
Lorenzo Tancredi - Technical University Munich

QCD meets EW 
CERN - 07/02/2024

FOUR-LEPTON SCATTERING IN MASSIVE QED 
BHABHA AND MØLLER SCATTERING UP TO TWO LOOPS

[Collaboration with Delto, Duhr, Zhu — arXiv:2311.06385, arXiv:24xx.xxxxx]
[and ongoing work with Duhr, Maggio, Nega, Wagner — arXiv:2305.14090, arXiv:24xx.xxxxx]



INTRODUCTION: BHABHA AND MØLLER SCATTERING

Bhabha e+e− → e+e−

Basic processes in QED, received a lot of attention since the birth of QFT (see Landau’s fourth book)

Møller e−e− → e−e−

3

electroweak theory prediction at tree level in terms of the weak mixing angle is Qe
W = 1�4 sin2 ✓W ; this is modified at

the 1-loop level [4–6] and becomes dependent on the energy scale at which the measurement is carried out, i.e. sin2 ✓W
“runs”. It increases by approximately 3% compared to its value at the scale of the Z0 boson mass, MZ ; this and other
radiative corrections reduce Qe

W to 0.0435, a ⇠ 42% change of its tree level value of ⇠ 0.075 (when evaluated at MZ).
The dominant e↵ect comes from the “� � Z mixing” diagrams depicted in Fig. 2 [5]. The prediction for APV for the
proposed experimental design is ⇡ 33 parts per billion (ppb) and the goal is to measure this quantity with an overall
precision of 0.7 ppb and thus achieve a 2.4% measurement of Qe

W . The reduction in the numerical value of Qe
W due

to radiative corrections leads to increased fractional accuracy in the determination of the weak mixing angle, ⇠ 0.1%,
matching the precision of the single best such determination from measurements of asymmetries in Z0 decays in the
e+e� colliders LEP and SLC. An important point to note is that, at the proposed level of measurement accuracy of
APV , the Standard Model (SM) prediction must be carried out with full treatment of one-loop radiative corrections
and leading two-loop corrections. The current error associated with radiative corrections for MOLLER is estimated
to be ⇠ 0.2 ppb, smaller than the expected 0.7 ppb overall precision. There is an ongoing e↵ort to investigate several
classes of diagrams beyond one-loop [31–33], and a plan has been formulated to evaluate the complete set of two-loop
corrections at MOLLER kinematics by 2016; such corrections are estimated to be already smaller than the MOLLER
statistical error. The existing work makes it clear that the theoretical uncertainties for the purely leptonic Møller PV
are well under control, and the planned future work will reinforce that conclusion.
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FIG. 1: Feynman diagrams for Møller scattering at tree level (reproduced from Ref. [5])
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FIG. 2: Significant 1-loop radiative corrections: � � Z mixing diagrams and W -loop contribution to the anapole moment
(reproduced from Ref. [5])

The proposed MOLLER measurement will make a precision (2.4% relative) measurement of a suppressed Standard
Model observable (Qe

W ⇠ 0.0435) resulting in sensitivity to new neutral current amplitudes as weak as ⇠ 10�3 · GF

from as yet undiscovered dynamics beyond the Standard Model. The fact that the proposed measurement provides
such a sensitive probe of TeV-scale dynamics beyond the SM (BSM) is a consequence of a very precise experimental
goal (⇠ 10�3 · GF ), the energy scale of the reaction (Q2 ⌧ M2

Z), and the ability within the electroweak theory to
provide quantitative predictions with negligible theoretical uncertainty. The proposed measurement is likely the only
practical way, using a purely leptonic scattering amplitude at Q2 ⌧ M2

Z , to make discoveries in important regions of
BSM space in the foreseeable future at any existing or planned facility worldwide.

The weak mixing angle sin2 ✓W has played a central role in the development and validation of the electroweak
theory, especially testing it at the quantum loop level, which has been the central focus of precision electroweak
physics over the past couple of decades. To develop the framework, one starts with three fundamental experimental
inputs characterizing, respectively, the strength of electroweak interactions, the scale of the weak interactions, and the
level of photon-Z0 boson mixing. The three fundamental inputs are chosen to be ↵ (from the Rydberg constant), GF

(from the muon lifetime) and MZ (from the LEP Z0 line-shape). Precise theoretical predictions for other experimental
observables at the quantum-loop level can be made if experimental constraints on the strong coupling constant and
heavy particle masses, such as mH and the top quark mass, mt, are also included.

Precision measurements of the derived parameters such as the W boson mass MW , and the weak mixing angle
sin2 ✓W are then used to test the theory at the level of electroweak radiative corrections. Consistency (or lack thereof)
of various precision measurements can then be used to search for indications of BSM physics. One important new
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Low-energy lepton colliders

Basic processes in QED, received a lot of attention since the birth of QFT (see Landau’s fourth book)

Small angle scattering efficient tool for luminosity determination 
@ lepton colliders (radiative corrections QED dominated) 

Large angle used to measure integrated luminosity at 
 colliders (flavour factories BELLE, BABAR, …) + 

in principle ILC!
s ∼ 𝒪(GeV)

Dominant physical process in low-energy electron scattering 
experiments, also used for luminosity monitoring.  

Particularly relevant @ PRad-II (attempt to resolve proton radius 
puzzle), and recently measured down to energies of 2.5 MeV (see 
arXiv:1903.09265) — mass effects should not be neglected 

Also relevant to measure weak mixing angle …



INTRODUCTION: BHABHA AND MØLLER SCATTERING

State-of-the-art in QED (ignoring other EW effects here)

NLO QED effects known exactly in Bhabha and Møller with full mass dependence

NNLO QED effects with full mass dependence remain elusive due to missing two-
loop amplitudes

Fermionic loop corrections with full mass dependence in Bhabha [Bonciani et al ’15]

Leading order mass effects [Becher, Melnikov ‘07] 

Leading power-suppressed mass effects also included [Penin, Zerf ’16] 

Next-to-soft stabilisation for real-virtual matrix elements [Banerjee et al ’21] 

NNLO Møller including leading order mass effects & next-to-soft stabilisation [Banerjee et al ’22]

To have full control on low energy / small angle regions, full mass dependence desirable 
 two-loop amplitudes remains last missing ingredient⟶



INTRODUCTION: HISTORY CALCULATION OF TWO-LOOP AMPLITUDE

Full massless two loop amplitudes in terms of HPLs [Bern, Dixon, Ghinculov ’00] 

there are a total of 47 Feynman diagrams; however, many of these diagrams generate identical re-

sults. Of the 47 diagrams, 35 contain no fermion loop, 11 contain one fermion loop, and 1 contains

two fermion loops. The Bhabha amplitude may be obtained from the e+e− → µ+µ− amplitude

by adding to it the same set of diagrams, but with an exchange of one pair of external legs. The

e−µ− → e−µ− and e−µ+ → e−µ+ amplitudes may, of course, be obtained by crossing.

Figure 1: The independent diagrammatic topologies for two-loop four-fermion scattering in QED.

We have evaluated these diagrams interfered with the tree amplitudes and summed over spins

in the conventional dimensional regularization (CDR) scheme. This interference gives directly the

two-loop virtual correction to the 2 → 2 differential cross section. The rules for implementing CDR

are straightforward because all particle are treated uniformly in all parts of the calculation. In this

scheme, all momenta and all Lorentz indices are taken to be D = 4− 2ϵ dimensional vectors. (The

γ-matrices remain as 4× 4 matrices; i.e., Tr[1] = 4.)

After performing all γ-matrix algebra present in the two-loop Feynman diagrams, we use the

conservation of momenta flowing on the internal lines to express the tensor structure of the diagrams

in terms of inverse scalar propagators and a small number of additional scalar invariants containing

loop momenta. The inverse scalar propagators cancel propagators in the denominator to generate

simpler “boundary” integrals. To handle the integrals containing scalar invariants, we introduce

Feynman parameters and interpret the resulting integrals in terms of scalar integrals with multiple

propagators, which are then reduced to a set of master integrals with the help of equations in

refs. [14, 15, 19].

Proceeding in this way, we obtain an expression for the amplitude in terms of master integrals

(of the type listed in ref. [15], plus a few more for the planar double box topology) multiplied by

4



INTRODUCTION: HISTORY CALCULATION OF TWO-LOOP AMPLITUDE

Full massless two loop amplitudes in terms of HPLs [Bern, Dixon, Ghinculov ’00] 

Form factor integrals and purely fermionic contributions [Bonciani et al ’03, ’04]
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Figure 1: 2-loop box diagram relevant for the purpose of the paper; the momenta
p1 and p2 are incoming, p3 and p4 outgoing.

their mass-shell, is evaluated in terms of Nielsen’s polylogarithms (of non-simple
arguments and maximum weight 3).

In the present paper, we evaluate the master integrals (MIs) necessary for the
calculation of the box diagrams with one closed electron loop (NF = 1) entering the
2-loop virtual corrections to the electron Bhabha scattering amplitude in QED; the
calculation is carried out without neglecting the electron mass m. Performing the
calculation without considering the electron massless allows to control the collinear
singularities.

