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Precision physics at the LHC – role of electroweak (EW) corrections
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Status: February 2022

ATLAS Preliminary
√
s = 5,7,8,13 TeV

Theory

LHC pp
√
s = 13 TeV

Data 3.2 − 139 fb−1

LHC pp
√
s = 8 TeV

Data 20.2 − 20.3 fb−1

LHC pp
√
s = 7 TeV

Data 4.5 − 4.9 fb−1

LHC pp
√
s = 5 TeV

Data 0.03 − 0.3 fb−1

Standard Model Production Cross Section Measurements

▶ excellent agreement between SM predictions and LHC data,
↪→ SM can only be challenged with highest possible precision!

▶ NNLO QCD ⊕ NLO EW corrections meanwhile standard
in most 2 → 2 key processes
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Relevance of EW corrections at the LHC

Precision measurements at the LHC

▶ cross-section uncertainties for single-W/Z production:

∆(luminosity) ∼ 4%, ∆(PDF) ∼ 2−3%

▶ often 1% precision on shapes of distributions or ratios of cross sections

▶ high-precision measurements of MW, sin2 θlepteff :

∆MW/MW
<∼ 2 · 10−4, ∆ sin2 θlepteff / sin2 θlepteff

<∼ 4 · 10−4

▶ energy reach deep into the TeV range with several-% precision

Size of EW corrections
generic size O(α) ∼ O(α2

s) ∼ 1% suggests NLO EW ∼ NNLO QCD

but systematic enhancements possible, e.g.

▶ by photon emission

↪→ kinematical effects, mass-singular logs ∝ α ln(mµ/Q) for muons, etc.,
often several-10% effects near shoulders of distributions

▶ at high energies

↪→ EW Sudakov logs ∝ (α/s2W) ln2(MW/Q) and subleading logs,
typically several-10% effects in the TeV range

S.Dittmaier Needs and challenges in electroweak physics QCD meets EW, CERN, Feb, 2024 5



Further peculiarities of EW corrections

Large universal corrections

▶ induced by photonic vacuum polarization
and corrections to the ρ-parameter

▶ can often be absorbed into leading-order predictions
by appropriate choice of EW input parameter scheme

Instability of W and Z bosons

▶ realistic observables have to be defined via decay products (leptons, γs, jets)

▶ off-shell effects ∼ O(Γ/M) ∼ O(α) are part of the NLO EW corrections

Photon–jet separation

▶ non-trivial due to q → q + γ splitting

↪→ separation, e.g., by quark-to-photon “fragmentation function”

▶ complication by photon-induced jets via γ∗ → qq̄

↪→ description by “fragmentation” or “conversion function”

S.Dittmaier Needs and challenges in electroweak physics QCD meets EW, CERN, Feb, 2024 6



State of the art in the calculation of EW corrections:

▶ NLO machinery worked out in recent decades

▶ on-shell / MS renormalization
▶ all multi-leg, multi-scale 1-loop integrals known with complex masses
▶ NLO treatment of W/Z resonances

(pole expansions, complex-mass scheme)
▶ IR slicing and subtractions

▶ Numerous NLO EW calculations for specific processes,
including multi-leg calculations up to 2 → 8 particle processes

▶ QED parton showers
(Photos, showers in Herwig, Madgraph, Pythis, Sherpa)

▶ NLO EW automation accomplished
(MadGraph5 aMC@NLO, OpenLoops, Recola/Collier, etc.)

▶ few mixed NNLO QCD×EW corrections exist
(several decays, Drell–Yan processes, first results for e+e− →WW)

▶ NNLO EW results still extremely rare
(µ decay and MW predictions, Zf̄ f formfactors, partial results for e+e− → ZH)
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Plan for this talk:

▶ highlight role and significance of EW corrections

▶ review key features of EW corrections
↪→ exemplified via Drell–Yan + multi-boson processes at the LHC

▶ consider combination of QCD and EW corrections
(including results on NNLO×EW corrections)

▶ emphasize challenges for high-precision physics at future e+e− colliders

Note: Selection of topics by far not exhaustive (and personally biased)
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Features of EW corrections

Universal EW corrections, muon decay, and input parameter schemes

µ decay including higher-order corrections
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νµ
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ν̄e

+ QED corrections ⇐⇒
W
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νµ

e−
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↪→ Relation between Gµ, α(0), MW, and MZ including corrections:

αGµ ≡
√
2

π
Gµ M2

W

(
1− M2

W

M2
Z

)
= α(0)(1 + ∆r)

∆r comprises quantum corrections to µ decay
(beyond electromagnetic corrections in Fermi model) Sirlin ’80, Marciano, Sirlin ’80

∆r1−loop = ∆α(M2
Z) − c2W

s2W
∆ρtop + ∆rrem(MH)

∼ 6% ∼ 3% ∼ 1%
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2
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Predicting MW from muon decay

Measure Gµ in µ decay and trade MW for Gµ as input in

√
2

π
Gµ M2

W

(
1− M2

W

M2
Z

)
= α(0)(1 + ∆r) → solve for MW

∆r depends on all input parameters → sensitivity to mt, MH in SM fit

Contributions to ∆r :

+ virtual corrections:

W self-energy

ΣW
T (s)

W

Wlνl vertex correction

W

box diagrams

+ photonic bremsstrahlung in the SM

− photonic bremsstrahlung in the Fermi model

+ full two-loop contributions + higher-order corrections to ρ-parameter
v.Ritbergen,Stuart ’98; Seidensticker,Steinhauser ’99; Freitas et al. ’00-’02;
Awramik,Czakon ’02/’03; Onishchenko,Veretin ’02

S.Dittmaier Needs and challenges in electroweak physics QCD meets EW, CERN, Feb, 2024 11



Confronting predicted and measured values of MW

Hollik et al. ’03

ATLAS ’23
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ATLAS  Preliminary
-1 = 7 TeV, 4.6 fbs

▶ Current theoretical precision: ∆MW ∼ 0.003GeV

▶ Most precise measurements:

CDF ’22: (80.4335± 0.0094)GeV (controversial analysis)

ATLAS ’23: (80.360± 0.016)GeV
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EW input parameter schemes for cross-section predictions

Aim: absorb universal corrections from ∆α and ∆ρ
into leading-order (LO) predictions as much as possible

σNLO = αNALO (1 + δEW) , δEW = O(α)

↪→ minimize missing higher-order corrections!

▶ ∆αn terms can be absorbed to all orders

▶ ∆ρn terms can be absorbed at least to two-loop order

▶ factor α in δEW can still be adjusted appropriately
(e.g. α→α(0) if γ radiation dominates, α→αGµ if weak corrections dominate)

▶ Typical scheme choices: EW input quantities:

▶ α(0) scheme: α(0), MW, MZ

▶ α(MZ) scheme: α(MZ), MW, MZ

▶ Gµ scheme: Gµ, MW, MZ

▶ hybrid schemes: e.g. |M|2 ∝ α(0)n αm
Gµ

↪→ optimal choice depends on #(external photons), energy, etc.
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Collinear final-state radiation (FSR) off leptons

kℓ

ℓ
zkℓ

γLeading logarithmic effect is universal:

σLL,FSR =

∫
dσLO(kl)︸ ︷︷ ︸

hard scattering

∫ 1

0

dz ΓLL
ℓℓ (z ,Q2)︸ ︷︷ ︸

leading-log structure
function, Q = typ. scale

Θcut(zkl)

▶ ΓLL
ℓℓ (z ,Q2) known to O(α5) + soft exponentiation,

equivalent description by QED parton showers

▶ O(α) approximation: ΓLL,1
ℓℓ (z,Q2) =

α(0)

2π

[
ln
(Q2

m2
ℓ

)
− 1

](1 + z2

1− z

)
+

▶ Alternative approach: QED parton shower
↪→ advantage: photons described with finite pT and definite multiplicity

Impact on predictions:

▶ log-enhanced corrections for “bare” leptons (muons) → large radiative tails

▶ KLN theorem:
mass-singular FSR effects cancel if (ℓγ) system is inclusive

(full integration over z)

▶ full FSR not universal,
in general not even separable from other EW corrections
(possible only if LO amplitudes do not include W bosons)
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Radiative tail from final-state radiation

occurs if resonances reconstructed from decay products

Typical situations: e+e− → WW/ZZ → 4f ,

pp → Z/γ → ℓℓ̄+ X

γ

k1

k2

Z

Final-state radiation:
resonance for

M2 = (k1+k2)
2 < (k1+k2+kγ)

2 ∼ M2
Z

↪→ radiative tail in distribution dσ
dM

of reconstructed invariant mass M
for M < MZ
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S.D., Huber ’09

Example: Single-Z production

▶ radiative tail with corrections up to ∼ 80%

▶ FSR effect drastically reduced
by photon recombination (“rec”):

If Rlγ < 0.1 then (lγ) → l̃ with pl̃ = pl + pγ .
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Comparison with radiative tail from initial-state radiation

occurs if initial state is fixed

Typical situations: e+e− → Z/γ → f f̄ ,
µ+µ− → Z,H, ? → f f̄

Z

γ γ

e−

e+

f̄

f

↪→ scan over s-channel resonance in σtot(s) by changing CM energy
√
s

Initial-state radiation:

Z can become resonant for s = (p++p−)
2 > (p++p−−kγ)

