

Stefan Dittmaier universität freiburg

Table of contents

Precision physics at the LHC – role of electroweak corrections Features of electroweak corrections Single-W/Z production Electroweak corrections at high energies Multi-boson production / scattering at the LHC Challenges in electroweak corrections beyond NLO Outlook: electroweak precision physics at future e^+e^- colliders

Table of contents

Precision physics at the LHC - role of electroweak corrections

Features of electroweak corrections Single-W/Z production Electroweak corrections at high energies Multi-boson production / scattering at the LHC Challenges in electroweak corrections beyond NLO Outlook: electroweak precision physics at future e⁺e⁻ colliders

Precision physics at the LHC - role of electroweak (EW) corrections

- excellent agreement between SM predictions and LHC data,
 SM can only be challenged with highest possible precision!
- NNLO QCD ⊕ NLO EW corrections meanwhile standard in most 2 → 2 key processes

S.Dittmaier Needs and challenges in electroweak physics QCD meets EW, CERN, Feb, 2024 4

Relevance of EW corrections at the LHC

Precision measurements at the LHC

- ► cross-section uncertainties for single-W/Z production: Δ (luminosity) ~ 4%, Δ (PDF) ~ 2-3%
- often 1% precision on shapes of distributions or ratios of cross sections
- high-precision measurements of $M_{
 m W}$, sin² $\theta_{
 m eff}^{
 m lept}$:
 - $\Delta M_{\rm W}/M_{\rm W} \lesssim 2 \cdot 10^{-4}, \qquad \Delta \sin^2 \theta_{\rm eff}^{\rm lept}/\sin^2 \theta_{\rm eff}^{\rm lept} \lesssim 4 \cdot 10^{-4}$
- energy reach deep into the TeV range with several-% precision

Size of EW corrections

generic size $O(\alpha) \sim O(\alpha_s^2) \sim 1\%$ suggests NLO EW \sim NNLO QCD but systematic enhancements possible, e.g.

- by photon emission
 - \hookrightarrow kinematical effects, mass-singular logs $\propto \alpha \ln(m_{\mu}/Q)$ for muons, etc., often several-10% effects near shoulders of distributions
- at high energies
 - \hookrightarrow EW Sudakov logs $\propto (\alpha/s_{\rm W}^2) \ln^2(M_{\rm W}/Q)$ and subleading logs, typically several-10% effects in the TeV range

Further peculiarities of EW corrections

Large universal corrections

- induced by photonic vacuum polarization and corrections to the ρ-parameter
- can often be absorbed into leading-order predictions by appropriate choice of EW input parameter scheme

Instability of W and Z bosons

- \blacktriangleright realistic observables have to be defined via decay products (leptons, γ s, jets)
- off-shell effects $\sim O(\Gamma/M) \sim O(\alpha)$ are part of the NLO EW corrections

Photon-jet separation

- ▶ non-trivial due to $q \rightarrow q + \gamma$ splitting
 - \hookrightarrow separation, e.g., by quark-to-photon "fragmentation function"
- $\blacktriangleright\,$ complication by photon-induced jets via $\gamma^* \to q \bar q$
 - \hookrightarrow description by "fragmentation" or "conversion function"

6

State of the art in the calculation of EW corrections:

- NLO machinery worked out in recent decades
 - ▶ on-shell / $\overline{\mathrm{MS}}$ renormalization
 - all multi-leg, multi-scale 1-loop integrals known with complex masses
 - NLO treatment of W/Z resonances (pole expansions, complex-mass scheme)
 - IR slicing and subtractions
- Numerous NLO EW calculations for specific processes, including multi-leg calculations up to 2 → 8 particle processes

QED parton showers

(PHOTOS, showers in HERWIG, MADGRAPH, PYTHIS, SHERPA)

- NLO EW automation accomplished (MADGRAPH5_AMC@NLO, OPENLOOPS, RECOLA/COLLIER, etc.)
- ▶ few mixed NNLO QCD×EW corrections exist (several decays, Drell-Yan processes, first results for e⁺e⁻ → WW)
- ▶ NNLO EW results still extremely rare (μ decay and M_W predictions, $Z\bar{f}f$ formfactors, partial results for $e^+e^- \rightarrow ZH$)

Plan for this talk:

- highlight role and significance of EW corrections
- consider combination of QCD and EW corrections (including results on NNLO×EW corrections)
- \blacktriangleright emphasize challenges for high-precision physics at future $\mathrm{e^+e^-}$ colliders
- Note: Selection of topics by far not exhaustive (and personally biased)

Table of contents

Precision physics at the LHC – role of electroweak corrections Features of electroweak corrections

Single-W/Z production Electroweak corrections at high energies Multi-boson production / scattering at the LHC Challenges in electroweak corrections beyond NLO Outlook: electroweak precision physics at future e⁺e⁻ colliders

Features of EW corrections

Universal EW corrections, muon decay, and input parameter schemes

 μ decay including higher-order corrections

 \hookrightarrow Relation between G_{μ} , α (0), $M_{\rm W}$, and $M_{\rm Z}$ including corrections:

$$\alpha_{G_{\mu}} \equiv \frac{\sqrt{2}}{\pi} G_{\mu} M_{\mathrm{W}}^2 \left(1 - \frac{M_{\mathrm{W}}^2}{M_{\mathrm{Z}}^2}\right) = \alpha(0)(1 + \Delta r)$$

 Δr comprises quantum corrections to μ decay (beyond electromagnetic corrections in Fermi model)

Sirlin '80, Marciano, Sirlin '80

$$\Delta r_{1-\text{loop}} = \Delta \alpha (M_Z^2) - \frac{c_W^2}{s_W^2} \Delta \rho_{\text{top}} + \Delta r_{\text{rem}} (M_H)$$

$$\sim 6\% \sim 3\% \sim 1\%$$

$$\alpha \ln(m_f/M_Z) \qquad G_\mu m_t^2 \qquad \alpha \ln(M_H/M_Z)$$

$$\stackrel{\gamma}{\longrightarrow} \stackrel{f}{\longrightarrow} \stackrel{\gamma}{\longrightarrow} \qquad \stackrel{w}{\longrightarrow} \stackrel{b}{\longrightarrow} \stackrel{w}{\longrightarrow}$$

Predicting $M_{\rm W}$ from muon decay

Measure G_{μ} in μ decay and trade $M_{\rm W}$ for G_{μ} as input in

$$\frac{\sqrt{2}}{\pi} \, G_{\mu} \, M_{\rm W}^2 \left(1 - \frac{M_{\rm W}^2}{M_Z^2} \right) \; = \; \alpha(0)(1 + \Delta r) \qquad \rightarrow \; {\rm solve \; for \;} M_{\rm W}$$

 Δr depends on all input parameters \rightarrow sensitivity to m_t , M_H in SM fit Contributions to Δr :

+ virtual corrections:

- + photonic bremsstrahlung in the SM
- photonic bremsstrahlung in the Fermi model
- + full two-loop contributions + higher-order corrections to ρ-parameter v.Ritbergen,Stuart '98; Seidensticker,Steinhauser '99; Freitas et al. '00-'02; Awramik,Czakon '02/'03; Onishchenko,Veretin '02

Confronting predicted and measured values of $M_{\rm W}$

Hollik et al. '03

• Current theoretical precision: $\Delta M_{\rm W} \sim 0.003 \, {\rm GeV}$

Most precise measurements:

 $(80.4335 \pm 0.0094)\,{
m GeV}$ CDF '22: (controversial analysis) $(80.360 \pm 0.016) \, {
m GeV}$ ATLAS '23:

EW input parameter schemes for cross-section predictions

Aim: absorb universal corrections from $\Delta \alpha$ and $\Delta \rho$ into leading-order (LO) predictions as much as possible

$$\sigma_{\rm NLO} = \alpha^N A_{\rm LO} (1 + \delta_{\rm EW}), \qquad \delta_{\rm EW} = \mathcal{O}(\alpha)$$

 $\,\hookrightarrow\,$ minimize missing higher-order corrections!

- $\Delta \alpha^n$ terms can be absorbed to all orders
- $\Delta \rho^n$ terms can be absorbed at least to two-loop order
- ► factor α in $\delta_{\rm EW}$ can still be adjusted appropriately (e.g. $\alpha \rightarrow \alpha(0)$ if γ radiation dominates, $\alpha \rightarrow \alpha_{G_{\mu}}$ if weak corrections dominate)
- ► Typical scheme choices: EW input quantities:

 - $\,\hookrightarrow\,$ optimal choice depends on $\#({\rm external}\ {\rm photons}),$ energy, etc.

in general not even separable from other EW corrections (possible only if LO amplitudes do not include $\rm W$ bosons)

Radiative tail from final-state radiation

occurs if resonances reconstructed from decay products

Typical situations: $e^+e^- \rightarrow WW/ZZ \rightarrow 4f$, $pp \rightarrow Z/\gamma \rightarrow \ell \bar{\ell} + X$

Final-state radiation: resonance for

$$M^2 = (k_1 + k_2)^2 < (k_1 + k_2 + k_\gamma)^2 \sim M_{
m Z}^2$$

 \hookrightarrow radiative tail in distribution $\frac{d\sigma}{dM}$ of reconstructed invariant mass Mfor $M < M_{\rm Z}$

S.Dittmaier

100

10

0.1

0.01

60 70

 $l\sigma/dM_{il}[pb/GeV]$

 \mathbf{Z}

 $pp \rightarrow Z/\gamma \rightarrow \ell \bar{\ell} + X$

100 110

 $M_{\rm H}$ [GeV]

80

k2

σ^{LO} σ^{NLO}

NLO rec

120

130 140

Comparison with radiative tail from initial-state radiation

occurs if initial state is fixed

 $\begin{array}{ll} \mbox{Typical situations:} & \mbox{e}^+\mbox{e}^- \to {\rm Z}/\gamma \to f\bar{f}, \\ & \mbox{$\mu^+\mu^- \to {\rm Z}, {\rm H}, ? \to f\bar{f}$} \end{array}$