The relevant t-channel Feynman diagram is shown on Fig. 1 (the remaining t-
channel diagrams and the s-channel diagrams can be recovered by crossing), where
we consider the scattering of an incoming electron of momentum p1 and a positron
of momentum p2, into an outgoing electron and a positron of momenta p3 and p4,
respectively. All the external legs are on their mass-shell, p2i = −m2; we further
define

P = p1 + p2 , Q = p1 − p3 , s = −P 2 , t = −Q2 . (1)

We carry out our calculation in the non-physical region P 2, Q2 > 0; the physical
region for the Bhabha scattering, s > 4m2, t < 0 is to be recovered by analytical
continuation.

The interference of this class of diagrams with the tree-level amplitude (which
provides the O(α4) contribution to the cross-section we are interested in) can be
expressed in terms of a large number of 2-loop scalar integrals associated with the
considered graphs. Following a by now standard approach, we express all the scalar
integrals that appear in the problem as combinations of a small number of inde-
pendent scalar integrals, the so-called Master Integrals (MIs) of the diagrams under
consideration. The reduction procedure that allows to express the generic scalar
integral in terms of MIs has been discussed extensively in [11, 18], and it is based
on the use of the Integration by Parts Identities (IBPs) [19], the Lorentz Invari-
ance Identities (LI) [11], and the symmetry properties [18] of the scalar integrals
encountered in the problem. The analytic calculation of the MIs is then performed
by means of the Differential Equations Method [20, 21, 22, 11].

All the integrals considered in this work are Euclidean, regularized within the
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Form factor integrals and purely fermionic contributions [Bonciani et al ’03, ’04]

Ten years later, ladder planar integrals in terms of MPLs [Henn, Smirnov, Smirnov ’13]
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Figure 1. Planar graphs of the first and the second type for two-loop Bhabha scattering. Solid
(dashed) lines indicate massive (massless) propagators. All the external momenta are incoming.

evaluation was hindered by the presence of the a non-rationalisable square-root in the

symbol alphabet. More recently, it was shown that also this last integral can be expressed

in terms of multiple polylogarithms by an integration technique based on an ansatz of

MPLs with suitable arguments [24].

The goal of the present paper is to analytically evaluate the master integrals for the

second planar family, which is associated with graph (b) of fig. 1. In a way that is rem-

iniscent of the first planar family of integrals, we will show that also in this case we can

obtain results in terms of MPLs for all master integrals but one (see fig. 2), due to the

presence of the same non-rationalisable square root found in the evaluation of the master

integrals for graph (a). While it can be shown by direct integration techniques that also

for this master integral a representation in terms of MPLs exist, the representation we

obtained is extremely cumbersome and of no practical use. Nevertheless, it turns out that
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MASSES AND GEOMETRY
What about the non-planar integrals?
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where, due to momentum conservation, s+ t+ u = 4m2.
Following [53, 54], we work in ’t Hooft-Veltman dimen-

sional regularization scheme [55] (tHV) and decompose
the scattering amplitude into eight independent Lorentz-
covariant, physical tensors Ti and respective scalar form
factors Fi,

A(1e+ , 2e� , 3e� , 4e+) =
8X

i=1

Fi Ti . (3)

We choose the tensors as

T1 = m
2
⇥ t1 , T2 = m⇥ [t2 + t3]

T3 = t4 , T4 = m
2
⇥ t5 ,

T5 = m⇥ [t6 + t7] + t8 , T6 = m⇥ [t6 + t7]� t8

T7 = m⇥ [t2 � t3] , T8 = m⇥ [t6 � t7] , (4)

where the spinor chains ti are defined as

ti = Ue(p2)�
(1)

i Ve(p1)⇥ Ue(p3) �
(2)

i Ve(p4) , (5)

and �i = {�(1)

i ,�(2)

i } represent the following sets of Dirac
matrices

�1 = {1, 1} , �2 = {/p
3
, 1} ,

�3 = {1, /p
2
} , �4 = {/p

3
, /p

2
} ,

�5 = {�
µ1 , �µ1} , �6 = {/p

3
�
µ1 , �µ1} ,

�7 = {�
µ1 , /p

2
�µ1} , �8 = {/p

3
�
µ1 , /p

2
�µ1} . (6)

In this computational scheme, external momenta and po-
larizations are considered four-dimensional, while inter-
nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
which matches the eight tensors above. Furthermore, we
note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
ingly, by symmetry we conclude that the corresponding
form factors must be zero F7 = F8 = 0 to all orders.

Following the standard approach, we compute the form
factors in (3), by defining a set of projection operators

Pi =
h�
T

†
· T

��1
i

ik
T

†
k as combinations of dual tensors

T
†
i . Here “·” denotes the scalar product between tensors

and their dual, which is realized in practice by summation
over spins of the external fermions, such that Fi = Pi ·A.

By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].

CANONICAL BASES FOR THE NON-PLANAR
FEYNMAN INTEGRALS

While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
of integrals displayed in the left graph of fig (1). We work
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FIG. 1: The non-planar topology (left) and its
next-to-top sector (right) with 6 master integrals. Solid
lines correspond to massive propagators of mass m,
dashed lines correspond to massless propagators.

in dimensional regularization and define the integrals as
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where �E denotes the Euler-Mascheroni constant, D =
4�2✏ is the dimension of space-time, and µ is an auxiliary
scale introduced to render Feynman integrals dimension-
less. The propagators are given by
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The integrals in (7) are functions of homogeneous coor-
dinates [ s : t : m

2 ] on CP2 and, without loss of gen-
erality, we may set µ = m, or equivalently work on the
patch [ y : z : 1 ] with y = s/m

2 and z = t/m
2. For
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(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].

CANONICAL BASES FOR THE NON-PLANAR
FEYNMAN INTEGRALS

While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
of integrals displayed in the left graph of fig (1). We work
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next-to-top sector (right) with 6 master integrals. Solid
lines correspond to massive propagators of mass m,
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where �E denotes the Euler-Mascheroni constant, D =
4�2✏ is the dimension of space-time, and µ is an auxiliary
scale introduced to render Feynman integrals dimension-
less. The propagators are given by
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The integrals in (7) are functions of homogeneous coor-
dinates [ s : t : m

2 ] on CP2 and, without loss of gen-
erality, we may set µ = m, or equivalently work on the
patch [ y : z : 1 ] with y = s/m

2 and z = t/m
2. For
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where, due to momentum conservation, s+ t+ u = 4m2.
Following [53, 54], we work in ’t Hooft-Veltman dimen-

sional regularization scheme [55] (tHV) and decompose
the scattering amplitude into eight independent Lorentz-
covariant, physical tensors Ti and respective scalar form
factors Fi,

A(1e+ , 2e� , 3e� , 4e+) =
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Fi Ti . (3)

We choose the tensors as
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where the spinor chains ti are defined as

ti = Ue(p2)�
(1)

i Ve(p1)⇥ Ue(p3) �
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In this computational scheme, external momenta and po-
larizations are considered four-dimensional, while inter-
nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
which matches the eight tensors above. Furthermore, we
note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
ingly, by symmetry we conclude that the corresponding
form factors must be zero F7 = F8 = 0 to all orders.

Following the standard approach, we compute the form
factors in (3), by defining a set of projection operators

Pi =
h�
T

†
· T

��1
i

ik
T

†
k as combinations of dual tensors

T
†
i . Here “·” denotes the scalar product between tensors

and their dual, which is realized in practice by summation
over spins of the external fermions, such that Fi = Pi ·A.

By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].

CANONICAL BASES FOR THE NON-PLANAR
FEYNMAN INTEGRALS

While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
of integrals displayed in the left graph of fig (1). We work
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FIG. 1: The non-planar topology (left) and its
next-to-top sector (right) with 6 master integrals. Solid
lines correspond to massive propagators of mass m,
dashed lines correspond to massless propagators.
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where �E denotes the Euler-Mascheroni constant, D =
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The integrals in (7) are functions of homogeneous coor-
dinates [ s : t : m

2 ] on CP2 and, without loss of gen-
erality, we may set µ = m, or equivalently work on the
patch [ y : z : 1 ] with y = s/m

2 and z = t/m
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sional regularization scheme [55] (tHV) and decompose
the scattering amplitude into eight independent Lorentz-
covariant, physical tensors Ti and respective scalar form
factors Fi,

A(1e+ , 2e� , 3e� , 4e+) =
8X

i=1
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In this computational scheme, external momenta and po-
larizations are considered four-dimensional, while inter-
nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
which matches the eight tensors above. Furthermore, we
note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
ingly, by symmetry we conclude that the corresponding
form factors must be zero F7 = F8 = 0 to all orders.

Following the standard approach, we compute the form
factors in (3), by defining a set of projection operators

Pi =
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T

†
· T
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ik
T

†
k as combinations of dual tensors

T
†
i . Here “·” denotes the scalar product between tensors

and their dual, which is realized in practice by summation
over spins of the external fermions, such that Fi = Pi ·A.

By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].