2 ∼ M2
Z

↪→ radiative tail for s > M2
Z due to “radiative return”

Final-state radiation:

s = k2
Z ∼ M2

Z for FSR

↪→ only rescaling of resonance

Example:
cross section for µ−µ+ → bb̄ in lowest order,

including photonic and QCD corrections,

with and without invariant-mass cut√
s −M(bb̄) < 10GeV

S.D., Kaiser ’02

Born
corrected, Mhad cut
corrected

SM

µ+µ− → bb̄

√
s[GeV]

σ[pb]

12512011511010510095908580
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MH = 115GeV
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Single-W/Z production

W, Z

p

p

q̄′

q

l−

ν̄l , l
+

Physics goals:

▶ MZ → detector calibration by comparing with LEP1 result

▶ sin2 θlepteff
→ comparable precision with LEP1 and SLC

▶ MW → exceeds LEP2 precision by factor of 2–3,
most recent ∆MATLAS

W = 16MeV
(tension with ∆MCDF

W = 9MeV)

▶ σ, dσ → precision SM studies

▶ decay widths ΓZ and ΓW from Mll or MT,lνl tails

▶ search for Z ′ and W ′ at high Mll or MT,lνl

▶ information on PDFs
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A W → µνµ event from ATLAS
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A Z → µ+µ− event from ATLAS
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Comments on the theory status

▶ fixed-order QCD corrections known to N3LO for cross sections, Duhr et al. ’20

to NNLO for differential distributions
Hamberg et al ’90; . . .Melnikov et al. ’06; Catani et al. ’09, . . .

▶ EW corrections known to NLO Baur et al. ’97; Zykunov ’01; S.D. et al. ’01; . . .

+ higher-order improvements (universal corrections, multi-γ)

▶ fixed-order mixed O(αsα) corrections
(pole approximation for W/Z, for Z even fully off-shell)

S.D. et al. ’14;’15;’20; Behring et al. ’20; Bonciani et al. ’21;
Armadillo et al. ’22; Buccioni et al. ’22; . . .

▶ QCD resummations (qT resummation, SCET, etc.),
QCD/QED parton showers, etc.
↪→ essential to describe pT spectra of W/Z bosons
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W/Z cross-section measurements at the LHC:
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2.76 TeV, 5.4 pb 1, JHEP 03 (2015) 022 (for Z)
5.02 TeV, 298 pb 1, CMS-PAS-SMP-20-004 (for Z and W)
7 TeV, 4.5 fb 1 (ee), 4.8 fb 1 ( ), JHEP 12 (2013) 030 (for Z)
8 TeV, 19.7 fb 1, EPJC 75 (2015) 147 (for Z)
2.76 TeV, 231 nb 1 ( ), PLB 715 (2012) 66-87 (for W)
7 TeV, 36 pb 1, JHEP 10 (2011) 132 (for W)
8 TeV, 18.2 pb 1, PRL 112 (2014) 191802 (for W)
13 TeV, 201 pb 1, CMS-PAS-SMP-20-004 (for Z and W)
13.6 TeV, 5.04 fb 1, CMS-PAS-SMP-22-017 (for Z)

Theory (N3LO QCD, MSHT20an3lo PDF set)
QCD scale uncertainty

pp Z/ * + X , 60 < m < 120 GeV
pp W+ + X +

pp W + X

pp Z/ * + X , 60 < m < 120 GeV
pp W+ + X +

pp W + X

Good agreement between LHC data and N3LO QCD + NLO EW predictions

(tension for 13TeV W-boson cross sections to be clarified, PDFs?)
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Further recent results from the LHC

Test of lepton universality in W decays: (mostly from tt̄ events)

↪→ tension in LEP results not confirmed

S.Dittmaier Needs and challenges in electroweak physics QCD meets EW, CERN, Feb, 2024 23



Differential W/Z cross sections

↪→ information on MW, sin2 θlepteff , etc.

W bosons:
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Sensitivity of distributions to MW versus NLO EW corrections:

(based on S.D., Krämer ’01)

MW − 10MeV

MW + 10MeV

MT,νl[GeV]

∆[%]

Ratio of LO predictions

√
s = 13TeV

pp → W+ → νµµ
+ +X

11010090807060
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Shape prediction at the level of few 0.1% required!

↪→ Proper inclusion of EW corrections at NLO + beyond crucial!

↪→ In particular, check resonance treatment!
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Exercise: Compare two different resonance treatments!

Complex-mass scheme (CMS)Denner et al. ’99,’05; see also Denner, S.D. 1912.06823

↪→ Complex on-shell renormalization with complex EW couplings

↪→ Gauge invariance and NLO accuracy in resonance and off-shell regions!

Treatment of W productionv ia some “factorization scheme (FS)”:
SD, Krämer ’01

Virtual corrections:

W self-energy

ΣW
T (s)

Wqq̄′ and Wνl l vertex corrections box diagrams

dσFS
virt(ŝ, t̂) = dσLO︸ ︷︷ ︸

∝ 1
|ŝ−M2

W
+iMWΓW|2

×
[
δWW (ŝ) + δWdu(ŝ) + δWνl l(ŝ) + δbox(ŝ, t̂)

]
︸ ︷︷ ︸

ΓW ̸= 0 only in log(ŝ − M2
W + iMWΓW)

Real photonic corrections:

• amplitude gauge invariant for complex W-boson mass µW and real sW

• IR divergences exactly match between dσFS
virt and dσFS

real
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Comparison of width schemes for W production at NLO EW

∆FS−CMS

MT,νl[GeV]

∆[%]

NLO EW

√
s = 13TeV

pp → W+ → νµµ
+ +X

11010090807060

0.2

0.15

0.1

0.05

0

−0.05

−0.1

−0.15

−0.2

Consistency between the FS and CMS at the level of

∆FS−CMS = dσFS
dσCMS

− 1 ∼ 0.02%!
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Survey of EW corrections to Z production

SD, Huber ’09
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▶ NLO QED corrections (mostly FSR) several 10%

[maximally ∼ 40%(80%) for dressed leptons (bare muons)]

▶ Mulit-γ effects still at the few-% level

▶ Weak NLO corrections at the few-% level
↪→ most sensitive to width scheme
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Survey of EW corrections to Z production

SD, Huber ’09
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▶ NLO QED corrections (mostly FSR) several 10%

[maximally ∼ 40%(80%) for dressed leptons (bare muons)]

▶ Mulit-γ effects still at the few-% level

▶ Weak NLO corrections at the few-% level
↪→ most sensitive to width scheme
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Comparison of width schemes for Z production at NLO EW

(based on S.D., Huber 0911.2329)

∆PS−CMS

∆FS−CMS

Mll[GeV]

∆[%]

NLO EW

√
s = 13TeV

pp → Z/γ → µ+µ− +X

110105100959085807570

0.2

0.15

0.1

0.05

0

−0.05

−0.1

−0.15

−0.2

Resonance schemes:
(see also 1912.06823)

CMS = complex-mass scheme

PS = pole scheme

FS = factorization scheme
(less solid, more tricky
due to γ/Z interference)

Consistency between the PS, FS, and CMS at the level of

∆FS/PS−CMS =
dσFS/PS

dσCMS
− 1 <∼ 0.1%!
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Forward–backward asymmetry AFB(Mℓℓ) in neutral-current Drell–Yan production

Issue: symmetric pp initial state at the LHC, i.e. no preferred forward direction!

Solution: exploit PDF difference between (valence) q and (sea) q̄

↪→ on average, q carries more momentum than q̄!

↪→ on average, CM(qq̄) ≈ CM(Z) ≈ CM(ℓ+ℓ−) → q direction!

⇒ Collins–Soper angle θ, ϕ:

▶ go into centre-of-mass frame
CM(Z) of the Z boson

▶ z axis = line of intersection of
leptonic and hadronic planes

▶ +z direction inherited from
Z direction in LAB frame

▶ +x direction from beams

▶ +y direction completes
right-handed coordinate system

▶ θ, ϕ = polar angles of ℓ− momentum k⃗1

hadron plane

x

y

z

lepton plane

p1 p2

k1

γγ

θ φ
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FB asymmetry AFB in Z production – weak corrections and width schemes

AFB defined via Collins–Soper angles → sensitivity to sin2 θlepteff

S.D., Huss, Schwarz ’24
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Large EW corrections!
Experimental uncertainties and precision targets:

• Z resonance at LEP: ∆Ab
FB = 0.0016, ∆Aℓ

FB = 0.0010

↪→ ∆sin2 θlepteff = 0.00029 from ∆Ab
FB

▶ LHC precision target for predictions: ∆AFB(Mℓℓ) <∼ 10−4

↪→ great challenge (not yet completely reached)
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Measurements of the effective weak mixing angle – current status

↪→ LHC closes in on LEP precision!
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FB asymmetry AFB – different sources of EW corrections

S.D., Huss, Schwarz ’24
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▶ NLO weak corrections very important

▶ large QED corrections due to FSR (previous plot)

▶ little impact from QED ISR and IF interference

▶ multi-photon FSR effects significant
↪→ leading-log treatment (∆LLFSR) not sufficient!