 $\,\hookrightarrow\,$ scan over s-channel resonance in $\sigma_{\rm tot}(s)$ by changing CM energy \sqrt{s}

Initial-state radiation:

- Z can become resonant for $s=(p_++p_-)^2 > (p_++p_--k_\gamma)^2 \sim M_{\rm Z}^2$
- $\,\,\hookrightarrow\,\,$ radiative tail for $s>M_{
 m Z}^2$ due to "radiative return"

Table of contents

Precision physics at the LHC – role of electroweak corrections Features of electroweak corrections

Single-W/Z production

Electroweak corrections at high energies Multi-boson production / scattering at the LHC Challenges in electroweak corrections beyond NLO Outlook: electroweak precision physics at future e^+e^- colliders

Single-W/Z production

Physics goals:

- \blacktriangleright $M_{
 m Z}$ \rightarrow detector calibration by comparing with LEP1 result
- ▶ $\sin^2 \theta_{\text{eff}}^{\text{lept}} \rightarrow \text{ comparable precision with LEP1 and SLC}$

$$\begin{array}{ll} \blacktriangleright \ \ M_{\rm W} & \rightarrow \ \mbox{exceeds LEP2 precision by factor of 2-3,} \\ & \mbox{most recent } \Delta M_{\rm W}^{\rm ATLAS} = 16 \ {\rm MeV} \\ & \mbox{(tension with } \Delta M_{\rm W}^{\rm CDF} = 9 \ {\rm MeV}) \end{array}$$

• $\sigma, d\sigma \rightarrow$ precision SM studies

- decay widths $\Gamma_{\rm Z}$ and $\Gamma_{\rm W}$ from M_{ll} or $M_{{\rm T},l\nu_l}$ tails
- ▶ search for Z' and W' at high M_{II} or $M_{T,I\nu_I}$
- information on PDFs

A $W \to \mu \nu_{\mu}$ event from ATLAS

A ${\rm Z} \rightarrow \mu^+ \mu^-$ event from ATLAS

Physikalisch

Comments on the theory status

fixed-order QCD corrections known to N³LO for cross sections, Duhr et al. '20 to NNLO for differential distributions
 Hamberg et al '90; ... Melnikov et al. '06; Catani et al. '09, ...

EW corrections known to NLO Baur et al. '97; Zykunov '01; S.D. et al. '01; ...

+ higher-order improvements (universal corrections, multi- γ)

fixed-order mixed O(α_sα) corrections
 (pole approximation for W/Z, for Z even fully off-shell)
 S.D. et al. '14;'15;'20; Behring et al. '20; Bonciani et al. '21;
 Armadillo et al. '22; Buccioni et al. '22; ...

- QCD resummations (q_T resummation, SCET, etc.), QCD/QED parton showers, etc.
 - \hookrightarrow essential to describe p_{T} spectra of $\mathrm{W/Z}$ bosons

$\rm W/Z$ cross-section measurements at the LHC:

Good agreement between LHC data and N^3LO QCD + NLO EW predictions (tension for 13 TeV W-boson cross sections to be clarified, PDFs?)

Further recent results from the LHC

Test of lepton universality in W decays: (mostly from $t\bar{t}$ events)

tension in LEP results not confirmed \hookrightarrow

Differential W/Z cross sections

 \hookrightarrow information on $M_{
m W}$, $\sin^2 heta_{
m eff}^{
m lept}$, etc.

Z bosons:

Sensitivity of distributions to $M_{\rm W}$ versus NLO EW corrections:

(based on S.D., Krämer '01)

Shape prediction at the level of few 0.1% required!

 \hookrightarrow Proper inclusion of EW corrections at NLO + beyond crucial!

 \hookrightarrow In particular, check resonance treatment!

Exercise: Compare two different resonance treatments!

Complex-mass scheme (CMS) Denner et al. '99,'05; see also Denner, S.D. 1912.06823

- $\,\hookrightarrow\,$ Complex on-shell renormalization with complex EW couplings
- \hookrightarrow Gauge invariance and NLO accuracy in resonance and off-shell regions!

Treatment of W productionv ia some "factorization scheme (FS)": SD, Krämer '01

Virtual corrections:

Real photonic corrections:

- amplitude gauge invariant for complex W-boson mass $\mu_{\rm W}$ and real $\textit{s}_{\rm W}$
- IR divergences exactly match between $d\sigma_{\rm virt}^{\rm FS}$ and $d\sigma_{\rm real}^{\rm FS}$

Comparison of width schemes for W production at NLO EW

 $\begin{array}{l} \mbox{Consistency between the FS and CMS at the level of} \\ \Delta_{\rm FS-CMS} = \frac{{\rm d}\sigma_{\rm FS}}{{\rm d}\sigma_{\rm CMS}} - 1 \sim 0.02\%! \end{array}$

Survey of EW corrections to Z production

- NLO QED corrections (mostly FSR) several 10% [maximally ~ 40%(80%) for dressed leptons (bare muons)]
- Mulit- γ effects still at the few-% level
- Weak NLO corrections at the few-% level most sensitive to width scheme

Survey of EW corrections to Z production

- NLO QED corrections (mostly FSR) several 10% [maximally ~ 40%(80%) for dressed leptons (bare muons)]
- Mulit- γ effects still at the few-% level
- Weak NLO corrections at the few-% level most sensitive to width scheme

Comparison of width schemes for Z production at NLO EW (based on S.D., Huber 0911.2329) Δ [%] 0.2 0.15 0.15 0.1 $\sqrt{s} = 13 \text{ TeV}$ Resonance schemes:

Consistency between the PS, FS, and CMS at the level of $\Delta_{\rm FS/PS-CMS} = \frac{{\rm d}\sigma_{\rm FS/PS}}{{\rm d}\sigma_{\rm CMS}} - 1 \lesssim 0.1\%!$

 $M_{\rm H}[{\rm GeV}]$

0.05

0

-0.05

-0.1

-0.15-0.270 75 80 85 90 95 100 105 110

NLO EW

 $\Delta_{\rm FS-CMS}$

 Δ_{PS-CMS}

(see also 1912.06823)

CMS = complex-mass scheme

FS = factorization scheme

(less solid, more tricky

due to γ/Z interference)

PS = pole scheme

Forward-backward asymmetry $A_{\rm FB}(M_{\ell\ell})$ in neutral-current Drell-Yan production

Issue: symmetric pp initial state at the LHC, i.e. no preferred forward direction!

Solution: exploit PDF difference between (valence) q and (sea) \bar{q}

 $\,\,\hookrightarrow\,\,$ on average, q carries more momentum than $ar{q}!$

 \hookrightarrow on average, $\mathsf{CM}(q\bar{q}) \approx \mathsf{CM}(Z) \approx \mathsf{CM}(\ell^+\ell^-) \rightarrow q$ direction!

\Rightarrow Collins–Soper angle θ, ϕ :

- go into centre-of-mass frame CM(Z) of the Z boson
- z axis = line of intersection of leptonic and hadronic planes
- +z direction inherited from
 Z direction in LAB frame
- +x direction from beams
- +y direction completes right-handed coordinate system
- $\theta, \phi = \text{polar angles of } \ell^- \text{ momentum } \vec{k}_1$

FB asymmetry $A_{\rm FB}$ in Z production – weak corrections and width schemes

 $A_{\rm FB}$ defined via Collins–Soper angles \rightarrow sensitivity to $\sin^2 \theta_{\rm eff}^{\rm lept}$

Large EW corrections!

Experimental uncertainties and precision targets:

- Z resonance at LEP: $\Delta A_{\rm FB}^{\rm b} = 0.0016$, $\Delta A_{\rm FB}^{\ell} = 0.0010$
 - $\,\,\hookrightarrow\,\,\Delta\,{sin}^2\, heta_{
 m eff}^{
 m lept}=0.00029$ from $\Delta A_{
 m FB}^{
 m b}$
- ▶ LHC precision target for predictions: $\Delta A_{\rm FB}(M_{\ell\ell}) \lesssim 10^{-4}$
 - \hookrightarrow great challenge (not yet completely reached)

Measurements of the effective weak mixing angle - current status

 $\,\hookrightarrow\,$ LHC closes in on LEP precision!

FB asymmetry $A_{\rm FB}$ – different sources of EW corrections

- NLO weak corrections very important
- large QED corrections due to FSR (previous plot)
- little impact from QED ISR and IF interference
- multi-photon FSR effects significant
 - $\,\hookrightarrow\,$ leading-log treatment (ΔLLFSR) not sufficient!
- ▶ universal EW higher-order effects (EWHO) due to $\Delta \alpha$, $\Delta \rho$ relevant

FB asymmetry $A_{\rm FB}$ – differences of width schemes differentially

 \hookrightarrow |PS-CMS| \lesssim 10^{-4}

FS less accurate (theoretically not as solid as PS/CMS)

 $\hookrightarrow\,$ theoretical improvements beyond NLO EW very desirable!

NNLO QCD \times EW corrections

Calculation in pole approximation (PA) S.D., Huss, Schwinn '14,'15; S.D., Huss, Schwarz '24

leading term of resonance expansion

- $\,\hookrightarrow\,$ valid in vicinity of W/Z resonance
- \hookrightarrow relevant for $M_{
 m W}$, $\sin^2 heta_{
 m eff}^{
 m lept}$ analyses
- on-shell production/decay as building blocks
 - $\hookrightarrow \ \mathsf{reduced} \ \mathsf{2}\mathsf{-loop} \ \mathsf{complexity}$

Full off-shell calculation

- ▶ important for off-shell tails of $M_{\ell\ell}$, $M_{\mathrm{T},\nu\ell}$, $k_{\mathrm{T},\ell}$ distributions
- full 2-loop complexity (e.g. boxes with internal masses)
- $\mathcal{O}(N_f \alpha_s \alpha)$ parts, complex renormalization
- neutral-current process fully known
- charged-current process approximately known Buonocore et al. '21 (2-loop part approximated)

De Florian ey al. '18; Delto et al. '19; Bonciani et al. '19-'21; Behring et al. '20; Buccioni et al. '20

S.D., Schmidt, Schwarz '20 Bonciani et al. '21; Armadillo et al. '22; Buccioni et al. '22

NNLO QCD \times EW corrections in pole approximation

New: Evaluation of $\mathcal{O}(\alpha_s \alpha)$ corrections to FB asymmetry! S.D., Huss, Schwarz '24

FB asymmetry $A_{\rm FB}$ – NNLO corrections (QCD×EW in pole aproximation)

▶ NNLO QCD × FSR QED (IF) by far dominating NNLO effect!