CANONICAL BASES FOR THE NON-PLANAR
FEYNMAN INTEGRALS

While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
of integrals displayed in the left graph of fig (1). We work
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FIG. 1: The non-planar topology (left) and its
next-to-top sector (right) with 6 master integrals. Solid
lines correspond to massive propagators of mass m,
dashed lines correspond to massless propagators.
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where �E denotes the Euler-Mascheroni constant, D =
4�2✏ is the dimension of space-time, and µ is an auxiliary
scale introduced to render Feynman integrals dimension-
less. The propagators are given by

P1 = k
2

1
�m

2
, P2 = (k1 � k2 � p2)

2
�m

2
,

P3 = k
2

2
�m

2
, P4 = (k2 + p1 + p2)

2
�m

2
,

P5 = (k1 + p1)
2
, P6 = (k1 � k2)

2
, P7 = (k2 � p3)

2
,

P8 = (k2 + p1)
2
, P9 = (k1 � p3)

2
. (8)

The integrals in (7) are functions of homogeneous coor-
dinates [ s : t : m

2 ] on CP2 and, without loss of gen-
erality, we may set µ = m, or equivalently work on the
patch [ y : z : 1 ] with y = s/m

2 and z = t/m
2. For
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where, due to momentum conservation, s+ t+ u = 4m2.
Following [53, 54], we work in ’t Hooft-Veltman dimen-

sional regularization scheme [55] (tHV) and decompose
the scattering amplitude into eight independent Lorentz-
covariant, physical tensors Ti and respective scalar form
factors Fi,

A(1e+ , 2e� , 3e� , 4e+) =
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i=1

Fi Ti . (3)

We choose the tensors as
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In this computational scheme, external momenta and po-
larizations are considered four-dimensional, while inter-
nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
which matches the eight tensors above. Furthermore, we
note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
ingly, by symmetry we conclude that the corresponding
form factors must be zero F7 = F8 = 0 to all orders.

Following the standard approach, we compute the form
factors in (3), by defining a set of projection operators

Pi =
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†
· T
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T
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k as combinations of dual tensors

T
†
i . Here “·” denotes the scalar product between tensors

and their dual, which is realized in practice by summation
over spins of the external fermions, such that Fi = Pi ·A.

By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].

CANONICAL BASES FOR THE NON-PLANAR
FEYNMAN INTEGRALS

While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
of integrals displayed in the left graph of fig (1). We work
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lines correspond to massive propagators of mass m,
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where �E denotes the Euler-Mascheroni constant, D =
4�2✏ is the dimension of space-time, and µ is an auxiliary
scale introduced to render Feynman integrals dimension-
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The integrals in (7) are functions of homogeneous coor-
dinates [ s : t : m

2 ] on CP2 and, without loss of gen-
erality, we may set µ = m, or equivalently work on the
patch [ y : z : 1 ] with y = s/m

2 and z = t/m
2. For
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Mathematically, things start becoming rather interesting in NPL sector
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where, due to momentum conservation, s+ t+ u = 4m2.
Following [53, 54], we work in ’t Hooft-Veltman dimen-
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the scattering amplitude into eight independent Lorentz-
covariant, physical tensors Ti and respective scalar form
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In this computational scheme, external momenta and po-
larizations are considered four-dimensional, while inter-
nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
which matches the eight tensors above. Furthermore, we
note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
ingly, by symmetry we conclude that the corresponding
form factors must be zero F7 = F8 = 0 to all orders.
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By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].
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While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
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where �E denotes the Euler-Mascheroni constant, D =
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2 ] on CP2 and, without loss of gen-
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2 and z = t/m
2. For

6 propagator graph:  

6 master integrals in top sector (+ sub-topologies)

3

definiteness, we will display our formulas in the region
s > 4m2

, t < 0 , though all results can also be easily
continued to any other kinematic region. By solving IBP
identities, all integrals can be expressed in terms of 52
independent master integrals. The latter fulfil a system
of first-order partial-di↵erential equations [70–74] in the
kinematical invariants

d~I = A (✏, y, z)~I . (9)

To solve this system, it is useful to search for a basis
transformation to a so-called ✏-factorized form:

d~J = ✏A(y, z)~J, ~J = U(y, z, ✏)~I . (10)

Such a system can be formally solved by a path-ordered
exponential

~J(y, z, ✏) = Pexp

✏

Z

�
A

�
~J0(✏, y0, z0) , (11)

where the path � connects the initial boundary point
(y0, z0) to a generic point (y, z). In the polylogarithmic

case, if the matrix A can be expressed only through log-
arithmic di↵erential forms, this matrix is said to be in
canonical form, and the new integral candidates ~J are
called a canonical basis [43]. While the generalization
of a canonical basis beyond polylogarithms in not yet
fully understood, advances have been made in extending
✏-factorized bases to arbitrarily complicated geometries
[45, 46, 49–51, 75].

For our problem, we achieved an ✏-factorization by
leveraging many of these developments. In particular,
for the planar topologies, and for all polylogarithmic
sub-sectors of the non-planar topology, we used unitar-
ity cuts and multivariate residue analysis [76] to select
integral candidates with unit leading singularities, see
also [34, 35]. Starting from the six-propagator non-planar
integrals generalizations of these methods to genus-one
geometries become necessary. In fact, it is easy to show
that the maximal cut of the irreducible six-propagator
non-planar four-point graph (see right panel in fig. 1) in
Baikov representation [77, 78] can be expressed as

MaxCutC [I110111100] ⇠
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C

dz2 ^ dz1

z2

p
(z1 � s� z2)(z1 � s+ 4m2 � z2)

p
(tz1 � st+ sz2)2 � 4m2(tz2

1
+ s(t� z2)2)

. (12)

By further taking the residue at z2 = 0 in (12), one is
left with an integral over a family of elliptic curves

E4 : Y 2 = (X � e1)(X � e2)(X � e3)(X � e4) , (13)

with the four roots given by

e1 =y � 4 , e2 = �
yz + 2

p
y z(y + z � 4)

4� z
,

e3 =�
yz � 2

p
y z(y + z � 4)

4� z
, e4 = y . (14)

We choose as first period for E4 the integral

 0 (y , z) ⌘ 2

Z e3

e2

dX

Y
=

4K(�)p
(e1 � e3)(e2 � e4)

, (15)

where K(�) is the complete elliptic integral of the first
kind and its argument reads

� =
4

2 +
q

�y(y+z�4)

�z

. (16)

In order to arrive at an ✏-factorized form, we first notice
that all integrals corresponding to the graph of I110111100
are reduced to six independent master integrals (plus
subtopologies). We therefore expect two masters inte-
grals which satisfy a coupled di↵erential equation and

map to the generators of the first de Rham cohomology
group H

1

dR
(E4), plus four additional ones corresponding

to independent punctures on the elliptic curve [51]. Can-
didates for the first two masters can be found for example
starting from the ansatz [79–81]

J47 =
I110111100
 0

, J46 ⇠
1

✏

 2
0

2⇡iWz
@zJ47 + . . . , (17)

where Wz = 1

2⇡i
1

z2(y+z)(y+z�4)
is the Wronskian of the

second-order Picard-Fuchs equation associated to the el-
liptic curve. The explicit expression of J46 is immate-
rial for this discussion, and is given in the supplemental
material. The remaining four candidates can be identi-
fied by analysing their integrand representation and the
structure of the resulting di↵erential equations. As a
last step, in order to obtain a fully ✏-factorized form, one
needs to integrate out some inhomogenous entries in the
di↵erential equation matrix, which leads to the appear-
ance of additional transcendental integrals. In this way,
the final ✏-factorized system (10), is expressed in terms
of 87 distinct one-forms !i. It is easy to verify that the
integrability condition dA = A ^ A is satisfied and that
all !i are the closed d!i = 0.
The individual di↵erential forms can be simplified by

exploiting the underlying geometry of the family of ellip-
tic curves in (13). As an example, consider the following
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Leading singularities (maximally iterated integrand residues) fulfil homogeneous 
differential equation and can be used to build space of solutions [Primo, Tancredi ’16,’17]

Start cutting all propagators (max cut). Convenient in Baikov [Frellesvig, Papadopoulos ’17]
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where, due to momentum conservation, s+ t+ u = 4m2.
Following [53, 54], we work in ’t Hooft-Veltman dimen-

sional regularization scheme [55] (tHV) and decompose
the scattering amplitude into eight independent Lorentz-
covariant, physical tensors Ti and respective scalar form
factors Fi,

A(1e+ , 2e� , 3e� , 4e+) =
8X

i=1

Fi Ti . (3)

We choose the tensors as

T1 = m
2
⇥ t1 , T2 = m⇥ [t2 + t3]

T3 = t4 , T4 = m
2
⇥ t5 ,

T5 = m⇥ [t6 + t7] + t8 , T6 = m⇥ [t6 + t7]� t8

T7 = m⇥ [t2 � t3] , T8 = m⇥ [t6 � t7] , (4)

where the spinor chains ti are defined as

ti = Ue(p2)�
(1)

i Ve(p1)⇥ Ue(p3) �
(2)

i Ve(p4) , (5)

and �i = {�(1)

i ,�(2)

i } represent the following sets of Dirac
matrices

�1 = {1, 1} , �2 = {/p
3
, 1} ,

�3 = {1, /p
2
} , �4 = {/p

3
, /p

2
} ,

�5 = {�
µ1 , �µ1} , �6 = {/p

3
�
µ1 , �µ1} ,

�7 = {�
µ1 , /p

2
�µ1} , �8 = {/p

3
�
µ1 , /p

2
�µ1} . (6)

In this computational scheme, external momenta and po-
larizations are considered four-dimensional, while inter-
nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
which matches the eight tensors above. Furthermore, we
note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
ingly, by symmetry we conclude that the corresponding
form factors must be zero F7 = F8 = 0 to all orders.