▶ universal EW higher-order effects (EWHO) due to ∆α, ∆ρ relevant
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FB asymmetry AFB – differences of width schemes differentially

PS–CMS

FS–CMS

Mℓℓ[GeV]

∆AFB[10
−4]

input: Gµ,MZ,MW

RADY, NLO weak

pp → Z/γ → ℓ−ℓ+ +X
√
s = 8TeV

110105100959085807570

5

4

3

2

1

0

−1

↪→ |PS-CMS| <∼ 10−4

FS less accurate (theoretically not as solid as PS/CMS)

↪→ theoretical improvements beyond NLO EW very desirable!
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NNLO QCD×EW corrections

Calculation in pole approximation (PA) S.D., Huss, Schwinn ’14,’15; S.D., Huss, Schwarz ’24

▶ leading term of resonance expansion

↪→ valid in vicinity of W/Z resonance

↪→ relevant for MW, sin2 θlepteff analyses

▶ on-shell production/decay as building blocks

↪→ reduced 2-loop complexity

De Florian ey al. ’18; Delto et al. ’19;
Bonciani et al. ’19–’21; Behring et al. ’20;
Buccioni et al. ’20

Full off-shell calculation

▶ important for off-shell tails of Mℓℓ, MT,νℓ, kT,ℓ distributions

▶ full 2-loop complexity (e.g. boxes with internal masses)

▶ O(Nf αsα) parts, complex renormalization S.D., Schmidt, Schwarz ’20

▶ neutral-current process fully known Bonciani et al. ’21; Armadillo et al. ’22;
Buccioni et al. ’22

▶ charged-current process approximately known Buonocore et al. ’21
(2-loop part approximated)
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NNLO QCD×EW corrections in pole approximation

Factorizable initial–final (IF) corrs.:

αsαsαsαsαsαsαsαsαsαsαsαsαsαsαsαsαs ααααααααααααααααα

qa

qb

`1

`2

V S.D., Huss,
Schwinn ’15

▶ large corrections due to collinear
FSR

Factorizable initial–initial (II) corrs.:

αsααsααsααsααsααsααsααsααsααsααsααsααsααsααsααsααsα

qa

qb

`1

`2

V

De Florian ey al. ’18;
Delto et al. ’19;
Bonciani et al. ’19–’21;
Behring et al. ’20;
Buccioni et al. ’20;
S.D., Huss, Schwarz ’24

▶ moderate/small corrections,
widely absorption into PDF
redefinition

Factorizable final–final (FF) corrs.:

αsααsααsααsααsααsααsααsααsααsααsααsααsααsααsααsααsα

qa

qb

`1

`2

V S.D., Huss,
Schwinn ’14

▶ only V ℓ̄ℓ counterterms (small)

Non-factorizable (NF) corrs.:

αs

qa

qb

`1

`2

V

γ

S.D., Huss,
Schwinn ’14

▶ corrections negligible

New: Evaluation of O(αsα) corrections to FB asymmetry! S.D., Huss, Schwarz ’24
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FB asymmetry AFB – NNLO corrections (QCD×EW in pole aproximation)

S.D., Huss, Schwarz ’24
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▶ NNLO QCD × FSR QED (IF) by far dominating NNLO effect!

▶ NNLO QCD × weak final-state (FF) corrections still relevant

▶ other NNLO QCD × EW corrections (initial state, non-factorizable)
negligible
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Fixed-order O(αsα) corrections verses QCD × QED parton shower

S.D., Huss, Schwarz ’24

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

60 70 80 90 100 110 120

pp → Z/γ → ℓ−ℓ+ +X
√
s = 13TeV

bare muons

∆
A
F
B

Mℓℓ[GeV]

∆ALO⊗dPhotos
FB

∆ANLO EW
FB

∆AQED FSR
FB

−0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

60 70 80 90 100 110 120

pp → Z/γ → ℓ−ℓ+ +X
√
s = 13TeV

bare muons

∆
A
F
B

Mℓℓ[GeV]

∆AIF
FB

∆A
dNLOQCD⊗dPhotos
FB

▶ Z production:
QED parton showers (like Photos) capture FSR effects well

But:
Approximative quality only known by comparison to full MS-based results

▶ Note: Concept of FSR not well defined for charged-current processes!
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O(αsα) corrections to high-energy tails in Drell–Yan processes

NNLO QCD×EW corrections to Mµµ distribution (bare muons)
Bonciani et al. ’21
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δ ∼ 1−2% in TeV range
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NNLO QCD×EW corrections pT,µ distribution (bare muons)
Bonciani et al. ’21
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δ ∼ 10−15% for pT,µ ∼ 500GeV
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NNLO QCD×EW corrections to Mℓℓ distribution (dressed leptons)
Buccioni et al. ’22
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Effect from γ recombination seems small?

S.Dittmaier Needs and challenges in electroweak physics QCD meets EW, CERN, Feb, 2024 42



NNLO QCD×EW corrections to pT,ℓ distribution (dressed leptons)
Buccioni et al. ’22

dσQCD×EW

100 150 200 250 300 350 400 450 500

1

10 1

10 2

Transverse momentum of the positron

pT,ℓ+ [GeV]

d
σ

/
d

p T
,ℓ
+

[f
b/

G
eV

]

100 150 200 250 300 350 400 450 500
0.9

0.92

0.94

0.96

0.98

1

Transverse momentum of the positron

pT,ℓ+ [GeV]

R
Q

C
D
−

E
W

Effect from γ recombination very significant?

Upshot:
Great progress on NNLO QCD×EW frontier!

But more flexibility / comparability of results wrt. γ recombination desirable ...
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Electroweak corrections at high energies

Sudakov logarithms induced by soft gauge-boson exchange

j

k

a = γ,W , Z

etc.

+ sub-leading logarithms from collinear singularities

Typical impact on 2 → 2 reactions at
√
s ∼ 1TeV:

δ
1−loop
LL ∼ − α

πs2W
ln2

( s

M2
W

)
≃ −26%, δ

1−loop
NLL ∼ +

3α

πs2W
ln
( s

M2
W

)
≃ 16%

δ
2−loop
LL ∼ +

α2

2π2s4W
ln4

( s

M2
W

)
≃ 3.5%, δ

2−loop
NLL ∼ − 3α2

π2s4W
ln3

( s

M2
W

)
≃ −4.2%

⇒ Corrections still relevant at 2-loop level

Note: differences to QED/QCD where Sudakov logs cancel
▶ massive gauge bosons W, Z can be reconstructed

↪→ no need to add “real W, Z radiation”

▶ non-Abelian charges of W, Z are “open” → Bloch–Nordsieck theorem not applicable

Extensive theoretical studies at fixed perturbative (1-/2-loop) order and
suggested resummations via evolution equations

Beccaria et al.; Beenakker, Werthenbach; Ciafaloni, Comelli; Denner, Pozzorini;
Fadin et al.; Hori et al.; Melles; Kühn et al., Denner et al.; Manohar et al. ’00–
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High-energy limit – Sudakov versus Regge regime

Sudakov regime: all invariants ki · kj ≫ M2
W !

Example:
2 → 2 particle process

k1

k2

i

i ′

f

f ′

k3

k4

k1

k2

i

i ′

f

f ′

k3

k4

Kinematic variables in centre-of-mass frame in high-energy limit (k2
j → 0):

s = (k1 + k2)
2 ∼ 4E 2, E = beam energy,

t = (k1 − k3)
2 ∼ −4E 2 sin2(θ/2), θ = scattering angle,

M34 =
√
s ∼ 2E ,

kT = k3,T ∼ E sin θ

High-energy limits in distributions:

▶ dσ

dkT
: kT ≫ MW ⇒ s, |t| ≫ M2

W ⇒ Sudakov domination

▶ dσ

dM34
: M34 ≫ MW ⇒ small |t| possible ⇒ in general no Sudakov domination

(i.e. typically smaller corrections)
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Example: Drell–Yan production

Neutral current: pp → ℓ+ℓ− at
√
s = 14TeV (based on S.D./Huber arXiv:0911.2329)

Mℓℓ/GeV 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 2000−∞
σ0/pb 738.733(6) 32.7236(3) 1.48479(1) 0.0809420(6) 0.00679953(3) 0.000303744(1)

δrecqq̄,phot/% −1.81 −4.71 −2.92 −3.36 −4.24 −5.66

δqq̄,weak/% −0.71 −1.02 −0.14 −2.38 −5.87 −11.12

δ
(1)
Sudakov/% 0.27 0.54 −1.43 −7.93 −15.52 −25.50

δ
(2)
Sudakov/% −0.00046 −0.0067 −0.035 0.23 1.14 3.38

no Sudakov domination!