- NNLO QCD × weak final-state (FF) corrections still relevant
- other NNLO QCD × EW corrections (initial state, non-factorizable) negligible

Fixed-order $\mathcal{O}(\alpha_{\mathrm{s}}\alpha)$ corrections verses QCD imes QED parton shower

Z production:

QED parton showers (like PHOTOS) capture FSR effects well

But:

Approximative quality only known by comparison to full MS-based results

Note: Concept of FSR not well defined for charged-current processes!

 $\mathcal{O}(\alpha_{\rm s}\alpha)$ corrections to high-energy tails in Drell–Yan processes NNLO QCD×EW corrections to $M_{\mu\mu}$ distribution (bare muons) Bonciani et al. '21

40

NNLO QCD×EW corrections $p_{T,\mu}$ distribution (bare muons) Bonciani et al. '21

 $\delta \sim 10{-}15\%$ for $p_{{
m T},\mu} \sim 500\,{
m GeV}$

NNLO QCD×EW corrections to $M_{\ell\ell}$ distribution (dressed leptons) Buccioni et al. '22

Effect from γ recombination seems small?

NNLO QCD×EW corrections to $p_{T,\ell}$ distribution (dressed leptons) Buccioni et al. '22

Effect from γ recombination very significant?

Upshot:

Great progress on NNLO QCD $\times EW$ frontier!

But more flexibility / comparability of results wrt. γ recombination desirable \ldots

Table of contents

Precision physics at the LHC – role of electroweak corrections Features of electroweak corrections Single-W/Z production

Electroweak corrections at high energies

Multi-boson production / scattering at the LHC Challenges in electroweak corrections beyond NLO Outlook: electroweak precision physics at future e^+e^- colliders

Electroweak corrections at high energies

Sudakov logarithms induced by soft gauge-boson exchange

+ sub-leading logarithms from collinear singularities

Typical impact on 2 ightarrow 2 reactions at $\sqrt{s} \sim 1\,{
m TeV}$:

$$\begin{split} \delta_{\rm LL}^{1-\rm loop} &\sim -\frac{\alpha}{\pi s_{\rm W}^2} \ln^2\bigl(\frac{s}{M_{\rm W}^2}\bigr) &\simeq -26\%, \qquad \delta_{\rm NLL}^{1-\rm loop} \sim +\frac{3\alpha}{\pi s_{\rm W}^2} \ln\bigl(\frac{s}{M_{\rm W}^2}\bigr) &\simeq 16\%\\ \delta_{\rm LL}^{2-\rm loop} &\sim +\frac{\alpha^2}{2\pi^2 s_{\rm W}^4} \ln^4\bigl(\frac{s}{M_{\rm W}^2}\bigr) &\simeq 3.5\%, \qquad \delta_{\rm NLL}^{2-\rm loop} \sim -\frac{3\alpha^2}{\pi^2 s_{\rm W}^4} \ln^3\bigl(\frac{s}{M_{\rm W}^2}\bigr) &\simeq -4.2\% \end{split}$$

 $\Rightarrow~$ Corrections still relevant at 2-loop level

Note: differences to QED/QCD where Sudakov logs cancel

► massive gauge bosons W, Z can be reconstructed → no need to add "real W, Z radiation"

 $\blacktriangleright\,$ non-Abelian charges of W,~Z are "open" $\,\rightarrow\,$ Bloch–Nordsieck theorem not applicable

Extensive theoretical studies at fixed perturbative (1-/2-loop) order and suggested resummations via evolution equations

Beccaria et al.; Beenakker, Werthenbach; Ciafaloni, Comelli; Denner, Pozzorini; Fadin et al.; Hori et al.; Melles; Kühn et al., Denner et al.; Manohar et al. '00High-energy limit - Sudakov versus Regge regime

Sudakov regime: all invariants $k_i \cdot k_j \gg M_W^2$!

Kinematic variables in centre-of-mass frame in high-energy limit $(k_i^2 \rightarrow 0)$:

High-energy limits in distributions:

Example: Drell-Yan production

Neutral current: $pp \rightarrow \ell^+ \ell^-$ at $\sqrt{s} = 14 \, {\rm TeV}$ (based on S.D./Huber arXiv:0911.2329)

$M_{\ell\ell}/{\rm GeV}$	$50-\infty$	$100 - \infty$	$200 - \infty$	500-∞	$1000\!-\!\infty$	$2000-\infty$
$\sigma_0/{ m pb}$	738.733(6)	32.7236(3)	1.48479(1)	0.0809420(6)	0.00679953(3)	0.000303744(1)
$\delta^{ m rec}_{ m qar q, phot}/\%$	-1.81	-4.71	-2.92	-3.36	-4.24	-5.66
$\delta_{\rm q\bar{q},weak}/\%$	-0.71	-1.02	-0.14	-2.38	-5.87	-11.12
$\delta^{(1)}_{ m Sudakov}/\%$	0.27	0.54	-1.43	-7.93	-15.52	-25.50
$\delta^{(2)}_{ m Sudakov}/\%$	-0.00046	-0.0067	-0.035	0.23	1.14	3.38
	no Sudakov domination!					

Charged current: ${
m pp} o \ell^+ \nu_\ell$ at $\sqrt{s} = 14\,{
m TeV}$ (based on Brensing et al. arXiv:0710.3309)

$M_{\mathrm{T},\nu_\ell\ell}/\mathrm{GeV}$	50-∞	$100 - \infty$	$200 - \infty$	500- <i>∞</i>	$1000 - \infty$	2000-∞
$\sigma_0/{ m pb}$	4495.7(2)	27.589(2)	1.7906(1)	0.084697(4)	0.0065222(4)	0.00027322(1)
$\delta^{\mu^+ u\mu}_{ m qar q}$ /%	-2.9(1)	-5.2(1)	-8.1(1)	-14.8(1)	-22.6(1)	-33.2(1)
$\delta^{ m rec}_{ m qar q}$ /%	-1.8(1)	-3.5(1)	-6.5(1)	-12.7(1)	-20.0(1)	-29.6(1)
$\delta^{(1)}_{ m Sudakov}/\%$	0.0005	0.5	-1.9	-9.5	-18.5	-29.7
$\delta^{(1)}_{\mathrm{EWslog}} / \%$	0.008	0.9	2.3	3.8	4.8	5.9
$\delta^{(2)}_{ m Sudakov}/\%$	-0.0002	-0.023	-0.082	0.21	1.3	3.8
	Sudakov domination!					omination!

Table of contents

Precision physics at the LHC – role of electroweak corrections Features of electroweak corrections Single-W/Z production Electroweak corrections at high energies **Multi-boson production / scattering at the LHC** Challenges in electroweak corrections beyond NLO Outlook: electroweak precision physics at future e⁺e⁻ colliders

Multi-boson production / scattering at the LHC

- overall good agreement between data and SM
- NNLO QCD corrections essential for proper descritpion of data
- NLO EW corrections important in differential distributions
- data constrain anomalous VVV couplings

A $\mu^+\mu^-\mathrm{e^+e^-}$ event from ATLAS

$pp \rightarrow WW/ZZ \rightarrow e^+e^- \nu \bar{\nu} + X$: survey of different NLO contributions

Kallweit et al. '17

 XS contributions: WW + ZZ + interferences

Jet veto:
$$H_{\mathrm{T}}^{\mathrm{jet}} = \sum_{i \in \mathrm{jets}} p_{\mathrm{T},i} > H_{\mathrm{T}}^{\mathrm{lep}}$$

$$\hookrightarrow$$
 $K_{\rm QCD}$ moderate

- EW corrections
 -40% in TeV range (EW Sudakov logarithms)
- Combination of QCD and EW corrections:
 - $QCD+EW QCD \times EW$
 - $\sim \delta_{
 m QCD} \times \delta_{
 m EW}$
 - $\sim~10{-}20\%$ for ${\it p}_{{
 m T},\ell_1}\gtrsim 1\,{
 m TeV}$

Note: product better motivated!

EW corrections - full NLO versus pole approximation

Double-pole approximation (DPA) vs. calculation

- ► expansion about resonance poles → factorizable & non-fact. corrs.
- ▶ not many diagrams (2→2 production)
- + numerically fast
- validity only for $\sqrt{\hat{s}} > 2M_V + \mathcal{O}(\Gamma_V)$

Full off-shell $q\bar{q} \rightarrow 4f$

- off-shell calculation with complex-mass scheme
- many off-shell diagrams (~10³/channel)
- CPU intensive
- + NLO accuracy everywhere

Approaches compared for $e^+e^-/pp \rightarrow WW \rightarrow 4f$, etc.

(similarly for $pp \rightarrow WWW \rightarrow 6\ell$, $pp(WW \rightarrow WW) \rightarrow 4\ell 2j$, etc.)