Following the standard approach, we compute the form
factors in (3), by defining a set of projection operators

Pi =
h�
T

†
· T

��1
i

ik
T

†
k as combinations of dual tensors

T
†
i . Here “·” denotes the scalar product between tensors

and their dual, which is realized in practice by summation
over spins of the external fermions, such that Fi = Pi ·A.

By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].

CANONICAL BASES FOR THE NON-PLANAR
FEYNMAN INTEGRALS

While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
of integrals displayed in the left graph of fig (1). We work
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FIG. 1: The non-planar topology (left) and its
next-to-top sector (right) with 6 master integrals. Solid
lines correspond to massive propagators of mass m,
dashed lines correspond to massless propagators.

in dimensional regularization and define the integrals as
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where �E denotes the Euler-Mascheroni constant, D =
4�2✏ is the dimension of space-time, and µ is an auxiliary
scale introduced to render Feynman integrals dimension-
less. The propagators are given by

P1 = k
2

1
�m

2
, P2 = (k1 � k2 � p2)

2
�m

2
,

P3 = k
2

2
�m

2
, P4 = (k2 + p1 + p2)

2
�m

2
,

P5 = (k1 + p1)
2
, P6 = (k1 � k2)

2
, P7 = (k2 � p3)

2
,

P8 = (k2 + p1)
2
, P9 = (k1 � p3)

2
. (8)

The integrals in (7) are functions of homogeneous coor-
dinates [ s : t : m

2 ] on CP2 and, without loss of gen-
erality, we may set µ = m, or equivalently work on the
patch [ y : z : 1 ] with y = s/m

2 and z = t/m
2. For

6 propagator graph:  

6 master integrals in top sector (+ sub-topologies)
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definiteness, we will display our formulas in the region
s > 4m2

, t < 0 , though all results can also be easily
continued to any other kinematic region. By solving IBP
identities, all integrals can be expressed in terms of 52
independent master integrals. The latter fulfil a system
of first-order partial-di↵erential equations [70–74] in the
kinematical invariants

d~I = A (✏, y, z)~I . (9)

To solve this system, it is useful to search for a basis
transformation to a so-called ✏-factorized form:

d~J = ✏A(y, z)~J, ~J = U(y, z, ✏)~I . (10)

Such a system can be formally solved by a path-ordered
exponential

~J(y, z, ✏) = Pexp

✏

Z

�
A

�
~J0(✏, y0, z0) , (11)

where the path � connects the initial boundary point
(y0, z0) to a generic point (y, z). In the polylogarithmic

case, if the matrix A can be expressed only through log-
arithmic di↵erential forms, this matrix is said to be in
canonical form, and the new integral candidates ~J are
called a canonical basis [43]. While the generalization
of a canonical basis beyond polylogarithms in not yet
fully understood, advances have been made in extending
✏-factorized bases to arbitrarily complicated geometries
[45, 46, 49–51, 75].

For our problem, we achieved an ✏-factorization by
leveraging many of these developments. In particular,
for the planar topologies, and for all polylogarithmic
sub-sectors of the non-planar topology, we used unitar-
ity cuts and multivariate residue analysis [76] to select
integral candidates with unit leading singularities, see
also [34, 35]. Starting from the six-propagator non-planar
integrals generalizations of these methods to genus-one
geometries become necessary. In fact, it is easy to show
that the maximal cut of the irreducible six-propagator
non-planar four-point graph (see right panel in fig. 1) in
Baikov representation [77, 78] can be expressed as

MaxCutC [I110111100] ⇠

Z

C

dz2 ^ dz1

z2

p
(z1 � s� z2)(z1 � s+ 4m2 � z2)

p
(tz1 � st+ sz2)2 � 4m2(tz2

1
+ s(t� z2)2)

. (12)

By further taking the residue at z2 = 0 in (12), one is
left with an integral over a family of elliptic curves

E4 : Y 2 = (X � e1)(X � e2)(X � e3)(X � e4) , (13)

with the four roots given by

e1 =y � 4 , e2 = �
yz + 2

p
y z(y + z � 4)

4� z
,

e3 =�
yz � 2

p
y z(y + z � 4)

4� z
, e4 = y . (14)

We choose as first period for E4 the integral

 0 (y , z) ⌘ 2

Z e3

e2

dX

Y
=

4K(�)p
(e1 � e3)(e2 � e4)

, (15)

where K(�) is the complete elliptic integral of the first
kind and its argument reads

� =
4

2 +
q

�y(y+z�4)

�z

. (16)

In order to arrive at an ✏-factorized form, we first notice
that all integrals corresponding to the graph of I110111100
are reduced to six independent master integrals (plus
subtopologies). We therefore expect two masters inte-
grals which satisfy a coupled di↵erential equation and

map to the generators of the first de Rham cohomology
group H

1

dR
(E4), plus four additional ones corresponding

to independent punctures on the elliptic curve [51]. Can-
didates for the first two masters can be found for example
starting from the ansatz [79–81]

J47 =
I110111100
 0

, J46 ⇠
1

✏

 2
0

2⇡iWz
@zJ47 + . . . , (17)

where Wz = 1

2⇡i
1

z2(y+z)(y+z�4)
is the Wronskian of the

second-order Picard-Fuchs equation associated to the el-
liptic curve. The explicit expression of J46 is immate-
rial for this discussion, and is given in the supplemental
material. The remaining four candidates can be identi-
fied by analysing their integrand representation and the
structure of the resulting di↵erential equations. As a
last step, in order to obtain a fully ✏-factorized form, one
needs to integrate out some inhomogenous entries in the
di↵erential equation matrix, which leads to the appear-
ance of additional transcendental integrals. In this way,
the final ✏-factorized system (10), is expressed in terms
of 87 distinct one-forms !i. It is easy to verify that the
integrability condition dA = A ^ A is satisfied and that
all !i are the closed d!i = 0.
The individual di↵erential forms can be simplified by

exploiting the underlying geometry of the family of ellip-
tic curves in (13). As an example, consider the following
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Leading singularities (maximally iterated integrand residues) fulfil homogeneous 
differential equation and can be used to build space of solutions [Primo, Tancredi ’16,’17]

Start cutting all propagators (max cut). Convenient in Baikov [Frellesvig, Papadopoulos ’17]

One extra residue! Max cut is not the end of the story, we can “cut again” taking residue at z2 = 0
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where, due to momentum conservation, s+ t+ u = 4m2.
Following [53, 54], we work in ’t Hooft-Veltman dimen-

sional regularization scheme [55] (tHV) and decompose
the scattering amplitude into eight independent Lorentz-
covariant, physical tensors Ti and respective scalar form
factors Fi,
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In this computational scheme, external momenta and po-
larizations are considered four-dimensional, while inter-
nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
which matches the eight tensors above. Furthermore, we
note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
ingly, by symmetry we conclude that the corresponding
form factors must be zero F7 = F8 = 0 to all orders.

Following the standard approach, we compute the form
factors in (3), by defining a set of projection operators

Pi =
h�
T

†
· T

��1
i

ik
T

†
k as combinations of dual tensors

T
†
i . Here “·” denotes the scalar product between tensors

and their dual, which is realized in practice by summation
over spins of the external fermions, such that Fi = Pi ·A.

By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].

CANONICAL BASES FOR THE NON-PLANAR
FEYNMAN INTEGRALS

While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
of integrals displayed in the left graph of fig (1). We work
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FIG. 1: The non-planar topology (left) and its
next-to-top sector (right) with 6 master integrals. Solid
lines correspond to massive propagators of mass m,
dashed lines correspond to massless propagators.

in dimensional regularization and define the integrals as
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where �E denotes the Euler-Mascheroni constant, D =
4�2✏ is the dimension of space-time, and µ is an auxiliary
scale introduced to render Feynman integrals dimension-
less. The propagators are given by

P1 = k
2

1
�m

2
, P2 = (k1 � k2 � p2)

2
�m

2
,

P3 = k
2

2
�m

2
, P4 = (k2 + p1 + p2)

2
�m

2
,

P5 = (k1 + p1)
2
, P6 = (k1 � k2)

2
, P7 = (k2 � p3)

2
,

P8 = (k2 + p1)
2
, P9 = (k1 � p3)

2
. (8)

The integrals in (7) are functions of homogeneous coor-
dinates [ s : t : m

2 ] on CP2 and, without loss of gen-
erality, we may set µ = m, or equivalently work on the
patch [ y : z : 1 ] with y = s/m

2 and z = t/m
2. For
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definiteness, we will display our formulas in the region
s > 4m2

, t < 0 , though all results can also be easily
continued to any other kinematic region. By solving IBP
identities, all integrals can be expressed in terms of 52
independent master integrals. The latter fulfil a system
of first-order partial-di↵erential equations [70–74] in the
kinematical invariants

d~I = A (✏, y, z)~I . (9)

To solve this system, it is useful to search for a basis
transformation to a so-called ✏-factorized form:

d~J = ✏A(y, z)~J, ~J = U(y, z, ✏)~I . (10)

Such a system can be formally solved by a path-ordered
exponential

~J(y, z, ✏) = Pexp

✏

Z

�
A

�
~J0(✏, y0, z0) , (11)

where the path � connects the initial boundary point
(y0, z0) to a generic point (y, z). In the polylogarithmic

case, if the matrix A can be expressed only through log-
arithmic di↵erential forms, this matrix is said to be in
canonical form, and the new integral candidates ~J are
called a canonical basis [43]. While the generalization
of a canonical basis beyond polylogarithms in not yet
fully understood, advances have been made in extending
✏-factorized bases to arbitrarily complicated geometries
[45, 46, 49–51, 75].