Charged current: pp → ℓ+νℓ at
√
s = 14TeV (based on Brensing et al. arXiv:0710.3309)

MT,νℓℓ
/GeV 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 2000−∞

σ0/pb 4495.7(2) 27.589(2) 1.7906(1) 0.084697(4) 0.0065222(4) 0.00027322(1)

δ
µ+νµ
qq̄ /% −2.9(1) −5.2(1) −8.1(1) −14.8(1) −22.6(1) −33.2(1)

δrecqq̄ /% −1.8(1) −3.5(1) −6.5(1) −12.7(1) −20.0(1) −29.6(1)

δ
(1)
Sudakov/% 0.0005 0.5 −1.9 −9.5 −18.5 −29.7

δ
(1)
EWslog/% 0.008 0.9 2.3 3.8 4.8 5.9

δ
(2)
Sudakov/% −0.0002 −0.023 −0.082 0.21 1.3 3.8

Sudakov domination!
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Multi-boson production / scattering at the LHC

Massive di-boson production
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▶ overall good agreement between data and SM

▶ NNLO QCD corrections essential for proper descritpion of data

▶ NLO EW corrections important in differential distributions

▶ data constrain anomalous VVV couplings
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A µ+µ−e+e− event from ATLAS
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pp → WW/ZZ → e+e−νν̄ + X : survey of different NLO contributions

Kallweit et al. ’17

▶ XS contributions:
WW + ZZ+ interferences

▶ Jet veto:
H jet

T =
∑
i∈jets

pT,i > H lep
T

↪→ KQCD moderate

▶ EW corrections
∼ −40% in TeV range
(EW Sudakov logarithms)

▶ Combination of QCD and EW
corrections:
| QCD+EW − QCD×EW |

∼ δQCD × δEW

∼ 10−20% for pT,ℓ1
>∼ 1TeV

Note: product better motivated!
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EW corrections – full NLO versus pole approximation

Double-pole approximation (DPA) vs. Full off-shell qq̄ → 4f
calculation
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f3

f̄4

u

W

W

f2

γ/Z

f3

▶ expansion about resonance poles
↪→ factorizable & non-fact. corrs.

▶ not many diagrams (2→2 production)

+ numerically fast

− validity only for
√
ŝ > 2MV +O(ΓV )

▶ off-shell calculation with
complex-mass scheme

▶ many off-shell diagrams
(∼103/channel)

− CPU intensive

+ NLO accuracy everywhere

Approaches compared for e+e−/pp → WW → 4f , etc.

(similarly for pp → WWW → 6ℓ, pp(WW → WW) → 4ℓ2j, etc.)
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DPA versus full off-shell EW correction in pp → νµµ
+e−ν̄e + X Biedermann et al. ’16

Rapidity and invariant-mass distributions
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Level of agreement as expected (dominance of doubly-resonant diagrams)

↪→ difference <∼ 0.5% whenever cross section sizable
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DPA versus full off-shell EW correction in pp → νµµ
+e−ν̄e + X Biedermann et al. ’16

Transverse-momentum distribution of a single lepton
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Impact of singly-resonant diagrams
where e− takes recoil from (µ+νµν̄e)

(W bremsstrahlung to Drell–Yan production of e+e−)

Agreement degrades for pT >∼ 300GeV, since off-shell diagrams get enhanced
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Electroweak gauge-boson scattering

W/Z/γ

W/Z/γ

p

p

Physics interest:

▶ strong sensitivity to EW gauge-boson self-interaction

▶ window to EW symmetry breaking (EWSB) via off-shell Higgs exchange,
complementary to direct analyses of (on-shell) Higgs bosons

Analysis framework:

▶ “SM Effective Theory (SMEFT)” based on SM particle content

Leff = LSM +
∑
i

ci
Λ2

L(dim−6)
i , effective dim-6 operators

Buchmüller, Wyler ’85; Grzadkowski et al. ’10

▶ Specific SM extensions (extended Higgs sectors, modified EWSB, etc.)

All channels measured by ATLAS & CMS → compatibility with SM

⇒ BSM effects (if accessible) subtle and small → highest precision required !
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A typical W+W+ scattering event at the LHC
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Schematic view of perturbative orders at LO and NLO
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⇒ Tower of mixed EW–QCD corrections at NLO
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Survey of NLO contributions of QCD type

QCD corrections to EW channels
g

W

W

W

W

g

γ/Z

W

W

× MLO∗
EW ∝ αsα

6

↪→ QCD corrections only ∼ 5% (little colour exchange between protons)

QCD corrections to QCD channels

W

W

g

g

g

W

W

× MLO∗
QCD ∝ α3

sα
4

▶ no relation to EW VBS subprocess, just QCD VV + 2jet production

▶ contribution damped by VBS cuts, but still quite large
(W±W± is exception with ∼ 10%, since gg channel missing)
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NLO corrections of EW and mixed QCD–EW types

Mixed QCD–EW contributions ∝ α2
sα

5

γ/Z/W

W

W

g

g

g γ/Z/W

W

W

× MLO∗
QCD g

W

W

× MLO∗
EW

Mixed QCD–EW contributions ∝ αsα
6

g γ/Z/W

W

W

× MLO∗
EW

mixed contributions not VBS enhanced,
partially colour-suppressed

↪→ very small

Purely EW contributions ∝ α7

W

W

W

W

γ/Z
/W γ/Z/W

W

W

× MLO∗
EW

Sudakov-enhanced VBS corrections,
∼ −15% (larger in distributions)

↪→ experimentally relevant!
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Comments on NLO calculations:

▶ genuine QCD corrections available since more than 10 years (several groups)

▶ NLO predictions for full NLO tower extremely challenging, but available
W±W±: Biedermann et al. ’16,’17; S.D. et al. ’23; WZ: Denner et al. ’19;
ZZ: Denner et al. ’20,’21; W±W∓: Denner et al. ’22

▶ Main challenges:

▶ algebraic complexity (many partonic channels, ∼ some 105 diagrams)
↪→ recursive one-loop amplitude generators Recola / OpenLoops

▶ multi-leg tensor one-loop integrals (8-point functions)
↪→ numerically stable evaluation with Collier library

or improved OpenLoops reduction

u

u

d
e+

νe

µ+

µ−

u

Z/γ

W

Z

Z/γ

u

u

d
e+

νe

µ+
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u

Z/γ
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Z

W+

Z

H

u

u

d
e+

νe

µ+

µ−

u

g

W

Z

Z/γ

▶ NLO/MC techniques pushed to the extreme, but work well:

QCD/QED dipole subtraction formalism, complex-mass scheme,
multi-channel Monte Carlo integration, etc.

▶ new subtlety: integration over low-virtuality γ∗ → qq̄ splitting
↪→ relation to ∆αhad via “conversion function” Denner et al. ’19
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Tower of NLO corrections to QCD W+W+ + 2j channel Biedermann et al. ’16,’17

Example: Mj1j2 distribution (
√
s = 13TeV)
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EW O(α7) contribution is largest NLO correction
↪→ δα7 = −13% for integrated cross section within VBS cuts

Good description of dominant correction by leading EW high-energy logarithms:

δα7 ≈ − 2α

s2Wπ
ln2

(
Q2

M2
W

)
+

19α

12s2Wπ
ln

(
Q2

M2
W

)
, Q ∼ ⟨M4ℓ⟩ ∼ 400GeV

(due to soft/collinear W/Z exchange)

S.Dittmaier Needs and challenges in electroweak physics QCD meets EW, CERN, Feb, 2024 61



Schematic view of perturbative orders at LO and NLO

W

W

W

W

W

W

W

W

W

W

W

W

g

W

W

g

W

W

g

W

W

MLO
EW MLO∗

EW MLO
EW MLO∗

QCD + c.c. MLO
QCD MLO∗

QCD

O
(
αsα

5
)

O
(
α6

)
O
(
α2
sα

4
)

LO

O
(
α7

)
O
(
αsα

6
)

O
(
α2
sα

5
)

O
(
α3
sα

4
)

NLO

EW

QCD

EW

QCD

EW

QCD

EW mixed EW–QCD QCD

⇒ Tower of mixed EW–QCD corrections at NLO
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Survey of NLO contributions of QCD type

QCD corrections to EW channels
g

W

W

W

W

g

γ/Z

W

W

× MLO∗
EW ∝ αsα

6

↪→ QCD corrections only ∼ 5% (little colour exchange between protons)

QCD corrections to QCD channels

W

W

g

g

g

W

W

× MLO∗
QCD ∝ α3

sα
4

▶ no relation to EW VBS subprocess, just QCD VV + 2jet production

▶ contribution damped by VBS cuts, but still quite large
(W±W± is exception with ∼ 10%, since gg channel missing)
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NLO corrections of EW and mixed QCD–EW types

Mixed QCD–EW contributions ∝ α2
sα
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mixed contributions not VBS enhanced,
partially colour-suppressed

↪→ very small

Purely EW contributions ∝ α7

W

W

W

W

γ/Z
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EW

Sudakov-enhanced VBS corrections,
∼ −15% (larger in distributions)

↪→ experimentally relevant!
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Comments on NLO calculations:

▶ genuine QCD corrections available since more than 10 years (several groups)

▶ NLO predictions for full NLO tower extremely challenging, but available
W±W±: Biedermann et al. ’16,’17; S.D. et al. ’23; WZ: Denner et al. ’19;
ZZ: Denner et al. ’20,’21; W±W∓: Denner et al. ’22

▶ Main challenges:

▶ algebraic complexity (many partonic channels, ∼ some 105 diagrams)
↪→ recursive one-loop amplitude generators Recola / OpenLoops

▶ multi-leg tensor one-loop integrals (8-point functions)
↪→ numerically stable evaluation with Collier library

or improved OpenLoops reduction
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g

W

Z

Z/γ

▶ NLO/MC techniques pushed to the extreme, but work well:

QCD/QED dipole subtraction formalism, complex-mass scheme,
multi-channel Monte Carlo integration, etc.