DPA versus full off-shell EW correction in ${
m pp} o
u_\mu \mu^+ {
m e}^- ar
u_{
m e} + X$

Biedermann et al. '16

Level of agreement as expected ~ (dominance of doubly-resonant diagrams) $\hookrightarrow~$ difference $~\lesssim 0.5\%$ whenever cross section sizable

DPA versus full off-shell EW correction in ${
m pp} o
u_\mu \mu^+ {
m e}^- ar
u_{
m e} + X$

Biedermann et al. '16

 $\frac{d\sigma}{dp_{T}} \left[\frac{fb}{GeV} \right]$ $pp \rightarrow \nu_{\mu}\mu^{+}e^{-}\bar{\nu}_{e} + X$ $\sqrt{s_{nn}} = 13 \text{ TeV}$ 10^{-1} ATLAS WW setup μ treated coll. unsafe 10^{-2} $\vec{p}_{T}(\mu^{+}\nu_{\mu}\bar{\nu}_{e})$ 10^{-3} γ/Z 10^{-4} $\vec{p}_{\rm T}(e^-)$ 10^{-5} 0 Impact of singly-resonant diagrams -10where e^- takes recoil from $(\mu^+ \nu_\mu \bar{\nu}_e)$ -20≥⁻²⁰ ∞ -30 (W bremsstrahlung to Drell–Yan production of e^+e^-) -40-50100 200 300 500 600 700 800 900 1000 400 p_{T,e^-} [GeV]

Transverse-momentum distribution of a single lepton

Agreement degrades for $ho_{
m T}\gtrsim 300\,{
m GeV},$ since off-shell diagrams get enhanced

- strong sensitivity to EW gauge-boson self-interaction
- window to EW symmetry breaking (EWSB) via off-shell Higgs exchange, complementary to direct analyses of (on-shell) Higgs bosons

Analysis framework:

"SM Effective Theory (SMEFT)" based on SM particle content

 $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{L}_i^{(\dim-6)}, \quad \begin{array}{l} \text{effective dim-6 operators} \\ \text{Buchmüller, Wyler '85; Grzadkowski et al. '10} \end{array}$ $\blacktriangleright \text{ Specific SM extensions (extended Higgs sectors, modified EWSB, etc.)}$ All channels measured by ATLAS & CMS \rightarrow compatibility with SM $\Rightarrow \text{ BSM effects (if accessible) subtle and small } \rightarrow \text{ highest precision required !}$

A typical $\mathrm{W}^+\mathrm{W}^+$ scattering event at the LHC

Schematic view of perturbative orders at LO and NLO

 \Rightarrow Tower of mixed EW-QCD corrections at NLO

Survey of NLO contributions of QCD type

QCD corrections to EW channels

 $\,\hookrightarrow\,$ QCD corrections only $\sim 5\%$ (little colour exchange between protons)

QCD corrections to QCD channels

- ▶ no relation to EW VBS subprocess, just QCD VV + 2jet production
- contribution damped by VBS cuts, but still quite large $(W^{\pm}W^{\pm}$ is exception with \sim 10%, since gg channel missing)

NLO corrections of EW and mixed QCD-EW types

Mixed QCD–EW contributions $\propto \alpha_{
m s}^2 lpha^5$

Mixed QCD–EW contributions $\propto~lpha_{ m s}lpha^{ m 6}$

mixed contributions not VBS enhanced, partially colour-suppressed

 \hookrightarrow very small

Purely EW contributions $\,\propto\,lpha^{7}$

Sudakov-enhanced VBS corrections, $\sim -15\%$ (larger in distributions)

 \hookrightarrow experimentally relevant!

Comments on NLO calculations:

- genuine QCD corrections available since more than 10 years (several groups)
- ► NLO predictions for full NLO tower extremely challenging, but available W[±]W[±]: Biedermann et al. '16,'17; S.D. et al. '23; WZ: Denner et al. '19; ZZ: Denner et al. '20,'21; W[±]W[∓]: Denner et al. '22
- Main challenges:
 - ► algebraic complexity (many partonic channels, ~ some 10⁵ diagrams) → recursive one-loop amplitude generators RECOLA / OPENLOOPS
 - multi-leg tensor one-loop integrals (8-point functions)
 - $\label{eq:constraint} \hookrightarrow \mbox{ numerically stable evaluation with Collier library or improved OPENLOOPS reduction }$

▶ NLO/MC techniques pushed to the extreme, but work well:

 $\mathsf{QCD}/\mathsf{QED}$ dipole subtraction formalism, complex-mass scheme, multi-channel Monte Carlo integration, etc.

▶ new subtlety: integration over low-virtuality $\gamma^* \rightarrow q\bar{q}$ splitting \hookrightarrow relation to $\Delta \alpha_{had}$ via "conversion function" D

Denner et al. '19

Tower of NLO corrections to QCD $\rm W^+W^+ + 2j$ channel $_{\rm Biedermann \ et \ al. \ '16,'17}$

EW $\mathcal{O}(\alpha^7)$ contribution is largest NLO correction $\hookrightarrow \delta_{\alpha^7} = -13\%$ for integrated cross section within VBS cuts

Good description of dominant correction by leading EW high-energy logarithms:

$$\delta_{\alpha^7} \approx -\frac{2\alpha}{s_{\rm W}^2 \pi} \ln^2 \left(\frac{Q^2}{M_{\rm W}^2}\right) + \frac{19\alpha}{12s_{\rm W}^2 \pi} \ln \left(\frac{Q^2}{M_{\rm W}^2}\right), \quad Q \sim \langle M_{4\ell} \rangle \sim 400 \, {\rm GeV}$$

(due to soft/collinear $\rm W/Z$ exchange)

Schematic view of perturbative orders at LO and NLO

 \Rightarrow Tower of mixed EW-QCD corrections at NLO

Survey of NLO contributions of QCD type

QCD corrections to EW channels

 $\,\hookrightarrow\,$ QCD corrections only $\sim 5\%$ (little colour exchange between protons)

QCD corrections to QCD channels

- ▶ no relation to EW VBS subprocess, just QCD VV + 2jet production
- contribution damped by VBS cuts, but still quite large $(W^{\pm}W^{\pm}$ is exception with ~ 10%, since gg channel missing)

NLO corrections of EW and mixed QCD-EW types

Mixed QCD–EW contributions $\propto \alpha_{
m s}^2 lpha^5$

Mixed QCD–EW contributions $\propto~lpha_{ m s}lpha^{ m 6}$

mixed contributions not VBS enhanced, partially colour-suppressed

 \hookrightarrow very small

Purely EW contributions $\,\propto\,lpha^{7}$

Sudakov-enhanced VBS corrections, $\sim -15\%$ (larger in distributions)

 \hookrightarrow experimentally relevant!

Comments on NLO calculations:

- genuine QCD corrections available since more than 10 years (several groups)
- ► NLO predictions for full NLO tower extremely challenging, but available W[±]W[±]: Biedermann et al. '16,'17; S.D. et al. '23; WZ: Denner et al. '19; ZZ: Denner et al. '20,'21; W[±]W[∓]: Denner et al. '22
- Main challenges:
 - ► algebraic complexity (many partonic channels, ~ some 10⁵ diagrams) → recursive one-loop amplitude generators RECOLA / OPENLOOPS
 - multi-leg tensor one-loop integrals (8-point functions)
 - $\label{eq:constraint} \hookrightarrow \mbox{ numerically stable evaluation with Collier library or improved OPENLOOPS reduction }$

▶ NLO/MC techniques pushed to the extreme, but work well:

 $\mathsf{QCD}/\mathsf{QED}$ dipole subtraction formalism, complex-mass scheme, multi-channel Monte Carlo integration, etc.

▶ new subtlety: integration over low-virtuality $\gamma^* \rightarrow q\bar{q}$ splitting \hookrightarrow relation to $\Delta \alpha_{had}$ via "conversion function" D

Denner et al. '19

Tower of NLO corrections to QCD $\rm W^+W^+ + 2j$ channel $_{\rm Biedermann \ et \ al. \ '16,'17}$

EW $O(\alpha^7)$ contribution is largest NLO correction $\hookrightarrow \delta_{\alpha^7} = -13\%$ for integrated cross section within VBS cuts

Good description of dominant correction by leading EW high-energy logarithms:

$$\delta_{\alpha^7} \approx -\frac{2\alpha}{s_{\rm W}^2 \pi} \ln^2 \left(\frac{Q^2}{M_{\rm W}^2}\right) + \frac{19\alpha}{12 s_{\rm W}^2 \pi} \ln \left(\frac{Q^2}{M_{\rm W}^2}\right), \quad \boldsymbol{Q} \sim \langle \boldsymbol{M}_{\boldsymbol{4}\boldsymbol{\ell}} \rangle \sim 400 \, {\rm GeV}$$

(due to soft/collinear $\rm W/Z$ exchange)

Recent recalculation of NLO corrections to QCD $W^+W^+ + 2j$ channel S.D., Maierhöfer, Schwan, Winterhalter '23

Results with VBS cuts:

	Order	Result [fb] δ [%] Scale uncertainty		
LO	$\mathcal{O}(\alpha^6 \alpha_{\rm s}^0)$	1.24597(5)		-7.7%	9.9%	
	$\mathcal{O}(\alpha^5\alpha_{\rm s}^1)$	0.051133(3)		-14.0%	17.7%	
	$\mathcal{O}(\alpha^4\alpha_{\rm s}^2)$	0.18649(2)		-22.2%	31.6%	
	sum	1.48359(5)		-9.8%	12.1%	
NLO	$\mathcal{O}(\alpha^7 \alpha_{\rm s}^0)$	-0.1747(5)	-11.8%			
	$\mathcal{O}(\alpha^{6}\alpha_{\rm s}^{1})$	-0.0902(8)	-6.1%			
	$\mathcal{O}(\alpha^5\alpha_{\rm s}^2)$	$-0.00017(19)^{*}$	0.0%			
	$\mathcal{O}(\alpha^4\alpha_{\rm s}^3)$	-0.0033(7)	-0.2%			
	sum	-0.268(1)	-18.1%			
LO+NLO	sum	1.215(1)		-4.0%	1.5%	

- interesting interplay of QCD and EW corrections
- ► large EW corrections from high-energy domain
 - $\,\hookrightarrow\,$ inclusion of leading effects beyond NLO?
- approximations for complex 2
 ightarrow 6 process non-trivial, but possible