For our problem, we achieved an ✏-factorization by
leveraging many of these developments. In particular,
for the planar topologies, and for all polylogarithmic
sub-sectors of the non-planar topology, we used unitar-
ity cuts and multivariate residue analysis [76] to select
integral candidates with unit leading singularities, see
also [34, 35]. Starting from the six-propagator non-planar
integrals generalizations of these methods to genus-one
geometries become necessary. In fact, it is easy to show
that the maximal cut of the irreducible six-propagator
non-planar four-point graph (see right panel in fig. 1) in
Baikov representation [77, 78] can be expressed as

MaxCutC [I110111100] ⇠

Z

C

dz2 ^ dz1

z2

p
(z1 � s� z2)(z1 � s+ 4m2 � z2)

p
(tz1 � st+ sz2)2 � 4m2(tz2

1
+ s(t� z2)2)

. (12)

By further taking the residue at z2 = 0 in (12), one is
left with an integral over a family of elliptic curves

E4 : Y 2 = (X � e1)(X � e2)(X � e3)(X � e4) , (13)

with the four roots given by

e1 =y � 4 , e2 = �
yz + 2

p
y z(y + z � 4)

4� z
,

e3 =�
yz � 2

p
y z(y + z � 4)

4� z
, e4 = y . (14)

We choose as first period for E4 the integral

 0 (y , z) ⌘ 2

Z e3

e2

dX

Y
=

4K(�)p
(e1 � e3)(e2 � e4)

, (15)

where K(�) is the complete elliptic integral of the first
kind and its argument reads

� =
4

2 +
q

�y(y+z�4)

�z

. (16)

In order to arrive at an ✏-factorized form, we first notice
that all integrals corresponding to the graph of I110111100
are reduced to six independent master integrals (plus
subtopologies). We therefore expect two masters inte-
grals which satisfy a coupled di↵erential equation and

map to the generators of the first de Rham cohomology
group H

1

dR
(E4), plus four additional ones corresponding

to independent punctures on the elliptic curve [51]. Can-
didates for the first two masters can be found for example
starting from the ansatz [79–81]

J47 =
I110111100
 0

, J46 ⇠
1

✏

 2
0

2⇡iWz
@zJ47 + . . . , (17)

where Wz = 1

2⇡i
1

z2(y+z)(y+z�4)
is the Wronskian of the

second-order Picard-Fuchs equation associated to the el-
liptic curve. The explicit expression of J46 is immate-
rial for this discussion, and is given in the supplemental
material. The remaining four candidates can be identi-
fied by analysing their integrand representation and the
structure of the resulting di↵erential equations. As a
last step, in order to obtain a fully ✏-factorized form, one
needs to integrate out some inhomogenous entries in the
di↵erential equation matrix, which leads to the appear-
ance of additional transcendental integrals. In this way,
the final ✏-factorized system (10), is expressed in terms
of 87 distinct one-forms !i. It is easy to verify that the
integrability condition dA = A ^ A is satisfied and that
all !i are the closed d!i = 0.
The individual di↵erential forms can be simplified by

exploiting the underlying geometry of the family of ellip-
tic curves in (13). As an example, consider the following

Leading singularities (maximally iterated integrand residues) fulfil homogeneous 
differential equation and can be used to build space of solutions [Primo, Tancredi ’16,’17]

Start cutting all propagators (max cut). Convenient in Baikov [Frellesvig, Papadopoulos ’17]

left with a one-fold integral on a square root of a quartic polynomial: no extra residue but two independent 
branch cuts which provide the solutions to the homogeneous differential equation [Primo, Tancredi ’16,’17]

∫C

dz1

(z1 − s)(z1 − s + 4m2)((tz1 − st)2 − 4m2(tz2
1 + st2))

3

definiteness, we will display our formulas in the region
s > 4m2

, t < 0 , though all results can also be easily
continued to any other kinematic region. By solving IBP
identities, all integrals can be expressed in terms of 52
independent master integrals. The latter fulfil a system
of first-order partial-di↵erential equations [70–74] in the
kinematical invariants

d~I = A (✏, y, z)~I . (9)

To solve this system, it is useful to search for a basis
transformation to a so-called ✏-factorized form:

d~J = ✏A(y, z)~J, ~J = U(y, z, ✏)~I . (10)

Such a system can be formally solved by a path-ordered
exponential

~J(y, z, ✏) = Pexp

✏

Z
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A

�
~J0(✏, y0, z0) , (11)

where the path � connects the initial boundary point
(y0, z0) to a generic point (y, z). In the polylogarithmic

case, if the matrix A can be expressed only through log-
arithmic di↵erential forms, this matrix is said to be in
canonical form, and the new integral candidates ~J are
called a canonical basis [43]. While the generalization
of a canonical basis beyond polylogarithms in not yet
fully understood, advances have been made in extending
✏-factorized bases to arbitrarily complicated geometries
[45, 46, 49–51, 75].

For our problem, we achieved an ✏-factorization by
leveraging many of these developments. In particular,
for the planar topologies, and for all polylogarithmic
sub-sectors of the non-planar topology, we used unitar-
ity cuts and multivariate residue analysis [76] to select
integral candidates with unit leading singularities, see
also [34, 35]. Starting from the six-propagator non-planar
integrals generalizations of these methods to genus-one
geometries become necessary. In fact, it is easy to show
that the maximal cut of the irreducible six-propagator
non-planar four-point graph (see right panel in fig. 1) in
Baikov representation [77, 78] can be expressed as

MaxCutC [I110111100] ⇠
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By further taking the residue at z2 = 0 in (12), one is
left with an integral over a family of elliptic curves

E4 : Y 2 = (X � e1)(X � e2)(X � e3)(X � e4) , (13)

with the four roots given by
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=

4K(�)p
(e1 � e3)(e2 � e4)
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where K(�) is the complete elliptic integral of the first
kind and its argument reads
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In order to arrive at an ✏-factorized form, we first notice
that all integrals corresponding to the graph of I110111100
are reduced to six independent master integrals (plus
subtopologies). We therefore expect two masters inte-
grals which satisfy a coupled di↵erential equation and

map to the generators of the first de Rham cohomology
group H

1

dR
(E4), plus four additional ones corresponding

to independent punctures on the elliptic curve [51]. Can-
didates for the first two masters can be found for example
starting from the ansatz [79–81]

J47 =
I110111100
 0

, J46 ⇠
1

✏

 2
0

2⇡iWz
@zJ47 + . . . , (17)

where Wz = 1

2⇡i
1

z2(y+z)(y+z�4)
is the Wronskian of the

second-order Picard-Fuchs equation associated to the el-
liptic curve. The explicit expression of J46 is immate-
rial for this discussion, and is given in the supplemental
material. The remaining four candidates can be identi-
fied by analysing their integrand representation and the
structure of the resulting di↵erential equations. As a
last step, in order to obtain a fully ✏-factorized form, one
needs to integrate out some inhomogenous entries in the
di↵erential equation matrix, which leads to the appear-
ance of additional transcendental integrals. In this way,
the final ✏-factorized system (10), is expressed in terms
of 87 distinct one-forms !i. It is easy to verify that the
integrability condition dA = A ^ A is satisfied and that
all !i are the closed d!i = 0.
The individual di↵erential forms can be simplified by

exploiting the underlying geometry of the family of ellip-
tic curves in (13). As an example, consider the following
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where, due to momentum conservation, s+ t+ u = 4m2.
Following [53, 54], we work in ’t Hooft-Veltman dimen-

sional regularization scheme [55] (tHV) and decompose
the scattering amplitude into eight independent Lorentz-
covariant, physical tensors Ti and respective scalar form
factors Fi,

A(1e+ , 2e� , 3e� , 4e+) =
8X

i=1

Fi Ti . (3)

We choose the tensors as

T1 = m
2
⇥ t1 , T2 = m⇥ [t2 + t3]

T3 = t4 , T4 = m
2
⇥ t5 ,

T5 = m⇥ [t6 + t7] + t8 , T6 = m⇥ [t6 + t7]� t8

T7 = m⇥ [t2 � t3] , T8 = m⇥ [t6 � t7] , (4)

where the spinor chains ti are defined as

ti = Ue(p2)�
(1)

i Ve(p1)⇥ Ue(p3) �
(2)

i Ve(p4) , (5)

and �i = {�(1)

i ,�(2)

i } represent the following sets of Dirac
matrices

�1 = {1, 1} , �2 = {/p
3
, 1} ,

�3 = {1, /p
2
} , �4 = {/p

3
, /p

2
} ,

�5 = {�
µ1 , �µ1} , �6 = {/p

3
�
µ1 , �µ1} ,

�7 = {�
µ1 , /p

2
�µ1} , �8 = {/p

3
�
µ1 , /p

2
�µ1} . (6)

In this computational scheme, external momenta and po-
larizations are considered four-dimensional, while inter-
nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
which matches the eight tensors above. Furthermore, we
note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
ingly, by symmetry we conclude that the corresponding
form factors must be zero F7 = F8 = 0 to all orders.