▶ new subtlety: integration over low-virtuality γ∗ → qq̄ splitting
↪→ relation to ∆αhad via “conversion function” Denner et al. ’19
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Tower of NLO corrections to QCD W+W+ + 2j channel Biedermann et al. ’16,’17

Example: Mj1j2 distribution (
√
s = 13TeV)

dσ
dM
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[
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LO QCD
LO INT
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δ
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δ
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]

Mj1j2 [GeV]

α2
s α5 α3

s α4 photon α7

EW O(α7) contribution is largest NLO correction
↪→ δα7 = −13% for integrated cross section within VBS cuts

Good description of dominant correction by leading EW high-energy logarithms:

δα7 ≈ − 2α

s2Wπ
ln2

(
Q2

M2
W

)
+

19α

12s2Wπ
ln

(
Q2

M2
W

)
, Q ∼ ⟨M4ℓ⟩ ∼ 400GeV

(due to soft/collinear W/Z exchange)
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Recent recalculation of NLO corrections to QCD W+W+ + 2j channel
S.D., Maierhöfer, Schwan, Winterhalter ’23

Results with VBS cuts:

Order Result [fb] δ [%] Scale uncertainty

LO O(α6α0
s) 1.24597(5) −7.7% 9.9%

O(α5α1
s) 0.051133(3) −14.0% 17.7%

O(α4α2
s) 0.18649(2) −22.2% 31.6%

sum 1.48359(5) −9.8% 12.1%

NLO O(α7α0
s) −0.1747(5) −11.8%

O(α6α1
s) −0.0902(8) −6.1%

O(α5α2
s) −0.00017(19)* 0.0%

O(α4α3
s) −0.0033(7) −0.2%

sum −0.268(1) −18.1%

LO+NLO sum 1.215(1) −4.0% 1.5%

▶ interesting interplay of QCD and EW corrections

▶ large EW corrections from high-energy domain
↪→ inclusion of leading effects beyond NLO?

▶ approximations for complex 2 → 6 process non-trivial, but possible

* Error in earlier calculation (Biedermann et al. ’16,’17) corrected
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Challenges in electroweak corrections beyond NLO

EW corrections at NLO

▶ problem conceptually solved, corrections widely automated

▶ dedicated calculations for high-multiplicity processes (2 → 6, 7, 8, . . . )
certainly still welcome
↪→ non-trivial cross-checks, ansatz for approximations,

improvements beyond NLO, . . .

EW renormalization at NNLO

▶ concept widely straightforward for on-shell and MS schemes

▶ few applications for decays exist

▶ subtleties expected (unstable-particles effects, imaginary parts, etc.)

▶ major challenge: complex-mass scheme for unstable particles at NNLO

Massive 2-loop integrals (and beyond)

▶ majority of graphs involve triple-massive cuts → elliptic integrals

▶ numerical methods unavoidable
↪→ try out and compare different approaches

▶ often analytical expansions provide an alternative
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Challenges in electroweak corrections beyond NLO (continued)

IR singularities / QED radiation

▶ borrow subtraction methods from QCD

▶ small masses of fermions often desirable
↪→ massification of massless limits

▶ control QED radiation way beyond NNLO (large effects on tails)
↪→ factorization into (perturbative!) QED lepton/photon PDFs

Approximations

▶ Important, but validate/check carefully!

▶ Don’t oversimplify! E.g. include W/Z decays in processes

▶ Resonance expansions for W/Z/H production often good approximations!

▶ Effective vector-boson approximations not appropriate for precision physics
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Challenges in electroweak corrections beyond NLO (continued)

Important calculations → required for successful phenomenology

▶ LHC:

▶ NNLO QCD×EW corrections and/or QCD/QED PS matching
for 2 → 2 key processes

▶ Drell–Yan: NNLO EW in pole approximation for MW, sin2 θlepteff
▶ leading EW corrections beyond NLO at high energies
▶ . . .

▶ Future e+e− colliders:

▶ N3LO EW for µ → eν̄eνµ for MW

▶ Multi-loop corrections to EWPOs (e.g. ρ-parameter)
▶ NNLO EW for e+e− → Z/γ∗ → f f̄

↪→ check validity of pseudo-observable approach
▶ NNLO EW for WW production at threshold
▶ NNLO EW for ZH production, multi-loop calculations for H decays
▶ . . .
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Challenges in electroweak corrections beyond NLO (continued)

Extremely huge effort,

highly specialized concepts/techniques,

long-lasting projects, . . .

↪→ Don’t build a new Babel tower!

Validation, sustainability, legacy

▶ Proper documentation of methods/results
↪→ benchmark results, ancillary files for analytical results, public programs

▶ Libraries for integrals of even amplitudes?

▶ Tuned comparisons of independent results → working groups / reports

▶ Excite, engage and support young talents!
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Outlook: electroweak precision physics at future e+e− colliders

Status of (not only) EW precision physics in the (pre HL-)LHC era
Erler, Schott ’19
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Current precision: typically <∼ 1%, even ∼ 0.01−0.1% in some cases

Future projections: promise improvements by 1–2 orders of magnitude

↪→ ultimate challenge of the SM at future e+e− colliders

But: Can theory provide adequate predictions?
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Experimental errors and theory uncertainties

Experimental errors:

systematic errors
statistical errors

}
→ LHC status + projections to HL/HE-LHC, ILC, FCC-ee

= input in the following

Theory uncertainties in predictions:

▶ Intrinsic uncertainties due to missing higher-order corrections, estimated from

▶ generic scaling of higher order via coupling factors
▶ renormalization and factorization scale variations
▶ tower of known corrections, e.g. ∆NNLO ∼ δ2NLO if δNLO known
▶ different variants to include/resum leading higher-order effects

▶ Parametric uncertainties due to errors in input parameters, induced by

▶ experimental errors in measurements
▶ theory uncertainties in analyses

Note:
Estimates of theory uncertainties often (too) optimistic in projections of exp. results...
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Physics at the Z pole – central EW precision (pseudo-)observables
FCC-ee: Freitas et al., 1906.05379; ILC: Moortgat-Pick et al., 1504.01726

experimental accuracy intrinsic theory uncertainty
current ILC FCC-ee current current source prospect

∆MZ[MeV] 2.1 − 0.1

∆ΓZ[MeV] 2.3 1 0.1 0.4 α3, α2αs, αα
2
s 0.15

∆ sin2 θℓeff [10
−5] 23 1.3 0.6 4.5 α3, α2αs 1.5

∆Rb[10
−5] 66 14 6 11 α3, α2αs 5

∆Rℓ[10
−3] 25 3 1 6 α3, α2αs 1.5

Theory requirements for Z-pole pseudo-observables:

▶ needed:
⋄ EW and QCD–EW 3-loop calculations
⋄ 1 → 2 decays, fully inclusive

▶ problems:
⋄ technical: massive multi-loop integrals, γ5
⋄ conceptual: pseudo-obs. on the complex Z-pole
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Physics at the Z pole – central EW precision (pseudo-)observables
FCC-ee: Freitas et al., 1906.05379; ILC: Moortgat-Pick et al., 1504.01726

experimental accuracy intrinsic th. unc. parametric unc.
current ILC FCC-ee current prospect prospect source

∆MZ[MeV] 2.1 − 0.1

∆ΓZ[MeV] 2.3 1 0.1 0.4 0.15 0.1 αs

∆sin2 θℓeff [10
−5] 23 1.3 0.6 4.5 1.5 2(1) ∆αhad

∆Rb[10
−5] 66 14 6 11 5 1 αs

∆Rℓ[10
−3] 25 3 1 6 1.5 1.3 αs

Parametric uncertainties of EW pseudo-observables:

▶ QCD:
⋄ most important: δαs ∼ 0.00015 @ FCC-ee?

↪→ αs from EW POs competitive ⇒ cross-check with other results!
⋄ quark masses mt, mb, mc

▶ ∆αhad: δ(∆αhad) ∼ 5(3)× 10−5 for/from FCC-ee?
⋄ new exp. results from BES III / Belle II on e+e− → hadrons
⋄ ∆αhad from fit to radiative return e+e− → γ + hadrons

▶ other EW parameters: MZ, MW, MH less critical (improved at ILC/FCC-ee)
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Physics at the Z pole – central EW precision (pseudo-)observables
FCC-ee: Freitas et al., 1906.05379; ILC: Moortgat-Pick et al., 1504.01726

experimental accuracy intrinsic th. unc. parametric unc.
current ILC FCC-ee current prospect prospect source

∆MZ[MeV] 2.1 − 0.1

∆ΓZ[MeV] 2.3 1 0.1 0.4 0.15 0.1 αs

∆sin2 θℓeff [10
−5] 23 1.3 0.6 4.5 1.5 2(1) ∆αhad

∆Rb[10
−5] 66 14 6 11 5 1 αs

∆Rℓ[10
−3] 25 3 1 6 1.5 1.3 αs

Parametric uncertainties of EW pseudo-observables:

▶ QCD:
⋄ most important: δαs ∼ 0.00015 @ FCC-ee?

