- Identical distribution imported both in CST and custom thin lens tracking.
\square In both case beam drifted across the horn until interaction (4 mm co-propagation).
- CST presents kinetic energy rather than total energy.
\square Remnant fields ($\sim 5 \mathrm{kV} / \mathrm{m}$) induced in the horn causing minor energy errors.
- Transverse phase space is benchmarked within statistical tracking errors (0.3\% for 100k particles.)
Energy distribution in the transverse plane is benchmarked against CST: 5.2 keV energy spread and $\sim 400 \mathrm{keV}$ energy gain.

CST

Can we correct the correlated energy

 distribution using orthogonally staged DLWs?

Multi-Stage Case 1: Longitudinal field cancellation with zero drift

The First Stage
$\leftarrow-$ Omm -- \rightarrow---Ld- - \rightarrow
$\Delta \theta=\frac{e V_{\perp}}{E_{0}}$

$$
R_{d r i f t}=\left(\begin{array}{cc}
1 & L_{d} \\
0 & 1
\end{array}\right)
$$

$\Delta \mathrm{E}_{\mathrm{z}}=400 \mathrm{keV}$
$\sigma_{x}=10 \mu m$
$\sigma_{x}^{\prime}=1 \mathrm{mrad}$
$\sigma_{z}=25 f s$
$N=100 k$

$$
\sigma_{E, \text { uncorr }}=0
$$

Drift Section
$R_{d r i f t}=\left(\begin{array}{cc}1 & L_{d} \\ 0 & 1\end{array}\right)$
$L_{d}=0$

The Second Stage
$\leftarrow--0 m m--\rightarrow \leftarrow-$-Ld $--\rightarrow$

Kick
Drift
$R_{d r i f t}=\left(\begin{array}{cc}1 & L_{d} \\ 0 & 1\end{array}\right)$
2nd structure 90° rotated
$\binom{x_{21} \ldots x_{2 N}}{\theta_{21} \ldots \theta_{2 N}}$

Double pass scheme
with no uncorrelated initial energy spread.
Quadrupole terms cancel out.
$y(\mathrm{~mm})$

Multi-Stage Case 2: introduce a drift between stages

The First Stage
$\leftarrow-$ - Omm $-\rightarrow \leftarrow--$-Ld - $-\rightarrow$
Kick Drift
$\Delta \theta=\frac{e V_{\perp}}{E_{0}}$

$$
R_{d r i f t}=\left(\begin{array}{cc}
1 & L_{d} \\
0 & 1
\end{array}\right)
$$

$\Delta \mathrm{E}_{z}=400 \mathrm{keV}$
$\sigma_{x}=10 \mu m$
$\sigma_{x}^{\prime}=1 m r a d$
$\sigma_{z}=25 f s$
$N=100 k$
$\sigma_{E, \text { uncorr }}=0$

Drift Section
$R_{d r i f t}=\left(\begin{array}{cc}1 & L_{d} \\ 0 & 1\end{array}\right) \vdots$

$$
L_{d}=10 \mathrm{~mm}
$$

Kick
The Second Stage $\leftarrow-$-0mm $-\rightarrow \leftarrow--$-Ld $--\rightarrow$

$$
\Delta \theta=\frac{e V_{\perp}}{E}
$$

Drift

$$
R_{d r i f t}=\left(\begin{array}{cc}
1 & L_{d} \\
0 & 1
\end{array}\right)
$$

_

$$
\binom{x_{21} \ldots x_{2 N}}{\theta_{21} \ldots}
$$

Energy spread induced as particle positions diverge during the drift and experience larger off-axis quadrupole field.

Solution: One needs to match the positions of particles before second pass to their initial positions before the first pass.