Following the standard approach, we compute the form
factors in (3), by defining a set of projection operators

Pi =
h�
T

†
· T

��1
i

ik
T

†
k as combinations of dual tensors

T
†
i . Here “·” denotes the scalar product between tensors

and their dual, which is realized in practice by summation
over spins of the external fermions, such that Fi = Pi ·A.

By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].

CANONICAL BASES FOR THE NON-PLANAR
FEYNMAN INTEGRALS

While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
of integrals displayed in the left graph of fig (1). We work
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FIG. 1: The non-planar topology (left) and its
next-to-top sector (right) with 6 master integrals. Solid
lines correspond to massive propagators of mass m,
dashed lines correspond to massless propagators.

in dimensional regularization and define the integrals as
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where �E denotes the Euler-Mascheroni constant, D =
4�2✏ is the dimension of space-time, and µ is an auxiliary
scale introduced to render Feynman integrals dimension-
less. The propagators are given by

P1 = k
2

1
�m

2
, P2 = (k1 � k2 � p2)

2
�m

2
,

P3 = k
2

2
�m

2
, P4 = (k2 + p1 + p2)

2
�m

2
,

P5 = (k1 + p1)
2
, P6 = (k1 � k2)

2
, P7 = (k2 � p3)

2
,

P8 = (k2 + p1)
2
, P9 = (k1 � p3)

2
. (8)

The integrals in (7) are functions of homogeneous coor-
dinates [ s : t : m

2 ] on CP2 and, without loss of gen-
erality, we may set µ = m, or equivalently work on the
patch [ y : z : 1 ] with y = s/m

2 and z = t/m
2. For
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definiteness, we will display our formulas in the region
s > 4m2

, t < 0 , though all results can also be easily
continued to any other kinematic region. By solving IBP
identities, all integrals can be expressed in terms of 52
independent master integrals. The latter fulfil a system
of first-order partial-di↵erential equations [70–74] in the
kinematical invariants

d~I = A (✏, y, z)~I . (9)

To solve this system, it is useful to search for a basis
transformation to a so-called ✏-factorized form:

d~J = ✏A(y, z)~J, ~J = U(y, z, ✏)~I . (10)

Such a system can be formally solved by a path-ordered
exponential

~J(y, z, ✏) = Pexp

✏

Z

�
A

�
~J0(✏, y0, z0) , (11)

where the path � connects the initial boundary point
(y0, z0) to a generic point (y, z). In the polylogarithmic

case, if the matrix A can be expressed only through log-
arithmic di↵erential forms, this matrix is said to be in
canonical form, and the new integral candidates ~J are
called a canonical basis [43]. While the generalization
of a canonical basis beyond polylogarithms in not yet
fully understood, advances have been made in extending
✏-factorized bases to arbitrarily complicated geometries
[45, 46, 49–51, 75].

For our problem, we achieved an ✏-factorization by
leveraging many of these developments. In particular,
for the planar topologies, and for all polylogarithmic
sub-sectors of the non-planar topology, we used unitar-
ity cuts and multivariate residue analysis [76] to select
integral candidates with unit leading singularities, see
also [34, 35]. Starting from the six-propagator non-planar
integrals generalizations of these methods to genus-one
geometries become necessary. In fact, it is easy to show
that the maximal cut of the irreducible six-propagator
non-planar four-point graph (see right panel in fig. 1) in
Baikov representation [77, 78] can be expressed as

MaxCutC [I110111100] ⇠

Z

C

dz2 ^ dz1

z2

p
(z1 � s� z2)(z1 � s+ 4m2 � z2)

p
(tz1 � st+ sz2)2 � 4m2(tz2

1
+ s(t� z2)2)

. (12)

By further taking the residue at z2 = 0 in (12), one is
left with an integral over a family of elliptic curves

E4 : Y 2 = (X � e1)(X � e2)(X � e3)(X � e4) , (13)

with the four roots given by

e1 =y � 4 , e2 = �
yz + 2

p
y z(y + z � 4)

4� z
,

e3 =�
yz � 2

p
y z(y + z � 4)

4� z
, e4 = y . (14)

We choose as first period for E4 the integral

 0 (y , z) ⌘ 2

Z e3

e2

dX

Y
=

4K(�)p
(e1 � e3)(e2 � e4)

, (15)

where K(�) is the complete elliptic integral of the first
kind and its argument reads

� =
4

2 +
q

�y(y+z�4)

�z

. (16)

In order to arrive at an ✏-factorized form, we first notice
that all integrals corresponding to the graph of I110111100
are reduced to six independent master integrals (plus
subtopologies). We therefore expect two masters inte-
grals which satisfy a coupled di↵erential equation and

map to the generators of the first de Rham cohomology
group H

1

dR
(E4), plus four additional ones corresponding

to independent punctures on the elliptic curve [51]. Can-
didates for the first two masters can be found for example
starting from the ansatz [79–81]

J47 =
I110111100
 0

, J46 ⇠
1

✏

 2
0

2⇡iWz
@zJ47 + . . . , (17)

where Wz = 1

2⇡i
1

z2(y+z)(y+z�4)
is the Wronskian of the

second-order Picard-Fuchs equation associated to the el-
liptic curve. The explicit expression of J46 is immate-
rial for this discussion, and is given in the supplemental
material. The remaining four candidates can be identi-
fied by analysing their integrand representation and the
structure of the resulting di↵erential equations. As a
last step, in order to obtain a fully ✏-factorized form, one
needs to integrate out some inhomogenous entries in the
di↵erential equation matrix, which leads to the appear-
ance of additional transcendental integrals. In this way,
the final ✏-factorized system (10), is expressed in terms
of 87 distinct one-forms !i. It is easy to verify that the
integrability condition dA = A ^ A is satisfied and that
all !i are the closed d!i = 0.
The individual di↵erential forms can be simplified by

exploiting the underlying geometry of the family of ellip-
tic curves in (13). As an example, consider the following

Leading singularities (maximally iterated integrand residues) fulfil homogeneous 
differential equation and can be used to build space of solutions [Primo, Tancredi ’16,’17]

Geometry is an elliptic curve
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definiteness, we will display our formulas in the region
s > 4m2

, t < 0 , though all results can also be easily
continued to any other kinematic region. By solving IBP
identities, all integrals can be expressed in terms of 52
independent master integrals. The latter fulfil a system
of first-order partial-di↵erential equations [70–74] in the
kinematical invariants

d~I = A (✏, y, z)~I . (9)

To solve this system, it is useful to search for a basis
transformation to a so-called ✏-factorized form:

d~J = ✏A(y, z)~J, ~J = U(y, z, ✏)~I . (10)

Such a system can be formally solved by a path-ordered
exponential

~J(y, z, ✏) = Pexp

✏

Z

�
A

�
~J0(✏, y0, z0) , (11)

where the path � connects the initial boundary point
(y0, z0) to a generic point (y, z). In the polylogarithmic

case, if the matrix A can be expressed only through log-
arithmic di↵erential forms, this matrix is said to be in
canonical form, and the new integral candidates ~J are
called a canonical basis [43]. While the generalization
of a canonical basis beyond polylogarithms in not yet
fully understood, advances have been made in extending
✏-factorized bases to arbitrarily complicated geometries
[45, 46, 49–51, 75].

For our problem, we achieved an ✏-factorization by
leveraging many of these developments. In particular,
for the planar topologies, and for all polylogarithmic
sub-sectors of the non-planar topology, we used unitar-
ity cuts and multivariate residue analysis [76] to select
integral candidates with unit leading singularities, see
also [34, 35]. Starting from the six-propagator non-planar
integrals generalizations of these methods to genus-one
geometries become necessary. In fact, it is easy to show
that the maximal cut of the irreducible six-propagator
non-planar four-point graph (see right panel in fig. 1) in
Baikov representation [77, 78] can be expressed as
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By further taking the residue at z2 = 0 in (12), one is
left with an integral over a family of elliptic curves

E4 : Y 2 = (X � e1)(X � e2)(X � e3)(X � e4) , (13)

with the four roots given by
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where K(�) is the complete elliptic integral of the first
kind and its argument reads
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In order to arrive at an ✏-factorized form, we first notice
that all integrals corresponding to the graph of I110111100
are reduced to six independent master integrals (plus
subtopologies). We therefore expect two masters inte-
grals which satisfy a coupled di↵erential equation and

map to the generators of the first de Rham cohomology
group H

1

dR
(E4), plus four additional ones corresponding

to independent punctures on the elliptic curve [51]. Can-
didates for the first two masters can be found for example
starting from the ansatz [79–81]