* Error in earlier calculation (Biedermann et al. '16,'17) corrected

Table of contents

Precision physics at the LHC – role of electroweak corrections Features of electroweak corrections Single-W/Z production Electroweak corrections at high energies Multi-boson production / scattering at the LHC Challenges in electroweak corrections beyond NLO Outlook: electroweak precision physics at future e^+e^- colliders

Challenges in electroweak corrections beyond NLO

EW corrections at NLO

- problem conceptually solved, corrections widely automated
- \blacktriangleright dedicated calculations for high-multiplicity processes (2 \rightarrow 6,7,8, \dots) certainly still welcome
 - \hookrightarrow non-trivial cross-checks, ansatz for approximations, improvements beyond NLO, \ldots

EW renormalization at NNLO

- \blacktriangleright concept widely straightforward for on-shell and $\overline{\mathrm{MS}}$ schemes
- few applications for decays exist
- subtleties expected (unstable-particles effects, imaginary parts, etc.)
- major challenge: complex-mass scheme for unstable particles at NNLO

Massive 2-loop integrals (and beyond)

- $\blacktriangleright\,$ majority of graphs involve triple-massive cuts $\,\,\rightarrow\,$ elliptic integrals
- numerical methods unavoidable
 - $\,\hookrightarrow\,$ try out and compare different approaches
- often analytical expansions provide an alternative

Challenges in electroweak corrections beyond NLO (continued)

IR singularities / QED radiation

- borrow subtraction methods from QCD
- ► small masses of fermions often desirable → massification of massless limits
- control QED radiation way beyond NNLO (large effects on tails)
 - $\,\hookrightarrow\,$ factorization into (perturbative!) QED lepton/photon PDFs

Approximations

- Important, but validate/check carefully!
- Don't oversimplify! E.g. include W/Z decays in processes
- Resonance expansions for W/Z/H production often good approximations!
- Effective vector-boson approximations not appropriate for precision physics

Challenges in electroweak corrections beyond NLO (continued)

Important calculations \rightarrow required for successful phenomenology

► LHC:

- NNLO QCD×EW corrections and/or QCD/QED PS matching for 2 → 2 key processes
- ▶ Drell–Yan: NNLO EW in pole approximation for $M_{\rm W}$, sin² $\theta_{\rm eff}^{\rm lept}$
- leading EW corrections beyond NLO at high energies
- ▶ ...

► Future e⁺e⁻ colliders:

- N³LO EW for $\mu
 ightarrow {
 m e} ar{
 u}_{
 m e}
 u_{\mu}$ for $M_{
 m W}$
- Multi-loop corrections to EWPOs (e.g. ρ-parameter)
- NNLO EW for $e^+e^- \rightarrow Z/\gamma^* \rightarrow f\bar{f}$
 - $\,\hookrightarrow\,$ check validity of pseudo-observable approach
- NNLO EW for WW production at threshold
- NNLO EW for ZH production, multi-loop calculations for H decays

Challenges in electroweak corrections beyond NLO (continued)

Extremely huge effort, highly specialized concepts/techniques, long-lasting projects, ...

 $\hookrightarrow \ \mathsf{Don't} \ \mathsf{build} \ \mathsf{a} \ \mathsf{new} \ \mathsf{Babel} \ \mathsf{tower!}$

Validation, sustainability, legacy

- Proper documentation of methods/results
 - $\,\hookrightarrow\,$ benchmark results, ancillary files for analytical results, public programs
- Libraries for integrals of even amplitudes?
- Tuned comparisons of independent results
 - \rightarrow working groups / reports
- Excite, engage and support young talents!
Table of contents

Precision physics at the LHC – role of electroweak corrections Features of electroweak corrections Single-W/Z production Electroweak corrections at high energies Multi-boson production / scattering at the LHC Challenges in electroweak corrections beyond NLO Outlook: electroweak precision physics at future e⁺e⁻ colliders

Outlook: electroweak precision physics at future $\mathrm{e^+e^-}$ colliders

Status of (not only) EW precision physics in the (pre HL-)LHC era

Erler, Schott '19

 $\begin{array}{llllllllllllll} \mbox{Current precision:} & typically $\lesssim 1\%$, even $\sim 0.01-0.1\%$ in some cases} \\ \mbox{Future projections:} & promise improvements by 1-2 orders of magnitude} \\ & \hookrightarrow & ultimate challenge of the SM at future e^+e^- colliders} \\ \end{array}$

But: Can theory provide adequate predictions?

Experimental errors and theory uncertainties

Experimental errors: systematic errors $\}$ \rightarrow LHC status + projections to HL/HE-LHC, ILC, FCC-ee statistical errors $\}$ = input in the following

Theory uncertainties in predictions:

Intrinsic uncertainties due to missing higher-order corrections, estimated from

- generic scaling of higher order via coupling factors
- renormalization and factorization scale variations
- ▶ tower of known corrections, e.g. $\Delta_{\rm NNLO} \sim \delta_{\rm NLO}^2$ if $\delta_{\rm NLO}$ known
- different variants to include/resum leading higher-order effects

Parametric uncertainties due to errors in input parameters, induced by

- experimental errors in measurements
- theory uncertainties in analyses

Note:

Estimates of theory uncertainties often (too) optimistic in projections of exp. results...

Physics at the Z pole – central EW precision (pseudo-)observables FCC-ee: Freitas et al., 1906.05379; ILC: Moortgat-Pick et al., 1504.01726

	experimental accuracy			intrinsic theory uncertainty			
	current	ILC	FCC-ee	current	${\it current\ source}$	prospect	
$\Delta M_{\rm Z}[{ m MeV}]$	2.1	_	0.1				
$\Delta \Gamma_{\rm Z} [{\rm MeV}]$	2.3	1	0.1	0.4	$\alpha^3, \alpha^2 \alpha_{\rm s}, \alpha \alpha_{\rm s}^2$	0.15	
$\Delta \sin^2 \theta_{ m eff}^{\ell} [10^{-5}]$	23	1.3	0.6	4.5	$\alpha^3, \alpha^2 \alpha_{ m s}$	1.5	
$\Delta R_{ m b}[10^{-5}]$	66	14	6	11	$lpha^3, lpha^2 lpha_{ m s}$	5	
$\Delta R_{\ell}[10^{-3}]$	25	3	1	6	$lpha^3, lpha^2 lpha_{ m s}$	1.5	

Theory requirements for Z-pole pseudo-observables:

needed:

- ◊ EW and QCD–EW 3-loop calculations
- $\diamond~1 \rightarrow 2$ decays, fully inclusive

problems:

- $\diamond~$ technical: massive multi-loop integrals, γ_5
- $\diamond~$ conceptual: pseudo-obs. on the complex Z-pole

Physics at the Z pole – central EW precision (pseudo-)observables FCC-ee: Freitas et al., 1906.05379; ILC: Moortgat-Pick et al., 1504.01726

	experin	nental	accuracy	intrinsic	th. unc.	parametr	ric unc.
	current	ILC	FCC-ee	current	prospect	prospect	source
$\Delta M_{\rm Z} [{ m MeV}]$	2.1	_	0.1				
$\Delta\Gamma_{\rm Z}[{ m MeV}]$	2.3	1	0.1	0.4	0.15	0.1	$lpha_{ extsf{s}}$
$\Delta \sin^2 \theta_{ m eff}^{\ell} [10^{-5}]$	23	1.3	0.6	4.5	1.5	2(1)	$\Delta \alpha_{ m had}$
$\Delta R_{ m b}[10^{-5}]$	66	14	6	11	5	1	$lpha_{ m s}$
$\Delta R_{\ell}[10^{-3}]$	25	3	1	6	1.5	1.3	$\alpha_{ m s}$

Parametric uncertainties of EW pseudo-observables:

► QCD:

 $\diamond~$ most important: $\delta \alpha_{\rm s} \sim$ 0.00015 @ FCC-ee?

 $\hookrightarrow \alpha_{\rm s} \text{ from EW POs competitive } \Rightarrow \text{cross-check with other results!}$ $\diamond \, \, {\rm quark \ masses \ } m_{\rm t}, \ m_{\rm b}, \ m_{\rm c}$

• $\Delta \alpha_{had}$: $\delta(\Delta \alpha_{had}) \sim 5(3) \times 10^{-5}$ for/from FCC-ee?

- $\diamond~$ new exp. results from BES III / Belle II on ${\rm e^+e^-} \rightarrow {\rm hadrons}$
- $\diamond \Delta \alpha_{had}$ from fit to radiative return $e^+e^- \rightarrow \gamma + hadrons$

• other EW parameters: $M_{\rm Z}$, $M_{\rm W}$, $M_{\rm H}$ less critical (improved at ILC/FCC-ee)

Physics at the Z pole – central EW precision (pseudo-)observables FCC-ee: Freitas et al., 1906.05379; ILC: Moortgat-Pick et al., 1504.01726

• other EW parameters: M_Z , M_W , M_H less critical (improved at ILC/FCC-ee)

State-of-the-art prediction of σ_{WW} in LEP2 energy range Denner, S.D., 1912.06823

- ► IBA = based on leading-log ISR and universal EW corrections ($\Delta \sim 2\%$) \hookrightarrow shows large ISR impact near threshold (also by GENTLE)
- ▶ DPA = "Double-Pole Approximation" (leading term of resonance expansion) $\leftrightarrow \Delta \sim 0.5\%$ above threshold, not applicable at threshold RacoonWW, YFSWW
- "full" = full NLO prediction for $e^+e^- \rightarrow 4f$ via charged current _{Denner et al.} '05 + leading-log improvements for ISR beyond NLO
 - $\hookrightarrow \ \Delta \sim 0.5\% \ \text{everywhere}$