↪→ αs from EW POs competitive ⇒ cross-check with other results!
⋄ quark masses mt, mb, mc

▶ ∆αhad: δ(∆αhad) ∼ 5(3)× 10−5 for/from FCC-ee?
⋄ new exp. results from BES III / Belle II on e+e− → hadrons
⋄ ∆αhad from fit to radiative return e+e− → γ + hadrons

▶ other EW parameters: MZ, MW, MH less critical (improved at ILC/FCC-ee)
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NNLO
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at much higher
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W-boson mass measurements vs. prediction from µ decay
ILC: Baak et al., 1310.6708 FCC-ee: Freitas et al., 1906.05379

experimental accuracy theory uncertainty
σWW @ threshold intrinsic parametric

current LEP2 ILC FCC-ee current source prospect prospect source

∆MW[MeV] 13 200 3−6 0.5−1 3 α3, α2αs 1 1(0.6) ∆αhad︸ ︷︷ ︸ ︸ ︷︷ ︸
complicated
reconstructions

Amoroso et al., 2308.09417

basically counting
experiments

MW calculated
from µ decay

Sensitivity of σWW to MW: Beneke et al. ’07
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σWW(s,MW)

∆κ = 0.1% (0.02%) ↔ δMW = 1.5 (0.3)MeV
for

√
s = 161GeV

⇒ FCC-ee requires
∆TH ∼ 0.01−0.04% in σWW

Shaded areas / ISR curve:
some uncertainties of NLO(EFT) calculation,
improveable via full NLO(ee→4f ) and NNLO(EFT)
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W-boson mass measurements vs. prediction from µ decay
ILC: Baak et al., 1310.6708 FCC-ee: Freitas et al., 1906.05379

experimental accuracy theory uncertainty
σWW @ threshold intrinsic parametric

current LEP2 ILC FCC-ee current source prospect prospect source

∆MW[MeV] 13 200 3−6 0.5−1 3 α3, α2αs 1 1(0.6) ∆αhad︸ ︷︷ ︸ ︸ ︷︷ ︸
complicated
reconstructions

Amoroso et al., 2308.09417

basically counting
experiments

MW calculated
from µ decay

Sensitivity of σWW to MW: Beneke et al. ’07
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Shaded areas / ISR curve:
some uncertainties of NLO(EFT) calculation,
improveable via full NLO(ee→4f ) and NNLO(EFT)

Theory
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ges
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− → 4f predict
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▶ ISR to very high orders

▶ full NN
LO calcula

tion in thresho
ld EFT

+ improvem
ents

▶ for MW analysis
:

MW predict
ion from µ decay at 3 loops
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State-of-the-art prediction of σWW in LEP2 energy range Denner, S.D., 1912.06823
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▶ IBA = based on leading-log ISR and universal EW corrections (∆ ∼ 2%)
(also by GENTLE)↪→ shows large ISR impact near threshold

▶ DPA = “Double-Pole Approximation” (leading term of resonance expansion)
RacoonWW, YFSWW↪→ ∆ ∼ 0.5% above threshold, not applicable at threshold

▶ “full” = full NLO prediction for e+e− → 4f via charged current Denner et al. ’05
+ leading-log improvements for ISR beyond NLO

↪→ ∆ ∼ 0.5% everywhere
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Improvements for σWW @ threshold via EFT Beneke et al. ’07; Actis et al. ’08

EFT provides expansion of σWW for β =
√

1− 4M2
W/s ∼

√
ΓW/MW ∼ √

α:

σWW = Cα2β
[

1 + c(0)β LO

+ α
( c

(1)
1

β
+ c

(1)
2 lnβLe + c

(1)
3 Le + c

(1)
4 + c

(1)
5 β

)
NLO

+ α2
( c

(2)
1

β2
+

c
(2)
2

β
+ c

(2)
3 ln2βL2e + c

(2)
4 lnβL2e + . . .︸ ︷︷ ︸

leading NNLO parts known

)
+ . . .

]
NNLO
↓
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NLO EFT

ISR enhancement factor Le = ln(me/MW)

Resummation of leading (αLe)
n and

subleading α(αLe)
n−1 ISR necessary!
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Theory issues in scan of σWW(s) over WW threshold

▶ Definition of σWW via 4f final states

▶ e± final states: separation or inclusion of single-W channels?
↪→ TH precision versus EXP accuracy

▶ Hadronic final states: separation of multi-jet events (2j,3j,4j,. . . )
↪→ TH precision versus EXP accuracy

▶ Required for the best achievable theory prediction for σWW:

▶ Full NLO e+e− → 4f prediction for each 4f type
(interferences with ZZ and forward-e± channels)

▶ full NNLO EFT calculation (only leading terms available)

▶ leading 3-loop Coulomb-enhanced EFT corrections

▶ matching of all fixed-order e+e− → 4f and threshold-EFT ingredients

▶ convolution of matched and corrected XS with higher-order ISR

↪→ Estimate of theory uncertainty:

∆ ∼ 0.01−0.04% for σWW @ threshold Freitas et al., 1906.05379

Improved MW prediction from µ decay

▶ Massive 3-loop computations (vacuum graphs, self-energies)
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WW production beyond LEP2 energy range

Fixed-order NLO + leading-log ISR prediction:
Denner, S.D., 1912.06823
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Note: large non-universal weak corrections + sizeable off-shell effects

Achievable precision:

▶ by full NLO for e+e− → 4f + leading NNLO corrections + ISR resummation

▶ estimate: ∆ ∼ 0.5% in distributions (∼ 1% in tails) up to
√
s ∼ 1TeV
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Triple-gauge couplings (TGC) analyses in e+e− → WW

▶ e+e− is ideal framework: no formfactors for damping required!

▶ SMEFT framework:
sensitivity to dim-6 operators complementary to Higgs analyses Ellis, You ’15

Bambade et al. ’19

TGC Limits @ 68% CL

0.05− 0 0.05 0.1

γλ∆

γκ∆

1

Z
g∆

LEP2 ATLAS CMS HL-LHC ILC 250

▶ Impact of ∆κγ on dσWW: √
s/GeV 200 250 500

∆κγ 0.05 0.004 0.001
dσWW(κγ)/dσ

SM
WW − 1 3% ∼ 0.5% ∼ 0.5%

↪→ SM precision limits reach in TGCs for moderate
√
s !

S.Dittmaier Needs and challenges in electroweak physics QCD meets EW, CERN, Feb, 2024 85



Theory homework for high-precision W-boson physics

▶ Exclusive analyses & predictions for e+e− → 4f :

▶ e± final states: proper treatment / separation of single-W channels

▶ Hadronic final states: separation of multi-jet events (2j,3j,4j,. . . )

▶ Full NLO e+e− → 4f prediction for each 4f type
(interferences with ZZ and forward-e± channels)

▶ more leading corrections beyond NLO

▶ σWW in threshold region:

▶ full NNLO EFT calculation (only leading terms available)

▶ leading 3-loop Coulomb-enhanced EFT corrections

▶ matching of all fixed-order e+e− → 4f and threshold-EFT ingredients

↪→ Estimate of theory uncertainty:

∆ ∼ 0.01−0.04% for σWW @ threshold Freitas et al., 1906.05379

▶ For MW analysis: Improved MW prediction from µ decay

▶ massive 3-loop computations (vacuum graphs, self-energies)

S.Dittmaier Needs and challenges in electroweak physics QCD meets EW, CERN, Feb, 2024 86



Higgs couplings analyses at present and future colliders

de Blas et al., 1905.03764

▶ Many different assumptions in different analyses! Read fine-print!
Important details: ΓH,BSM = 0? |κW|, |κZ| ≤ 1? κγ , κg independent?

▶ Theory limitations!
H couplings ̸= free parameters, rescaled model ̸= consistent field theory
↪→ QCD corrections often ok, but EW corrections (∼ 5%) inconsistent!
↪→ Coupling rescalings (e.g. κ framework) uncertain to ∼ 5%!
⇒ Use EFT like SMEFT (with corrections)!
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Higgs decay widths and Higgs couplings at ILC and FCC-ee
LHC HXS WG; de Blas et al., 1905.03764; HL-LHC: Cepeda et al., 1902.00134;
ILC: Bambade et al., 1903.01629 FCC-ee: Freitas et al., 1906.05379

experimental accuracy theory uncertainty param. unc.
HL-LHC ILC250 FCC-ee current source prospect prospect source

H → bb̄ 4.4% 2% 0.8% 0.4% α5
s 0.2% 0.6% mb

H → ττ 2.9% 2.4% 1.1% 0.3% α2 0.1% negligible

H → µµ 8.2% 8% 12% 0.3% α2 0.1% negligible

H → gg 1.6% (prod.) 3.2% 1.6% 3.2% α4
s 1% 0.5% αs

H → γγ 2.6% 2.2% 3.0% 1% α2 1% negligible

H → γZ 19% 5% α 1% 0.1% MH

H → WW 2.8% 1.1% 0.4% 0.5% α2
s, αsα, α

2 0.3% 0.1% MH

H → ZZ 2.9% 1.1% 0.3% 0.5% α2
s, αsα, α

2 0.3% 0.1% MH

Note: e+e− colliders from σe+e−→ZH with inclusive Higgs decays!