Multi-Stage Case 3: Matching

The First Stage

$\rightarrow-$ Omm-- \rightarrow----Ld---
Kick Drift
$\Delta \theta=\frac{e V_{\perp}}{E_{0}}$

$$
R_{d r i f t}=\left(\begin{array}{cc}
1 & L_{d} \\
0 & 1
\end{array}\right)
$$

The least square fit to a system of linear equations.

$$
\begin{gathered}
\binom{x_{21} \ldots x_{2 N}}{\theta_{21} \ldots \theta_{2 N}}=R_{D L W}\binom{x_{11} \ldots x_{1 N}}{\theta_{1.1} \ldots \theta_{1 N}} \\
R_{\text {matching }}=R_{D L W}^{-1}
\end{gathered}
$$

Drift Section

$$
\binom{x_{21} \ldots x_{2 N}}{\theta_{21} \ldots \theta_{2 N}}
$$

The Second Stage $\leftarrow-$ Omm $-\rightarrow \leftarrow--$ Ld $--\rightarrow$

Kick
$\Delta \theta=\frac{e V_{\perp}}{E}$
$R_{d r i f t}=\left(\begin{array}{cc}1 & L_{d} \\ 0 & 1\end{array}\right)$

X : initial beam matrix
Y : beam matrix before second pass

$$
Y=R_{D L W} X \quad \text { Calculate matching matrix }
$$

Multi-Stage Case 3: Matching

The First Stage
$\leftarrow--$ Omm $-\rightarrow \leftarrow--$ Ld $-\cdots$
Kick
$\Delta \theta=\frac{\text { Drift }}{E_{0}} \quad R_{d r i f t}=\left(\begin{array}{cc}1 & L_{d} \\ 0 & 1\end{array}\right)$
$\binom{x_{11} \ldots x_{1 N}}{\theta_{11} \ldots \theta_{1 N}}$

$$
\left(\begin{array}{l}
x_{21} \ldots x_{2 N} \\
\theta_{21} \ldots .
\end{array} \theta_{2 N}\right)
$$

Drift Section
$R_{\text {matching }}$

The Second Stage $\leftarrow--0 m m--\rightarrow \leftarrow-$-Ld $--\rightarrow$

Kick
$\Delta \theta=\frac{e V_{\perp}}{E}$
$R_{d r i f t}=\left(\begin{array}{cc}1 & L_{d} \\ 0 & 1\end{array}\right)$
$\binom{x_{11} \ldots x_{1 N}}{\theta_{1.1} \ldots \theta_{1 N}}$

Drift
c

$\leftarrow-$ Kick	Drift
$\Delta \theta=\frac{e V_{\perp}}{E}$	$R_{\text {drift }}=\left(\begin{array}{cc}1 & L_{d} \\ 0 & 1\end{array}\right)$

Double pass scheme with no uncorrelated initial energy spread.
Point to point optics, reconstructs initial particle positions at the DLW2 entrance.
Correlated energy spread induced by transverse effects of DLWs are compensated with matching optics.

For infinitesimal bunch length.

Impact of matching section on energy spread

Envelope evolution for the matched and unmatched beam.

The correlated energy spread can be fully corrected.

Is this too good to be true?
Is suggested matching transfer matrix physical?

A physical solution: non-periodic transfer matrix

Hill's equation defines the particle trajectories under periodic focusing. Solution to Hill's equation and its derivative represents the rms position and angle of the beam. This can be arranged into a non-periodic matrix that can be computed between arbitrary points of " 0 " and " s ".

$$
M=\left(\begin{array}{ll}
R_{11} & R_{12} \\
R_{21} & R_{22}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{s}}{\beta_{0}}}\left(\cos \psi_{s}+\alpha_{0} \sin \psi_{s}\right) & \sqrt{\beta_{s} \beta_{0}} \sin \psi_{s} \\
\frac{1}{\sqrt{\beta_{s} \beta_{0}}}\left(\left(\alpha_{0}-\alpha_{s}\right) \cos \psi_{s}-\left(1+\alpha_{0} \alpha_{s}\right) \sin \psi_{s}\right) & \sqrt{\frac{\beta_{0}}{\beta_{s}}}\left(\cos \psi_{s}-\alpha_{s} \sin \psi_{s}\right)
\end{array}\right)
$$