Theory issues in scan of $\sigma_{\rm WW}(s)$ over WW threshold

- Definition of σ_{WW} via 4*f* final states
 - ▶ e^{\pm} final states: separation or inclusion of single-W channels? \hookrightarrow TH precision versus EXP accuracy
 - ► Hadronic final states: separation of multi-jet events (2j,3j,4j,...) → TH precision versus EXP accuracy
- Required for the best achievable theory prediction for σ_{WW} :
 - Full NLO e⁺e[−] → 4*f* prediction for each 4*f* type (interferences with ZZ and forward-e[±] channels)
 - full NNLO EFT calculation (only leading terms available)
 - leading 3-loop Coulomb-enhanced EFT corrections
 - $\blacktriangleright\,$ matching of all fixed-order $\mathrm{e^+e^-} \rightarrow 4f$ and threshold-EFT ingredients
 - convolution of matched and corrected XS with higher-order ISR
 - $\,\hookrightarrow\,$ Estimate of theory uncertainty:
 - $\Delta \sim 0.01 {-} 0.04\%$ for $\sigma_{\rm WW}$ @ threshold $_{\rm Freitas \ et \ al., \ 1906.05379}$

Improved $M_{ m W}$ prediction from μ decay

Massive 3-loop computations (vacuum graphs, self-energies)

WW production beyond LEP2 energy range

Fixed-order NLO + leading-log ISR prediction:

Note: large non-universal weak corrections + sizeable off-shell effects Achievable precision:

- $\blacktriangleright\,$ by full NLO for ${\rm e^+e^-} \rightarrow 4f$ + leading NNLO corrections + ISR resummation
- $\blacktriangleright\,$ estimate: $\Delta\sim 0.5\%$ in distributions ($\sim 1\%$ in tails) up to $\sqrt{s}\sim 1\,{\rm TeV}$

Triple-gauge couplings (TGC) analyses in $e^+e^- \rightarrow WW$

▶ e⁺e⁻ is ideal framework: no formfactors for damping required!

SMEFT framework:

sensitivity to dim-6 operators complementary to Higgs analyses Ellis, You '15

Theory homework for high-precision W-boson physics

- Exclusive analyses & predictions for $e^+e^- \rightarrow 4f$:
 - $\blacktriangleright\ e^{\pm}$ final states: proper treatment / separation of single-W channels
 - ▶ Hadronic final states: separation of multi-jet events (2j,3j,4j,...)
 - Full NLO e⁺e[−] → 4f prediction for each 4f type (interferences with ZZ and forward-e[±] channels)
 - more leading corrections beyond NLO
- σ_{WW} in threshold region:
 - full NNLO EFT calculation (only leading terms available)
 - leading 3-loop Coulomb-enhanced EFT corrections
 - $\blacktriangleright\,$ matching of all fixed-order $\mathrm{e^+e^-} \rightarrow 4f$ and threshold-EFT ingredients
 - \hookrightarrow Estimate of theory uncertainty:
 - $\Delta \sim 0.01 0.04\%$ for $\sigma_{\rm WW}$ @ threshold $_{\rm Freitas\ et\ al.,\ 1906.05379}$
- For M_W analysis: Improved M_W prediction from μ decay
 - massive 3-loop computations (vacuum graphs, self-energies)

Higgs couplings analyses at present and future colliders

Higgs decay widths and Higgs couplings at ILC and FCC-ee

LHC HXS WG; de Blas et al., 1905.03764; HL-LHC: Cepeda et al., 1902.00134; ILC: Bambade et al., 1903.01629 FCC-ee: Freitas et al., 1906.05379

	experim	ental acc	uracy	the	eory uncerta	param.	unc.	
	HL-LHC	ILC250	FCC-ee	current	source	prospect	prospect	source
${\rm H} \to {\rm b}\bar{\rm b}$	4.4%	2%	0.8%	0.4%	$\alpha_{\rm s}^{5}$	0.2%	0.6%	$m_{ m b}$
${\rm H} \to \tau \tau$	2.9%	2.4%	1.1%	0.3%	α^2	0.1%	neglig	ible
${\rm H} \to \mu \mu$	8.2%	8%	12%	0.3%	α^2	0.1%	neglig	ible
$\mathrm{H} \to \mathrm{gg}$	1.6% (prod.)	3.2%	1.6%	3.2%	$\alpha_{\rm s}^4$	1%	0.5%	$\alpha_{\rm s}$
${\rm H} \to \gamma \gamma$	2.6%	2.2%	3.0%	1%	α^2	1%	neglig	ible
${\rm H} \to \gamma {\rm Z}$	19%			5%	α	1%	0.1%	$M_{ m H}$
$\mathrm{H} \to \mathrm{WW}$	2.8%	1.1%	0.4%	0.5%	$\alpha_{\rm s}^2, \alpha_{\rm s}\alpha, \alpha^2$	0.3%	0.1%	$M_{ m H}$
$\mathrm{H} \to \mathrm{ZZ}$	2.9%	1.1%	0.3%	0.5%	$\alpha_{\rm s}^2, \alpha_{\rm s}\alpha, \alpha^2$	0.3%	0.1%	$M_{ m H}$

Note: e^+e^- colliders from $\sigma_{e^+e^- \rightarrow ZH}$ with *inclusive* Higgs decays!

 \Rightarrow Absolute normalization of Higgs BRs

Enormous challenges for theory!

Can theory provide adequate predictions?

My expectation: Yes.

 \ldots anticipating progress + support for young theorists

Backup Slides

$\begin{array}{c} \mbox{Electroweak input parameter schemes} \\ \mbox{SM input parameters:} & (natural choice) \\ \mbox{$\alpha_{\rm s}, \, \alpha, \, M_{\rm W}, \, M_{\rm Z}, \, M_{\rm H}, \, m_{f}, \, V_{\rm CKM}$} \end{array}$

Issues:

- Setting of α : process-specific choice to
 - avoid sensitivity to non-perturbative light-quark masses
 - minimize universal EW corrections

Schemes: fix $M_{
m W}$, $M_{
m Z}$, and α

- $\alpha(0)$ -scheme: $\alpha = \alpha(0) = 1/137.0...$
- $\alpha(M_{\rm Z})$ -scheme: $\alpha = \alpha(M_{\rm Z}^2) \approx 1/129$
- G_{μ} -scheme: $\alpha = \alpha_{G_{\mu}} = \sqrt{2}G_{\mu}M_{W}^{2}(1 M_{W}^{2}/M_{Z}^{2})/\pi \approx 1/132$
- \hookrightarrow Some arbitrariness of \sim 3–6% per factor of α in LO prediction

Warnings / pitfalls:

- α must not be set diagram by diagram, but global factors like $\alpha(0)^m \alpha^n_{G_{\mu}}$ in gauge-invariant contributions mandatory !
- weak mixing angle: $s_W \neq$ free parameter if M_W and M_Z are fixed !
- Yukawa couplings are uniquely fixed by fermion masses !

Running electromagnetic coupling $\alpha(s)$:

becomes sensitive to unphysical quark masses m_q γ for |s| in GeV range and below (non-perturbative regime) $\hookrightarrow \delta Z_e$ and δZ_{AA} involve ln m_f with $f = q, \ell$

fit hadronic part of $\Delta \alpha(s) = -\operatorname{Re}\{\Sigma_{T,R}^{AA}(s)/s\}$ and thus of δZ_e Solution: via dispersion relation to $R(s) = \frac{\sigma(e^+e^- \rightarrow hadrons)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$ Jegerlehner et al.

 $\Rightarrow \text{ Running elmg. coupling:} \quad \alpha(s) = \frac{\alpha(0)}{1 - \Delta \alpha_{\text{form-4top}}(s)}$

Universal contribution of $\Delta \alpha(M_Z^2)$ to renormalization constants:

$$\delta Z_e = \frac{1}{2} \Delta \alpha(M_Z^2) + \dots, \qquad \delta Z_{AA} = -\Delta \alpha(M_Z^2) + \dots$$

Leading correction to the ρ -parameter:

mass differences in fermion doublets break custodial SU(2) symmetry

- \hookrightarrow large effects from bottom-top loops in W/Z self-energies Veltman '77
 - large corrections $\propto m_{
 m t}^2$ in $\Sigma_{
 m T}^{VV}(s)$, V=W,Z

• leading terms to $\Delta \rho$ known beyond NLO

Universal contribution of $\Delta \rho$ to renormalization constants:

$$\frac{\delta c_{\rm W}^2}{c_{\rm W}^2} = -\Delta \rho_{\rm top} + \dots, \qquad \frac{\delta s_{\rm W}^2}{s_{\rm W}^2} = \frac{c_{\rm W}^2}{s_{\rm W}^2} \Delta \rho_{\rm top} + \dots$$

major effect due to $1/s_{\rm W}^2$ enhancement

Adaption of input parameter schemes for cross-section predictions

- Aim: absorb universal corrections from $\Delta \alpha$ and $\Delta \rho$ into leading-order (LO) predictions as much as possible
 - $\Delta \alpha^n$ terms can be absorbed to all orders
 - $\Delta \rho^n$ terms can be absorbed at least to two-loop order
 - Factor α in δ_{EW} can still be adjusted appropriately (e.g. α→α(0) if γ radiation dominates, α→α_{Gµ} if weak corrections dominate)

Consider NLO cross section:

$$\sigma_{\rm NLO} = \alpha^N A_{\rm LO} (1 + \delta_{\rm EW}), \qquad \delta_{\rm EW} = \mathcal{O}(\alpha)$$

- \blacktriangleright for process at some generic energy scale $Q\gtrsim M_{
 m W}$
- with N_{γ} external photons (separable from $\gamma^* \rightarrow f\bar{f}$)
- with N_W couplings of W/Z in dominating LO diagrams (Δρ effects from c_W from difference between W/Z ignored)
 - $\,\,\hookrightarrow\,\,$ N_W factors of $g_2^2 \propto 1/s_{
 m W}^2$ in LO cross section

 α (0)-scheme: $\sigma_{\rm LO} = \alpha$ (0)^N $A_{\rm LO}$

$$\delta_{\rm EW}^{\alpha(0)} = 2N \, \delta Z_e + N_\gamma \, \delta Z_{AA} - N_W \, \frac{\delta s_{\rm W}^2}{s_{\rm W}^2} + \dots$$

 α (0)-scheme: $\sigma_{\rm LO} = \alpha$ (0)^N $A_{\rm LO}$

$$\delta_{\rm EW}^{\alpha(0)} = (N - N_{\gamma}) \Delta \alpha(M_{\rm Z}^2) - N_W \frac{c_{\rm W}^2}{s_{\rm W}^2} \Delta \rho_{\rm top} + \dots$$

 \Rightarrow cancellation of $\Delta lpha$, $\Delta
ho$ for $N_{\gamma} = N$, $N_W = 0$,

i.e. for processes such as $\gamma\gamma\to\ell^+\ell^-, W^+W^-$, $e\gamma\to e\gamma$, etc.