⇒ Absolute normalization of Higgs BRs
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Higgs decay widths and Higgs couplings at ILC and FCC-ee
LHC HXS WG; de Blas et al., 1905.03764; HL-LHC: Cepeda et al., 1902.00134;
ILC: Bambade et al., 1903.01629 FCC-ee: Freitas et al., 1906.05379

experimental accuracy theory uncertainty param. unc.
HL-LHC ILC250 FCC-ee current source prospect prospect source

H → bb̄ 4.4% 2% 0.8% 0.4% α5
s 0.2% 0.6% mb

H → ττ 2.9% 2.4% 1.1% 0.3% α2 0.1% negligible

H → µµ 8.2% 8% 12% 0.3% α2 0.1% negligible

H → gg 1.6% (prod.) 3.2% 1.6% 3.2% α4
s 1% 0.5% αs

H → γγ 2.6% 2.2% 3.0% 1% α2 1% negligible

H → γZ 19% 5% α 1% 0.1% MH

H → WW 2.8% 1.1% 0.4% 0.5% α2
s, αsα, α

2 0.3% 0.1% MH

H → ZZ 2.9% 1.1% 0.3% 0.5% α2
s, αsα, α

2 0.3% 0.1% MH

Note: e+e− colliders from σe+e−→ZH with inclusive Higgs decays!

⇒ Absolute normalization of Higgs BRs
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Enormous challenges for theory!

Can theory provide adequate predictions?

My expectation: Yes.

... anticipating progress + support for young theorists
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Electroweak input parameter schemes
SM input parameters: (natural choice)

αs, α, MW, MZ, MH, mf , VCKM

Issues:

▶ Setting of α: process-specific choice to

▶ avoid sensitivity to non-perturbative light-quark masses

▶ minimize universal EW corrections

Schemes: fix MW, MZ, and α

▶ α(0)-scheme: α = α(0) = 1/137.0 . . .

▶ α(MZ)-scheme: α = α(M2
Z) ≈ 1/129

▶ Gµ-scheme: α = αGµ =
√
2GµM

2
W(1−M2

W/M2
Z)/π ≈ 1/132

↪→ Some arbitrariness of ∼ 3−6% per factor of α in LO prediction

▶ Warnings / pitfalls:

▶ α must not be set diagram by diagram, but
global factors like α(0)mαn

Gµ
in gauge-invariant contributions mandatory !

▶ weak mixing angle: sW ̸= free parameter if MW and MZ are fixed !

▶ Yukawa couplings are uniquely fixed by fermion masses !
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Running electromagnetic coupling α(s):

γ

q

q

γ
becomes sensitive to unphysical quark masses mq

for |s| in GeV range and below (non-perturbative regime)

↪→ δZe and δZAA involve lnmf with f = q, ℓ

Solution: fit hadronic part of ∆α(s) = −Re{ΣAA
T,R(s)/s} and thus of δZe

via dispersion relation to R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−) Jegerlehner et al.

⇒ Running elmg. coupling: α(s) =
α(0)

1−∆αferm̸=top(s)

Universal contribution of ∆α(M2
Z) to renormalization constants:

δZe =
1
2
∆α(M2

Z) + . . . , δZAA = −∆α(M2
Z) + . . .
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Leading correction to the ρ-parameter:

mass differences in fermion doublets break custodial SU(2) symmetry

↪→ large effects from bottom–top loops in W/Z self-energies Veltman ’77

▶ large corrections ∝ m2
t in ΣVV

T (s), V = W ,Z

Z

t/b

t/b

Z W

t

b

W

ΣZZ
T (s)

M2
Z

− ΣWW
T (s)

M2
W

|̃s|≪m2
t

3Gµm
2
t

8
√
2π2

≡ ∆ρtop

▶ m2
t -enhanced terms show up in δsW, δcW,

but cancel in ΣVV
T,R(s)

▶ leading terms to ∆ρ known beyond NLO

Universal contribution of ∆ρ to renormalization constants:

δc2W
c2W

= −∆ρtop + . . . ,
δs2W
s2W

=
c2W
s2W

∆ρtop︸ ︷︷ ︸
major effect due to 1/s2W enhancement

+ . . .
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Adaption of input parameter schemes for cross-section predictions

Aim: absorb universal corrections from ∆α and ∆ρ
into leading-order (LO) predictions as much as possible

▶ ∆αn terms can be absorbed to all orders

▶ ∆ρn terms can be absorbed at least to two-loop order

▶ factor α in δEW can still be adjusted appropriately
(e.g. α→α(0) if γ radiation dominates, α→αGµ if weak corrections dominate)

Consider NLO cross section:

σNLO = αNALO (1 + δEW) , δEW = O(α)

▶ for process at some generic energy scale Q >∼ MW

▶ with Nγ external photons (separable from γ∗ → f f̄ )

▶ with NW couplings of W/Z in dominating LO diagrams
(∆ρ effects from cW from difference between W/Z ignored)

↪→ NW factors of g 2
2 ∝ 1/s2W in LO cross section

α(0)-scheme: σLO = α(0)NALO

δ
α(0)
EW = 2N δZe + Nγ δZAA − NW

δs2W
s2W

+ . . .
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α(0)-scheme: σLO = α(0)N ALO

δ
α(0)
EW = (N − Nγ)∆α(M2

Z)− NW
c2W
s2W

∆ρtop + . . .

⇒ cancellation of ∆α, ∆ρ for Nγ = N, NW = 0,

i.e. for processes such as γγ → ℓ+ℓ−,W+W−, eγ → eγ, etc.

α(MZ)-scheme: σLO = α(M2
Z)

N ALO

δ
α(MZ)
EW = δ

α(0)
EW − N∆α(MZ) + . . . = −Nγ ∆α(M2

Z)− NW
c2W
s2W

∆ρtop + . . .

⇒ cancellation of ∆α, ∆ρ for Nγ = 0, NW = 0,

which is not possible, since there is at least one Z exchange for Nγ = 0.

But: γ exchange dominates over Z exchange for Q ≪ MW (NW → 0)

⇒ “α(Q) scheme” for neutral-current processes appropriate, e+e−/qq̄ → ℓ+ℓ−, etc.

Gµ-scheme: σLO = αN
Gµ

ALO

δ
Gµ

EW = δ
α(0)
EW − N∆r + . . . = −Nγ ∆α(M2

Z) + (N − NW )
c2W
s2W

∆ρtop + . . .

⇒ cancellation of ∆α, ∆ρ for Nγ = 0, NW = N,

i.e. for W/Z decays, all EW processes without external γ at Q >∼ MW

S.Dittmaier Needs and challenges in electroweak physics QCD meets EW, CERN, Feb, 2024 96



Mixed scheme: σLO = α(Gµ)
nα(0)mALO

δmix
EW = δ

α(0)
EW − n∆r + . . . = (m − Nγ)∆α(M2

Z) + (n − NW )
c2W
s2W

∆ρtop + . . .

⇒ cancellation of ∆α, ∆ρ for Nγ = m, NW = n,

i.e. for all EW processes with m external γ at Q >∼ MW

Note: m does not include γ as parton from p/p̄, because processes
induced by γ → qq̄, ℓℓ̄ cannot be separated form pure γ processes

Harland-Lang et al. ’16
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Example: weak corrections to Z production
(partonic cross sections, no photonic corrections)

γ/Z

q̄

q

ℓ−

ℓ+

S.D., Huber ’09
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▶ expected off-sets between NLO EW corrections in different schemes

▶ most suited EW input parameter schemes:√
ŝ >∼ MZ: Gµ scheme

√
ŝ <∼ 70GeV: α(MZ) scheme scheme (α(Q) scheme for Q =

√
ŝ ≪ MZ)

▶ dashed lines include leading 2-loop effects from ∆α and ∆ρ
↪→ highest stability against h.o. corrections in recommended schemes
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Unstable particles in Quantum Field Theory

description of resonances requires resummation of propagator corrections

↪→ mixing of perturbative orders potentially violates gauge invariance

Dyson series and propagator poles (scalar example)

= + + + . . .

Gϕϕ
R (p) =

i

p2 −m2
+

i

p2 −m2
iΣR(p

2)
i

p2 −m2
+ . . . =

i

p2 −m2 +ΣR(p2)

ΣR(p2) = renormalized self-energy, m = ren. mass

stable particle: Im{ΣR(p
2)} = 0 at p2 ∼ m2

↪→ propagator pole for real value of p2,
renormalization condition for physical mass m: ΣR(m

2) = 0

unstable particle: Im{ΣR(p
2)} ̸= 0 at p2 ∼ m2

↪→ location µ2 of propagator pole is complex,
possible definition of mass M and width Γ: µ2 = M2 − iMΓ
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Commonly used mass/width definitions:

▶ “on-shell mass/width” MOS/ΓOS: M2
OS −M2

0 + Re{Σ(M2
OS)} !

= 0

↪→ Gϕϕ(p) ˜p2→M2
OS

1

(p2 −M2
OS)(1 + Re{Σ′(M2

OS)}) + i Im{Σ(p2)}

comparison with form of Breit–Wigner resonance
ROS

p2 −m2 + imΓ

yields: MOSΓOS ≡ Im{Σ(M2
OS)} / (1 + Re{Σ′(M2

OS)}), Σ′(p2) ≡ ∂Σ(p2)

∂p2

▶ “pole mass/width” M/Γ: µ2 −M2
0 +Σ(µ2)

!
= 0

complex pole position: µ2 ≡ M2 − iMΓ

↪→ Gϕϕ(p)
p̃2→µ2

1

(p2 − µ2)[1 + Σ′(µ2)]
=

R

p2 −M2 + iMΓ

Note:
µ = gauge independent for any particle (pole location is property of S-matrix)

MOS = gauge dependent at 2-loop order Sirlin ’91; Stuart ’91; Gambino, Grassi ’99;
Grassi, Kniehl, Sirlin ’01
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Relation between “on-shell” and “pole” definitions:

Subtraction of defining equations yields:

M2
OS + Re{Σ(M2

OS)} = M2 − iMΓ + Σ(M2 − iMΓ)

Equation can be uniquely solved via recursion in powers of coupling α:

ansatz: M2
OS = M2 + c1α

1 + c2α
2 + . . .