$\left(\alpha_{0}, \beta_{0}, \gamma_{0}\right) \longrightarrow$ Twiss parameters that define initial beam distribution in (x, θ) space (phase space).
$\left(\alpha_{s}, \beta_{s}, \gamma_{s}\right) \longrightarrow$ Twiss parameters that define final beam distribution in (x, θ) space (phase space).
$\psi_{s} \quad \longrightarrow$ Rms phase rotation that beam undergone during the propagation through a certain segment.
Any physical transformation should satisfy the non-periodic transfer matrix.

$$
\Sigma=\left(\begin{array}{cc}
\sigma_{11} & \sigma_{12} \\
\sigma_{21} & \sigma_{22}
\end{array}\right)=\left(\begin{array}{cc}
\left\langle x^{2}\right\rangle & \left\langle x x^{\prime}\right\rangle \\
\left\langle x^{\prime} x\right\rangle & \left\langle x^{\prime 2}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\beta & -\alpha \\
-\alpha & \gamma
\end{array}\right) \epsilon
$$

Twiss parameters can be computed using rms values given in beam matrix.

A physical solution

No simultaneous solutions at a single phase advance value.
Energy spread is sensitive to R_{12} the most.

A physical transformation

TABLE I. The solutions of nonperiodic transfer matrix for the matching section at given phase advances and resulting final energy spread values for each solution. The residual energy spread is minimized for the solution at $\mu=1.816$.

$\mu(\pi)$	R_{11}	R_{12}	R_{21}	R_{22}	$\Delta \mathrm{E} / \mathrm{E}(\mathrm{keV})$
1.98	1.001	-0.0004	-0.0001	0.98	1.7
1.883	0.898	-0.0022	50.25	0.99	0.75
1.834	0.81	-0.003	74.83	0.96	0.35
1.816	0.77	-0.0033	83.3	0.94	0.31
1.803	0.75	-0.0035	89.19	0.92	0.33
1.77	0.672	-0.004	103.7	0.8711	0.5422

Correction using Twiss matrix helps converging to a physical solution.But... Does a realistic matching lattice exist?

Does a realistic lattice exist?

Transfer matrix elements for each lattice calculated using thick elements via multi objective fitting to the matrix elements deduced from pseudoinverse matching and non-periodic matrix correction steps.| Design | R_{11} | R_{12} | R_{21} | R_{22} |
| :--- | :---: | :---: | ---: | :---: |
| No drift | 0.6897 | -0.0033 | 13.1928 | 0.9039 |
| Q100 $D_{3} 10$ | 0.7845 | -0.0033 | 51.5138 | 0.9738 |
| Q50 10 | 0.7629 | -0.0033 | 97.2900 | 0.9003 |
| Q100 $150 D_{2} 150$ | 0.8118 | -0.0035 | 129.0208 | 0.9870 |
| Q100 $1200 D_{2} 200$ | 0.9157 | -0.0037 | 139.9490 | 1.1135 |
| Q100 $D_{1} 200 D_{2} 200 D_{3} 200$ | 0.7461 | -0.0033 | 46.8733 | 0.9202 |

Design	Matching section length (cm)	$\mathrm{g}(\mathrm{T} / \mathrm{m})$	$\mathrm{r}(\mathrm{mm})$	$\Delta E(\mathrm{keV})$
No drift	30	$20.4 / 111.5 / 7.3$	$50 / 9 / 138$	0.92
Q100 $D_{3} 10$	31	$75.3 / 0.5 / 66.2$	$13.3 / 201 / 15.1$	0.54
Q50 10	16	$310.2 /-0.18 / 219.2$	$3.2 / 567 / 4.6$	0.46
Q100 $150 D_{2} 150$	40	$48.8 /-1.8 / 50.2$	$20 / 55.8 / 20$	0.49
Q100 $D_{1} 200 D_{2} 200$	50	$46.5 /-3.7 / 47.9$	$21.5 / 268 / 21$	0.86
Q100 $200 D_{2} 200 D_{3} 200$	65	$61 / 1.2 / 10.5$	$16.4 / 807 / 95.4$	0.5