 $\alpha(M_{\rm Z})\text{-scheme:} \quad \sigma_{\rm LO} = \alpha(M_{\rm Z}^2)^N A_{\rm LO}$ $\delta_{\rm EW}^{\alpha(M_{\rm Z})} = \delta_{\rm EW}^{\alpha(0)} - N\Delta\alpha(M_{\rm Z}) + \ldots = -N_{\gamma}\Delta\alpha(M_{\rm Z}^2) - N_W \frac{c_{\rm W}^2}{s_{\rm W}^2}\Delta\rho_{\rm top} + \ldots$

 \Rightarrow cancellation of $\Delta lpha$, $\Delta
ho$ for $N_{\gamma}=$ 0, $N_{W}=$ 0,

which is not possible, since there is at least one Z exchange for $N_{\gamma} = 0$. But: γ exchange dominates over Z exchange for $Q \ll M_{\rm W} (N_W \to 0)$ $\Rightarrow "\alpha(Q)$ scheme" for neutral-current processes appropriate, $e^+e^-/q\bar{q} \to \ell^+\ell^-$, etc.

 $\begin{aligned} G_{\mu}\text{-scheme:} \quad \sigma_{\mathrm{LO}} &= \alpha_{G_{\mu}}^{N} A_{\mathrm{LO}} \\ \delta_{\mathrm{EW}}^{G_{\mu}} &= \delta_{\mathrm{EW}}^{\alpha(0)} - N\Delta r + \ldots = -N_{\gamma} \Delta \alpha (M_{Z}^{2}) + (N - N_{W}) \frac{c_{W}^{2}}{s_{W}^{2}} \Delta \rho_{\mathrm{top}} + \ldots \\ \Rightarrow \text{ cancellation of } \Delta \alpha, \ \Delta \rho \text{ for } N_{\gamma} = 0, \ N_{W} = N, \\ \text{ i.e. for } W/Z \text{ decays, all EW processes without external } \gamma \text{ at } Q \gtrsim M_{W} \end{aligned}$

Mixed scheme: $\sigma_{\rm LO} = \alpha (G_{\mu})^n \alpha (0)^m A_{\rm LO}$ $\delta_{\rm EW}^{\rm mix} = \delta_{\rm EW}^{\alpha(0)} - n \Delta r + \ldots = (m - N_{\gamma}) \Delta \alpha (M_Z^2) + (n - N_W) \frac{c_W^2}{s_W^2} \Delta \rho_{\rm top} + \ldots$

 \Rightarrow cancellation of $\Delta \alpha$, $\Delta \rho$ for $N_{\gamma} = m$, $N_W = n$,

i.e. for all EW processes with m external γ at $Q\gtrsim M_{
m W}$

Note: *m* does not include γ as parton from p/\bar{p} , because processes induced by $\gamma \rightarrow q\bar{q}, \ell\bar{\ell}$ cannot be separated form pure γ processes Harland-Lang et al. '16

Example: weak corrections to Z production

(partonic cross sections, no photonic corrections)

- expected off-sets between NLO EW corrections in different schemes
- most suited EW input parameter schemes:
 - $\sqrt{\hat{s}} \gtrsim M_{
 m Z}$: G_{μ} scheme

 $\sqrt{\hat{s}} \lesssim 70 \, \text{GeV}$: $\alpha(M_Z)$ scheme scheme $(\alpha(Q) \text{ scheme for } Q = \sqrt{\hat{s}} \ll M_Z)$

• dashed lines include leading 2-loop effects from $\Delta \alpha$ and $\Delta \rho$

 $\,\hookrightarrow\,$ highest stability against h.o. corrections in recommended schemes

Unstable particles in Quantum Field Theory

description of resonances requires resummation of propagator corrections \hookrightarrow mixing of perturbative orders potentially violates gauge invariance

Dyson series and propagator poles (scalar example)
•
$$\bigcirc \bullet = \bullet \longrightarrow + \bullet \bigoplus \bullet + \bullet \bigoplus \bullet + \dots$$

 $G_{\rm R}^{\phi\phi}(p) = \frac{i}{p^2 - m^2} + \frac{i}{p^2 - m^2} i\Sigma_{\rm R}(p^2) \frac{i}{p^2 - m^2} + \dots = \frac{i}{p^2 - m^2 + \Sigma_{\rm R}(p^2)}$

 $\Sigma_{
m R}(p^2)=$ renormalized self-energy, m= ren. mass

stable particle: ${\rm Im}\{\Sigma_{\rm R}(p^2)\}~=~0$ at $p^2\sim m^2$

 \hookrightarrow propagator pole for real value of p^2 , renormalization condition for physical mass m: $\Sigma_{\rm R}(m^2) = 0$

unstable particle: ${\rm Im}\{\Sigma_{\rm R}(p^2)\} \neq 0$ at $p^2 \sim m^2$

 \hookrightarrow location μ^2 of propagator pole is complex, possible definition of mass *M* and width Γ : $\mu^2 = M^2 - iM\Gamma$ Commonly used mass/width definitions:

- ► "on-shell mass/width" $M_{\rm OS}/\Gamma_{\rm OS}$: $M_{\rm OS}^2 M_0^2 + {\rm Re}\{\Sigma(M_{\rm OS}^2)\} \stackrel{!}{=} 0$ $\Rightarrow G^{\phi\phi}(p) \xrightarrow[p^2 \to M_{\rm OS}^2]{} \frac{1}{(p^2 - M_{\rm OS}^2)(1 + {\rm Re}\{\Sigma'(M_{\rm OS}^2)\}) + i\,{\rm Im}\{\Sigma(p^2)\}}$ comparison with form of Breit–Wigner resonance $\frac{R_{\rm OS}}{p^2 - m^2 + im\Gamma}$ yields: $M_{\rm OS}\Gamma_{\rm OS} \equiv {\rm Im}\{\Sigma(M_{\rm OS}^2)\} / (1 + {\rm Re}\{\Sigma'(M_{\rm OS}^2)\}), \Sigma'(p^2) \equiv \frac{\partial\Sigma(p^2)}{\partial z^2}$
- ► "pole mass/width" M/Γ : $\mu^2 M_0^2 + \Sigma(\mu^2) \stackrel{!}{=} 0$ complex pole position: $\mu^2 \equiv M^2 - iM\Gamma$ $\hookrightarrow G^{\phi\phi}(p) \xrightarrow[\rho^2 \to \mu^2]{} \frac{1}{(p^2 - \mu^2)[1 + \Sigma'(\mu^2)]} = \frac{R}{p^2 - M^2 + iM\Gamma}$

Note:

 μ = gauge independent for any particle (pole location is property of *S*-matrix) M_{OS} = gauge dependent at 2-loop order Sirlin '91; Stuart '91; Gambino, Grassi '99; Grassi, Kniehl, Sirlin '01

Relation between "on-shell" and "pole" definitions: Subtraction of defining equations yields:

 $M_{\mathrm{OS}}^2 + \mathrm{Re}\{\Sigma(M_{\mathrm{OS}}^2)\} = M^2 - \mathrm{i}M\Gamma + \Sigma(M^2 - \mathrm{i}M\Gamma)$

Equation can be uniquely solved via recursion in powers of coupling $\alpha :$

ansatz: $M_{OS}^2 = M^2 + c_1 \alpha^1 + c_2 \alpha^2 + \dots$ $M_{OS} \Gamma_{OS} = M \Gamma + d_2 \alpha^2 + d_3 \alpha^3 + \dots$, $c_i, d_i = \text{real}$ counting in α : $M_{OS}, M = \mathcal{O}(\alpha^0), \quad \Gamma_{OS}, \Gamma, \Sigma(p^2) = \mathcal{O}(\alpha^1)$

Result:

$$\begin{split} M_{\rm OS}^2 &= M^2 + {\rm Im}\{\Sigma(M^2)\} \,{\rm Im}\{\Sigma'(M^2)\} \,+\, \mathcal{O}(\alpha^3) \\ M_{\rm OS}\Gamma_{\rm OS} &= M\Gamma + {\rm Im}\{\Sigma(M^2)\} \,{\rm Im}\{\Sigma'(M^2)\}^2 \\ &+ \frac{1}{2} \,{\rm Im}\{\Sigma(M^2)\}^2 \,{\rm Im}\{\Sigma''(M^2)\} \,+\, \mathcal{O}(\alpha^4) \end{split}$$

i.e. $\{M_{OS}, \Gamma_{OS}\} = \{M, \Gamma\} + \text{gauge-dependent 2-loop corrections}$

Important examples: W and Z bosons In good approximation: $W \to f\bar{f}', Z \to f\bar{f}$ with masses fermions f, f'so that: $\operatorname{Im}\{\Sigma_{\mathrm{T}}^{\mathrm{V}}(p^2)\} = p^2 \times \frac{\Gamma_{\mathrm{V}}}{M_{\mathrm{V}}} \theta(p^2), \qquad \mathrm{V} = \mathrm{W}, \mathbb{Z}$ $\hookrightarrow M_{\mathrm{OS}}^2 = M^2 + \Gamma^2 + \mathcal{O}(\alpha^3) \qquad M_{\mathrm{OS}}\Gamma_{\mathrm{OS}} = M\Gamma + \frac{\Gamma^3}{M} + \mathcal{O}(\alpha^4)$

In terms of measured numbers:

W boson: $M_{W} \approx 80 \text{ GeV}$, $\Gamma_{W} \approx 2.1 \text{ GeV}$ $\hookrightarrow M_{W,OS} - M_{W,pole} \approx 28 \text{ MeV}$ Z boson: $M_{Z} \approx 91 \text{ GeV}$, $\Gamma_{Z} \approx 2.5 \text{ GeV}$ $\hookrightarrow M_{Z,OS} - M_{Z,pole} \approx 34 \text{ MeV}$ Exp. accuracy: $\Delta M_{Wexp}^{ATLAS} = 16 \text{ MeV}$, $\Delta M_{Z,exp} = 2.1 \text{ MeV}$

 $\,\hookrightarrow\,$ Difference in definitions phenomenologically important !