J47 =
I110111100
 0

, J46 ⇠
1

✏

 2
0

2⇡iWz
@zJ47 + . . . , (17)

where Wz = 1

2⇡i
1

z2(y+z)(y+z�4)
is the Wronskian of the

second-order Picard-Fuchs equation associated to the el-
liptic curve. The explicit expression of J46 is immate-
rial for this discussion, and is given in the supplemental
material. The remaining four candidates can be identi-
fied by analysing their integrand representation and the
structure of the resulting di↵erential equations. As a
last step, in order to obtain a fully ✏-factorized form, one
needs to integrate out some inhomogenous entries in the
di↵erential equation matrix, which leads to the appear-
ance of additional transcendental integrals. In this way,
the final ✏-factorized system (10), is expressed in terms
of 87 distinct one-forms !i. It is easy to verify that the
integrability condition dA = A ^ A is satisfied and that
all !i are the closed d!i = 0.
The individual di↵erential forms can be simplified by

exploiting the underlying geometry of the family of ellip-
tic curves in (13). As an example, consider the following
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Figure 1: Left panel: The contours C1, C3 and C1. The branches of the integrand for the positive
sign in the root in Eq. (2.3) are drawn in red. Right panel: The contour C2. The branches of the
integrand for the negative sign in the root in Eq. (2.3) are drawn in red.

where u = p
2
/m

2. The graph in d = 2 space-time dimensions satisfies the following second-order
di↵erential equation
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3u
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+
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12(u � 9)

◆�
S(u) = 0 , (2.2)

where we neglected the inhomogeneous terms which are irrelevant here and we set S(2;u) = S(u).
As it is well known, the maximal cut of the sunrise graph in d = 2 can be written as

Cut (S(u)) =

I

C

dbp
±b (b � 4) (b � (

p
u � 1)2) (b � (

p
u + 1)2)

=

I

C

dbp
±R4(b, u)

, (2.3)

where we use the notation Cut(S(u)) for the maximal cut of S(u) and we have not fully specified
neither the integration contour C nor the sign of the argument of the root. We claim that the
integration along any contour C which does not cross any branching point of the integrand produces
a solution of (2.2). In particular, we will see that there are only two possible independent contours
of such type and that by integrating along them we get at once both independent solutions of (2.2).

First of all, the square-root has four branching points. By choosing u > 9 we have

0 < 4 < (
p

u � 1)2 < (
p

u + 1)2 . (2.4)

The ordering of the branching points depends on the value of u, but the argument used below does not
depend on it. Given the four branching points it should be obvious that, depending on the sign that
we pick in (2.3), there are four possible integration contours which we can draw without crossing
the branch cuts. If we choose the plus sign, the integrand develops a branch cut for 0 < b < 4
and (

p
u � 1)2 < b < (

p
u + 1)2. If we pick the minus sign the branches are for �1 < b < 0,

4 < b < (
p

u�1)2 and (
p

u+1)2 < b < +1. In the first case, i.e. picking a plus sign, we can clearly
draw the two contours C1 and C2 depicted in Figure 1a. The third contour, C1, is instead equivalent
to the sum of the two, and we will need it later on. In the second case, we can draw instead only
one single contour, see Figure 1b, giving a total of three apparently di↵erent possibilities.
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MASSES AND GEOMETRY
More in detail
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where, due to momentum conservation, s+ t+ u = 4m2.
Following [53, 54], we work in ’t Hooft-Veltman dimen-

sional regularization scheme [55] (tHV) and decompose
the scattering amplitude into eight independent Lorentz-
covariant, physical tensors Ti and respective scalar form
factors Fi,

A(1e+ , 2e� , 3e� , 4e+) =
8X

i=1

Fi Ti . (3)

We choose the tensors as

T1 = m
2
⇥ t1 , T2 = m⇥ [t2 + t3]

T3 = t4 , T4 = m
2
⇥ t5 ,

T5 = m⇥ [t6 + t7] + t8 , T6 = m⇥ [t6 + t7]� t8

T7 = m⇥ [t2 � t3] , T8 = m⇥ [t6 � t7] , (4)

where the spinor chains ti are defined as

ti = Ue(p2)�
(1)

i Ve(p1)⇥ Ue(p3) �
(2)

i Ve(p4) , (5)

and �i = {�(1)

i ,�(2)

i } represent the following sets of Dirac
matrices

�1 = {1, 1} , �2 = {/p
3
, 1} ,

�3 = {1, /p
2
} , �4 = {/p

3
, /p

2
} ,

�5 = {�
µ1 , �µ1} , �6 = {/p

3
�
µ1 , �µ1} ,

�7 = {�
µ1 , /p

2
�µ1} , �8 = {/p

3
�
µ1 , /p

2
�µ1} . (6)

In this computational scheme, external momenta and po-
larizations are considered four-dimensional, while inter-
nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
which matches the eight tensors above. Furthermore, we
note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
ingly, by symmetry we conclude that the corresponding
form factors must be zero F7 = F8 = 0 to all orders.

Following the standard approach, we compute the form
factors in (3), by defining a set of projection operators

Pi =
h�
T

†
· T

��1
i

ik
T

†
k as combinations of dual tensors

T
†
i . Here “·” denotes the scalar product between tensors

and their dual, which is realized in practice by summation
over spins of the external fermions, such that Fi = Pi ·A.

By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].

CANONICAL BASES FOR THE NON-PLANAR
FEYNMAN INTEGRALS

While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
of integrals displayed in the left graph of fig (1). We work
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FIG. 1: The non-planar topology (left) and its
next-to-top sector (right) with 6 master integrals. Solid
lines correspond to massive propagators of mass m,
dashed lines correspond to massless propagators.
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where �E denotes the Euler-Mascheroni constant, D =
4�2✏ is the dimension of space-time, and µ is an auxiliary
scale introduced to render Feynman integrals dimension-
less. The propagators are given by

P1 = k
2

1
�m

2
, P2 = (k1 � k2 � p2)

2
�m

2
,

P3 = k
2

2
�m

2
, P4 = (k2 + p1 + p2)

2
�m

2
,

P5 = (k1 + p1)
2
, P6 = (k1 � k2)

2
, P7 = (k2 � p3)

2
,

P8 = (k2 + p1)
2
, P9 = (k1 � p3)

2
. (8)

The integrals in (7) are functions of homogeneous coor-
dinates [ s : t : m

2 ] on CP2 and, without loss of gen-
erality, we may set µ = m, or equivalently work on the
patch [ y : z : 1 ] with y = s/m

2 and z = t/m
2. For

6 propagator graph:  

6 master integrals in top sector (+ sub-topologies)
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definiteness, we will display our formulas in the region
s > 4m2

, t < 0 , though all results can also be easily
continued to any other kinematic region. By solving IBP
identities, all integrals can be expressed in terms of 52
independent master integrals. The latter fulfil a system
of first-order partial-di↵erential equations [70–74] in the
kinematical invariants

d~I = A (✏, y, z)~I . (9)

To solve this system, it is useful to search for a basis
transformation to a so-called ✏-factorized form:

d~J = ✏A(y, z)~J, ~J = U(y, z, ✏)~I . (10)

Such a system can be formally solved by a path-ordered
exponential

~J(y, z, ✏) = Pexp

✏

Z

�
A

�
~J0(✏, y0, z0) , (11)

where the path � connects the initial boundary point
(y0, z0) to a generic point (y, z). In the polylogarithmic

case, if the matrix A can be expressed only through log-
arithmic di↵erential forms, this matrix is said to be in
canonical form, and the new integral candidates ~J are
called a canonical basis [43]. While the generalization
of a canonical basis beyond polylogarithms in not yet
fully understood, advances have been made in extending
✏-factorized bases to arbitrarily complicated geometries
[45, 46, 49–51, 75].

For our problem, we achieved an ✏-factorization by
leveraging many of these developments. In particular,
for the planar topologies, and for all polylogarithmic
sub-sectors of the non-planar topology, we used unitar-
ity cuts and multivariate residue analysis [76] to select
integral candidates with unit leading singularities, see
also [34, 35]. Starting from the six-propagator non-planar
integrals generalizations of these methods to genus-one
geometries become necessary. In fact, it is easy to show
that the maximal cut of the irreducible six-propagator
non-planar four-point graph (see right panel in fig. 1) in
Baikov representation [77, 78] can be expressed as

MaxCutC [I110111100] ⇠
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dz2 ^ dz1
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p
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p
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By further taking the residue at z2 = 0 in (12), one is
left with an integral over a family of elliptic curves

E4 : Y 2 = (X � e1)(X � e2)(X � e3)(X � e4) , (13)

with the four roots given by

e1 =y � 4 , e2 = �
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We choose as first period for E4 the integral
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Z e3
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=

4K(�)p
(e1 � e3)(e2 � e4)

, (15)

where K(�) is the complete elliptic integral of the first
kind and its argument reads

� =
4

2 +
q

�y(y+z�4)

�z

. (16)

In order to arrive at an ✏-factorized form, we first notice
that all integrals corresponding to the graph of I110111100
are reduced to six independent master integrals (plus
subtopologies). We therefore expect two masters inte-
grals which satisfy a coupled di↵erential equation and

map to the generators of the first de Rham cohomology
group H

1

dR
(E4), plus four additional ones corresponding

to independent punctures on the elliptic curve [51]. Can-
didates for the first two masters can be found for example
starting from the ansatz [79–81]