Conclusions

Emittance

- Unlike all symmetric THz and RF structures we find the monopole term has zero transverse variation at the synchronous point, meaning no monopolar defocussing term
- The only strong transverse field term is a quadrupole that if DC would not cause any emittance growth, we get zero slice emittance growth
- As we have a time varying quadrupole, a small projected emittance growth of $\mathbf{0 . 4 \%}$ of a 50 fs, 100um beam with a 400 keV acceleration.

Energy spread

- PI only - 0.75 eV
- $\mathrm{Pl}+\mathrm{NPTM}$ - 0.31 keV
- PI+NPTM+MOO - 0.54 keV over 800 keV energy gain.

Demonstrating the 6D phase space preservation.U

THy Group Academic Leads
THy Group Academic Leads
THy Group Academic Leads
THy Group Academic Leads

THy Group Academic Leads

MANCHESTER

THz-driven injector development

> 100 keV photo-electrons boost to $>1 \mathrm{MeV}$
$>$ Compression, acceleration, diagnostics
$>$ Test concepts for scaling to relativistic energies

Waveguide characterisation

V. Georgiadis et al. Appl. Phys. Lett. 118, 144102 (2021)

Backup Slides

Decomposing Longitudinal THz Field to Multipole Components

k_{y}^{a}, y-directed propagation constant in vacuum.
$\beta=k_{z}$, the propagation constant inside the waveguide.
w, horizontal width of the rectangular structure.

Longitudinal field propagation in vacuum:

$$
\begin{aligned}
k^{2} & =k_{x}^{2}+k_{y}^{2}+k_{z}^{2} \\
\left(\frac{\omega}{c}\right)^{2} & =\left(\frac{\omega}{\beta c}\right)^{2}+k_{x}^{2}+k_{y}^{2}
\end{aligned}
$$

Fourier components of longitudinal voltage.

$$
V_{z}(r, \theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \theta)+\sum_{n=1}^{\infty} b_{n} \sin (n \theta)
$$

$$
a_{0}=\frac{\alpha}{\pi} \int_{-\pi}^{\pi} \cos ((\pi / w) r \cos \theta) \cos \left(k_{y}^{a} r \sin \theta\right) d \theta
$$

At ultra relativistic limit $(\beta=1)$ and for very narrow band (single frequency)

$$
k_{x}=i k_{y}
$$

Gaussian Particle Generation for Tracking

Capability to import custom beams into CST PIC.
Custom thin lens tracking for speed.

Induce initial beam divergence

Non-relativistic transverse velocity

$$
x^{\prime}=\tan ^{-1}\left(p_{x} / p_{z}\right)-\alpha x
$$

Induce initial uncorrelated energy spread

Spread particle velocities around the reference particle as a Gaussian distribution.

Correlated Energy Spread and Correction

Analytical field distribution for $\mathbf{4 0 0} \mathbf{~ k e V}$ gain

Thin lens tracking: Single bunch slice

Field pattern maps itself onto the beam energy distribution. Energy spread 0.3keV.

CST - Beam Real Space

Initial parameter:
$10 \mathrm{um}, 1 \mathrm{mrad}, 25 \mathrm{fs}, 45 \mathrm{MeV}$ Energy gain:
390keV, spread 1.6keV

Can we correct the correlated energy distribution with a 90° rotated DLW?

[^0]: Initial parameter:
 $10 \mathrm{um}, 1 \mathrm{mrad}, 25 \mathrm{fs}, 45 \mathrm{MeV}$
 Energy gain:
 390 keV , spread 1.6 keV