Example of W and Z bosons continued:

Approximation of massless decay fermions:

$$\Gamma_{\mathrm{V,OS}}(p^2) = \Gamma_{\mathrm{V,OS}} \times \frac{p^2}{M_{\mathrm{V,OS}}^2} \theta(p^2), \qquad \mathrm{V} = \mathrm{W,Z}$$

Fit of W/Z resonance shapes to experimental data:

Note: The two forms are equivalent:

$$R = rac{R'}{1 + \mathrm{i}\gamma'/m'}, \quad m^2 = rac{{m'}^2}{1 + {\gamma'}^2/{m'}^2}, \quad m\gamma = rac{m'\gamma'}{1 + {\gamma'}^2/{m'}^2}$$

 $\,\hookrightarrow\,$ consistent with relation between "on-shell" and "pole" definitions !

The issue of gauge invariance

Preliminary remarks:

The issue of gauge invariance goes

- beyond the definition of M and Γ and also
- beyond the question of parametrizing the resonance!
- It is about the consistency of amplitudes everywhere in phase space, i.e.
 - on resonance,
 - in off-shell regions, and
 - in the transition region between on-/off-shell domains.

Gauge-invariance requirements in amplitude calculations:

- proper cancellation of gauge-parameter dependences (relations between self-energies, vertex corrections, boxes, etc.)
- validity of (internal) Ward identities
 (e.g. ruling cancellations for forward scattering of e[±] or at high energies)
- \Rightarrow Required: schemes to introduce width Γ
 - without breaking gauge invariance
 - maintaining (at least) NLO accuracy everywhere in phase space

Width schemes for LO calculations:

Naive propagator substitutions in full tree-level amplitudes:

$$\frac{1}{k^2 - m^2} \rightarrow \frac{1}{k^2 - m^2 + im\Gamma(k^2)}$$
 for resonant or all propagators
• constant width $\Gamma(k^2) = \text{const.} \rightarrow U(1)$ respected (if all propagators dressed),
 $SU(2)$ "mildly" violated
• step width $\Gamma(k^2) \propto \theta(k^2) \rightarrow U(1)$ and $SU(2)$ violated
• running width $\Gamma(k^2) \propto \theta(k^2) \times k^2 \rightarrow U(1)$ and $SU(2)$ violated
 \leftrightarrow results can be totally wrong !

Complex-mass scheme

Denner et al. '99

Complex masses for V = W, Z from

 $\mu_V^2 = M_V^2 - iM_V\Gamma_V =$ location of complex poles in V propagators

Complex (on-shell) weak mixing angle via $c_{
m W}=\mu_{
m W}/\mu_{
m Z}$

- \Rightarrow All algebraic relations expressing gauge invariance hold exactly (gauge-parameter cancellation, Ward identities).
- Major benefit: Generalization to NLO Denner et al. '05; Denner, SD '19 provides NLO accuracy everywhere in phase space!

LO example from e^+e^- physics: $\sigma[fb]$ for $e^+e^- \rightarrow \nu_e \bar{\nu}_e \mu^- \bar{\nu}_\mu u \bar{d}$ (with cuts)

\sqrt{s}	$500{ m GeV}$	$800{\rm GeV}$	2 TeV	$10\mathrm{TeV}$	S.D., Roth '02
constant width	1.633(1)	4.105(4)	11.74(2)	26.38(6)	
running width	1.640(1)	4.132(4)	12.88(1)	12965(12)	\leftarrow totally wrong
complex mass	1.633(1)	4.104(3)	11.73(1)	26.39(6)	

High-energy behaviour of longitudinal V = W/Z bosons:

SU(2) Ward identity $k^{\mu}T^{\nu}_{\mu} = c_{\nu}M_{\nu}T^{5}$ essential to cancel factor k^{0} , otherwise gauge-invariance/unitarity-breaking terms enhanced by k^{0}/M_{ν}

Width schemes for higher-order calculations:

Pole Scheme (PS) Stuart '91; Aeppli et al. '93, '94; etc.

Isolate resonance in a gauge-invariant way and introduce Γ only there:

$$\mathcal{M} = \frac{R(p^2)}{p^2 - M^2} + N(p^2) = \frac{R(M^2)}{p^2 - M^2} + \frac{R(p^2) - R(M^2)}{p^2 - M^2} + N(p^2)$$

$$\rightarrow \underbrace{\frac{\tilde{R}(M^2 - iM\Gamma)}{p^2 - M^2 + iM\Gamma}}_{\text{resonant}} + \underbrace{\frac{R(p^2) - R(M^2)}{p^2 - M^2}}_{\text{non-res./non-fact. corrs.}} + \underbrace{\tilde{N}(p^2)}_{\text{non-resonant}}$$

- → consistent, gauge invariant, NLO everywhere possible, but subtle and cumbersome in practice (complex kinematics, pole location is branch point rather than pole, IR structure of radiation)
- Leading pole approximation (PA)

Take term with highest resonance enhancement of pole expansion

- = leading term of Pole Scheme
- consistent, gauge invariant, straightforward, but valid only in resonance neighbourhood, rel. uncertainty for EW corrections = ^α/_π × O(Γ/M)

► Complex-mass scheme at NLO Denner et al. '05; Denner, S.D. '19 mass² = location of propagator pole in complex p^2 plane \hookrightarrow complex mass renormalization: $M_{W,0}^2 = \mu_W^2 + \frac{\delta \mu_W^2}{ren. constant}$, etc.

Gauge invariance by complex weak mixing angle:

$$m{c}_{\mathrm{W}}=rac{\mu_{\mathrm{W}}}{\mu_{\mathrm{Z}}}, \qquad rac{\deltam{c}_{\mathrm{W}}^2}{m{c}_{\mathrm{W}}^2}=rac{\delta\mu_{\mathrm{W}}^2}{\mu_{\mathrm{W}}^2}-rac{\delta\mu_{\mathrm{Z}}^2}{\mu_{\mathrm{Z}}^2}$$

Features of the complex-mass scheme:

- perturbative calculations as usual (with complex masses and couplings)
- \oplus no double counting of contributions (bare Lagrangian unchanged!)
- ⊕ gauge invariance (ST identities, gauge-parameter independence)
- \oplus NLO accuracy everywhere in phase space
- spurios terms are beyond NLO, but spoil unitarity
- complex gauge-boson masses also in loop integrals (all known)
- ⊖ unstable particles only allowed as resonances (not as external states)
- ⊖ generalization to NNLO not yet known (but expected to work)
Technical details, exemplified for W bosons:

OS renormalization conditions for renormalized (transverse) self-energy

$$\Sigma^{W}_{\mathrm{T,R}}(\mu^{2}_{\mathrm{W}}) = 0, \quad \Sigma^{\prime W}_{\mathrm{T,R}}(\mu^{2}_{\mathrm{W}}) = 0$$

 $\,\hookrightarrow\,\,\mu_{\rm W}^2$ is location of propagator pole, and residue = 1

Solution of renormalization conditions:

 $\delta \mu_{\mathrm{W}}^2 \;=\; \Sigma_{\mathrm{T}}^W(\mu_{\mathrm{W}}^2), \quad \delta \mathcal{Z}_W \;=\; -\Sigma_{\mathrm{T}}^{\prime W}(\mu_{\mathrm{W}}^2)$

Note: Evaluation of $\Sigma_T^W(p^2)$ at complex p^2 can be avoided

$$\Sigma_{\mathrm{T}}^{W}(\mu_{\mathrm{W}}^{2}) = \Sigma_{\mathrm{T}}^{W}(\mathcal{M}_{\mathrm{W}}^{2}) + (\mu_{\mathrm{W}}^{2} - \mathcal{M}_{\mathrm{W}}^{2})\Sigma_{\mathrm{T}}^{\prime W}(\mathcal{M}_{\mathrm{W}}^{2}) + \underbrace{\frac{\alpha}{\pi} \mathrm{i} \mathcal{M}_{\mathrm{W}} \Gamma_{\mathrm{W}}}_{\text{from non-analyticity}} + \underbrace{\mathcal{O}(\alpha^{3})}_{\substack{\text{beyond one loop}\\ \text{at } p^{2} = \mathcal{M}_{\mathrm{W}}^{2}}}$$

 \Rightarrow Renormalized W self-energy:

$$\begin{split} \Sigma_{\mathrm{T,R}}^{W}(\boldsymbol{p}^{2}) &= \Sigma_{\mathrm{T}}^{W}(\boldsymbol{p}^{2}) - \delta M_{\mathrm{W}}^{2} + (\boldsymbol{p}^{2} - M_{\mathrm{W}}^{2}) \delta Z_{W} \\ \text{with} \quad \delta M_{\mathrm{W}}^{2} &= \Sigma_{\mathrm{T}}^{W}(M_{\mathrm{W}}^{2}) + \frac{\alpha}{\pi} \mathrm{i} M_{\mathrm{W}} \Gamma_{\mathrm{W}}, \quad \delta Z_{W} = -\Sigma_{\mathrm{T}}^{\prime W}(M_{\mathrm{W}}^{2}) \end{split}$$

Differences to the usual on-shell scheme:

- no real parts taken from $\Sigma_{\rm T}^W$
- $\blacktriangleright\ \Sigma^{\it W}_{\rm T}$ evaluated with complex masses and couplings