MOSΓOS = MΓ + d2α
2 + d3α

3 + . . . , ci , di = real

counting in α: MOS,M = O(α0), ΓOS, Γ,Σ(p
2) = O(α1)

Result:
M2

OS = M2 + Im{Σ(M2)} Im{Σ′(M2)} + O(α3)

MOSΓOS = MΓ + Im{Σ(M2)} Im{Σ′(M2)}2
+ 1

2
Im{Σ(M2)}2 Im{Σ′′(M2)} + O(α4)

i.e. {MOS, ΓOS} = {M, Γ} + gauge-dependent 2-loop corrections
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Important examples: W and Z bosons

In good approximation: W → f f̄ ′, Z → f f̄ with masses fermions f , f ′

so that: Im{ΣV
T(p

2)} = p2 × ΓV

MV
θ(p2), V = W,Z

↪→ M2
OS = M2 + Γ2 + O(α3) MOSΓOS = MΓ +

Γ3

M
+ O(α4)

In terms of measured numbers:

W boson: MW ≈ 80GeV, ΓW ≈ 2.1GeV

↪→ MW,OS −MW,pole ≈ 28MeV

Z boson: MZ ≈ 91GeV, ΓZ ≈ 2.5GeV

↪→ MZ,OS −MZ,pole ≈ 34MeV

Exp. accuracy: ∆MATLAS
W,exp = 16MeV, ∆MZ,exp = 2.1MeV

↪→ Difference in definitions phenomenologically important !
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Example of W and Z bosons continued:

Approximation of massless decay fermions:

ΓV,OS(p
2) = ΓV,OS × p2

M2
V,OS

θ(p2), V = W,Z

Fit of W/Z resonance shapes to experimental data:

▶ ansatz

∣∣∣∣ R ′

p2 −m′2 + iγ′p2/m′

∣∣∣∣2 yields: m′ = MV,OS, γ′ = ΓV,OS

▶ ansatz

∣∣∣∣ R

p2 −m2 + iγm

∣∣∣∣2 yields: m = MV,pole, γ = ΓV,pole

Note: The two forms are equivalent:

R =
R ′

1 + iγ′/m′ , m2 =
m′2

1 + γ′2/m′2 , mγ =
m′γ′

1 + γ′2/m′2

↪→ consistent with relation between “on-shell” and “pole” definitions !
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The issue of gauge invariance

Preliminary remarks:

The issue of gauge invariance goes

▶ beyond the definition of M and Γ and also

▶ beyond the question of parametrizing the resonance!

It is about the consistency of amplitudes everywhere in phase space, i.e.

▶ on resonance,

▶ in off-shell regions, and

▶ in the transition region between on-/off-shell domains.

Gauge-invariance requirements in amplitude calculations:

▶ proper cancellation of gauge-parameter dependences
(relations between self-energies, vertex corrections, boxes, etc.)

▶ validity of (internal) Ward identities
(e.g. ruling cancellations for forward scattering of e± or at high energies)

⇒ Required: schemes to introduce width Γ

▶ without breaking gauge invariance

▶ maintaining (at least) NLO accuracy everywhere in phase space
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Width schemes for LO calculations:

Naive propagator substitutions in full tree-level amplitudes:

1

k2 −m2
→ 1

k2 −m2 + imΓ(k2)
for resonant or all propagators

▶ constant width Γ(k2) = const. → U(1) respected (if all propagators dressed),

SU(2) “mildly” violated

▶ step width Γ(k2) ∝ θ(k2) → U(1) and SU(2) violated

▶ running width Γ(k2) ∝ θ(k2)× k2 → U(1) and SU(2) violated
↪→ results can be totally wrong !

Complex-mass scheme Denner et al. ’99

Complex masses for V = W,Z from

µ2
V = M2

V − iMVΓV = location of complex poles in V propagators

Complex (on-shell) weak mixing angle via cW = µW/µZ

⇒ All algebraic relations expressing gauge invariance hold exactly
(gauge-parameter cancellation, Ward identities).

Major benefit: Generalization to NLO Denner et al. ’05; Denner, SD ’19

provides NLO accuracy everywhere in phase space!
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LO example from e+e− physics: σ[ fb] for e+e− → νeν̄eµ
−ν̄µud̄ (with cuts)

W

W

W

W

e+

e−

ν̄e

νe

γ/Z

W

W

Z

e+

e−

+ etc.

S.D., Roth ’02

√
s 500GeV 800GeV 2TeV 10TeV

constant width 1.633(1) 4.105(4) 11.74(2) 26.38(6)

running width 1.640(1) 4.132(4) 12.88(1) 12965(12) ← totally wrong!

complex mass 1.633(1) 4.104(3) 11.73(1) 26.39(6)

High-energy behaviour of longitudinal V = W/Z bosons:

k

V

˜k0≫MV

1

k2 −M2
V

kµ TV
µ =

1

k2 −M2
V

cVMVT
S

(S = Goldstone partner of V )

SU(2) Ward identity kµTV
µ = cVMVT

S essential to cancel factor k0,

otherwise gauge-invariance/unitarity-breaking terms enhanced by k0/MV
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Width schemes for higher-order calculations:

▶ Pole Scheme (PS) Stuart ’91; Aeppli et al. ’93, ’94; etc.

Isolate resonance in a gauge-invariant way and introduce Γ only there:

M =
R(p2)

p2 −M2
+ N(p2) =

R(M2)

p2 −M2
+

R(p2)− R(M2)

p2 −M2
+ N(p2)

→ R̃(M2 − iMΓ)

p2 −M2 + iMΓ︸ ︷︷ ︸
resonant

+
R(p2)− R(M2)

p2 −M2︸ ︷︷ ︸
non-res./non-fact. corrs.

+ Ñ(p2)︸ ︷︷ ︸
non-resonant

↪→ consistent, gauge invariant, NLO everywhere possible,
but subtle and cumbersome in practice (complex kinematics, pole
location is branch point rather than pole, IR structure of radiation)

▶ Leading pole approximation (PA)
Take term with highest resonance enhancement of pole expansion
= leading term of Pole Scheme

↪→ consistent, gauge invariant, straightforward,
but valid only in resonance neighbourhood,
rel. uncertainty for EW corrections = α

π
×O(Γ/M)
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▶ Complex-mass scheme at NLO Denner et al. ’05; Denner, S.D. ’19

mass2 = location of propagator pole in complex p2 plane

↪→ complex mass renormalization: M2
W,0︸ ︷︷ ︸

bare mass

= µ2
W + δµ2

W︸︷︷︸
ren. constant

, etc.

Gauge invariance by complex weak mixing angle:

cW =
µW

µZ
,

δc2W
c2W

=
δµ2

W

µ2
W

− δµ2
Z

µ2
Z

Features of the complex-mass scheme:

⊕ perturbative calculations as usual (with complex masses and couplings)

⊕ no double counting of contributions (bare Lagrangian unchanged!)

⊕ gauge invariance (ST identities, gauge-parameter independence)

⊕ NLO accuracy everywhere in phase space
▶ spurios terms are beyond NLO, but spoil unitarity
▶ complex gauge-boson masses also in loop integrals (all known)

⊖ unstable particles only allowed as resonances (not as external states)

⊖ generalization to NNLO not yet known (but expected to work)
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Technical details, exemplified for W bosons:

OS renormalization conditions for renormalized (transverse) self-energy

ΣW
T,R(µ

2
W) = 0, Σ′W

T,R(µ
2
W) = 0

↪→ µ2
W is location of propagator pole, and residue = 1

Solution of renormalization conditions:

δµ2
W = ΣW

T (µ2
W), δZW = −Σ′W

T (µ2
W)

Note: Evaluation of ΣW
T (p2) at complex p2 can be avoided

ΣW
T (µ2

W) = ΣW
T (M2

W) + (µ2
W −M2

W)Σ′W
T (M2

W) + α
π
iMWΓW︸ ︷︷ ︸

from non-analyticity

at p2 = M2
W

+ O(α3)︸ ︷︷ ︸
beyond one loop

and finite

⇒ Renormalized W self-energy:

ΣW
T,R(p

2) = ΣW
T (p2)− δM2

W + (p2 −M2
W)δZW

with δM2
W = ΣW

T (M2
W) + α

π
iMWΓW, δZW = −Σ′W

T (M2
W)

Differences to the usual on-shell scheme:

▶ no real parts taken from ΣW
T

▶ ΣW
T evaluated with complex masses and couplings

S.Dittmaier Needs and challenges in electroweak physics QCD meets EW, CERN, Feb, 2024 109


	Precision physics at the LHC – role of electroweak corrections
	Features of electroweak corrections
	Single-W/Z production
	Electroweak corrections at high energies
	Multi-boson production / scattering at the LHC
	Challenges in electroweak corrections beyond NLO
	Outlook: electroweak precision physics at future e+e- colliders
	The universal radiative corrections  and 