J47 =
I110111100
 0

, J46 ⇠
1

✏

 2
0

2⇡iWz
@zJ47 + . . . , (17)

where Wz = 1

2⇡i
1

z2(y+z)(y+z�4)
is the Wronskian of the

second-order Picard-Fuchs equation associated to the el-
liptic curve. The explicit expression of J46 is immate-
rial for this discussion, and is given in the supplemental
material. The remaining four candidates can be identi-
fied by analysing their integrand representation and the
structure of the resulting di↵erential equations. As a
last step, in order to obtain a fully ✏-factorized form, one
needs to integrate out some inhomogenous entries in the
di↵erential equation matrix, which leads to the appear-
ance of additional transcendental integrals. In this way,
the final ✏-factorized system (10), is expressed in terms
of 87 distinct one-forms !i. It is easy to verify that the
integrability condition dA = A ^ A is satisfied and that
all !i are the closed d!i = 0.
The individual di↵erential forms can be simplified by

exploiting the underlying geometry of the family of ellip-
tic curves in (13). As an example, consider the following

Leading singularities (maximally iterated integrand residues) fulfil homogeneous 
differential equation and can be used to build space of solutions [Primo, Tancredi ’16,’17]
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Such a system can be formally solved by a path-ordered
exponential

~J(y, z, ✏) = Pexp
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~J0(✏, y0, z0) , (11)

where the path � connects the initial boundary point
(y0, z0) to a generic point (y, z). In the polylogarithmic

case, if the matrix A can be expressed only through log-
arithmic di↵erential forms, this matrix is said to be in
canonical form, and the new integral candidates ~J are
called a canonical basis [43]. While the generalization
of a canonical basis beyond polylogarithms in not yet
fully understood, advances have been made in extending
✏-factorized bases to arbitrarily complicated geometries
[45, 46, 49–51, 75].

For our problem, we achieved an ✏-factorization by
leveraging many of these developments. In particular,
for the planar topologies, and for all polylogarithmic
sub-sectors of the non-planar topology, we used unitar-
ity cuts and multivariate residue analysis [76] to select
integral candidates with unit leading singularities, see
also [34, 35]. Starting from the six-propagator non-planar
integrals generalizations of these methods to genus-one
geometries become necessary. In fact, it is easy to show
that the maximal cut of the irreducible six-propagator
non-planar four-point graph (see right panel in fig. 1) in
Baikov representation [77, 78] can be expressed as
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In order to arrive at an ✏-factorized form, we first notice
that all integrals corresponding to the graph of I110111100
are reduced to six independent master integrals (plus
subtopologies). We therefore expect two masters inte-
grals which satisfy a coupled di↵erential equation and

map to the generators of the first de Rham cohomology
group H
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(E4), plus four additional ones corresponding

to independent punctures on the elliptic curve [51]. Can-
didates for the first two masters can be found for example
starting from the ansatz [79–81]
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second-order Picard-Fuchs equation associated to the el-
liptic curve. The explicit expression of J46 is immate-
rial for this discussion, and is given in the supplemental
material. The remaining four candidates can be identi-
fied by analysing their integrand representation and the
structure of the resulting di↵erential equations. As a
last step, in order to obtain a fully ✏-factorized form, one
needs to integrate out some inhomogenous entries in the
di↵erential equation matrix, which leads to the appear-
ance of additional transcendental integrals. In this way,
the final ✏-factorized system (10), is expressed in terms
of 87 distinct one-forms !i. It is easy to verify that the
integrability condition dA = A ^ A is satisfied and that
all !i are the closed d!i = 0.
The individual di↵erential forms can be simplified by

exploiting the underlying geometry of the family of ellip-
tic curves in (13). As an example, consider the following
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fied by analysing their integrand representation and the
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last step, in order to obtain a fully ✏-factorized form, one
needs to integrate out some inhomogenous entries in the
di↵erential equation matrix, which leads to the appear-
ance of additional transcendental integrals. In this way,
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HOW DO WE COMPUTE THESE INTEGRALS?
(Intermezzo on differential equations and canonical forms)



Most powerful technique to compute Feynman integrals: differential equations method

DIFFERENTIAL EQUATIONS

[Kotikov ’93][Remiddi ’97]
[Gehrmann, Remiddi ’00]

We compute Feynman integrals as series in ϵ = (4 − d)/2



Most powerful technique to compute Feynman integrals: differential equations method

DIFFERENTIAL EQUATIONS

[Kotikov ’93][Remiddi ’97]
[Gehrmann, Remiddi ’00]

ℐ = ∫
L

∏
l=1

dDkl

(2π)D

Sb1
1 . . . Sbmm

Da1
1 . . . Dan

n

with Si ∈ {ki ⋅ kj, . . . , ki ⋅ pj}

Integration by Parts etc
I = {I1(z, ϵ), . . . , IN(z, ϵ)}

∫
L

∏
l=1

dDkl

(2π)D

∂
∂kμ

l [vμ
Sb1
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Da1
1 . . . Dan

n ] = 0

Iterative structure in  made manifest by differentiationϵ

We compute Feynman integrals as series in ϵ = (4 − d)/2

(Scalar) Feynman Integrals Basis of Master Integrals (MIs)



Most powerful technique to compute Feynman integrals: differential equations method

DIFFERENTIAL EQUATIONS

[Kotikov ’93][Remiddi ’97]
[Gehrmann, Remiddi ’00]

dI = GM(z, ϵ) I In this form, iterative structure hidden in arbitrary dependence on ϵ

By differentiating and reducing to masters we obtain a linear system of differential equations



Most powerful technique to compute Feynman integrals: differential equations method

DIFFERENTIAL EQUATIONS

[Kotikov ’93][Remiddi ’97]
[Gehrmann, Remiddi ’00]

dI = GM(z, ϵ) I

2 Description of the procedure

We consider dimensionally regularised Feynman integral families of the form

I⌫1,...,⌫n+m(z; d) =

Z 0

@
lY

j=1

ddkj
i⇡d/2

1

A
Qm

j=1N
�⌫n+j

jQn
j=1D

⌫j
j

, (2.1)

where ⌫j  0 for all j > n. The set of propagators in the denominator {D1, D2, . . . , Dn} is
specified by the topology of the Feynman graph under consideration. The {N1, N2, . . . , Nm}

are a minimal set of irreducible scalar products in the problem, i.e. scalar products involving
loop momenta that cannot be written as a linear combination of the propagators. We set
d0 = 2n for different n 2 N, depending on the family under consideration.

As outlined in the introduction, Feynman integrals that belong to a given family, exhibit
the structure of a finite-dimensional vector space, whose basis we refer to as master integrals.
We indicate them in vector form as I. Moreover, any choice of basis of master integrals I

satisfies a system of linear first-order differential equations with respect to the kinematic
variables and the masses the problem depends on. We indicate the set of all variables with
z. The system of differential equations is also often referred to as Gauss-Manin (GM)
differential system and it takes the general form

dI = GM(z, ✏)I . (2.2)

Our goal is to describe a procedure to find a transformation matrix R(z, ✏) constructed as
a series of subsequent rotations, i.e.

J = R(z, ✏)I with R(z, ✏) = Rr(z, ✏) · · ·R2(z, ✏)R1(z, ✏) , (2.3)

that cast the system of differential equations into ✏-form, namely

dJ = ✏GM✏(z)J , where ✏GM✏(z) = [R(z, ✏)GM(z, ✏) + dR(z, ✏)]R(z, ✏)�1 . (2.4)

The crucial property of eq. (2.4) is that the new matrix GM✏(z) does not depend on ✏. If
the Gauss-Manin system is in this particular form we call it to be ✏-factorised. In addition,
in the polylogarithmic case one can (conjecturally) always bring the Gauss-Manin matrix
GM✏(z) in an even more specific form, where all its entries [GM✏(z)]ij are given in terms
of d log-forms. If this is the case, we say that the system is in canonical form.

An ✏-factorised form implies that the iterative structure of the solution is manifest in
the differential forms appearing in GM✏(z) and, if one understands all non-trivial relations
among these forms, one can claim to fully control the functional relations among the iterated
integrals that stem from them. This statement can be made more precise as follows: If we
call the entries of the matrix [GM✏(z)]ij = !ij , then the condition for the iterated integrals
to be linearly independent with respect to some subalgebra of functions F , is that there is
no exact form ⌘ = df with f 2 F such that

X

ij

aij!ij = ⌘ for aij 2 C (2.5)

– 4 –

Imagine to be able to perform a series of rotations  on the original basisRi

Such that

2 Description of the procedure

We consider dimensionally regularised Feynman integral families of the form

I⌫1,...,⌫n+m(z; d) =

Z 0

@
lY

j=1

ddkj
i⇡d/2

1

A
Qm

j=1N
�⌫n+j

jQn
j=1D

⌫j
j

, (2.1)

where ⌫j  0 for all j > n. The set of propagators in the denominator {D1, D2, . . . , Dn} is
specified by the topology of the Feynman graph under consideration. The {N1, N2, . . . , Nm}

are a minimal set of irreducible scalar products in the problem, i.e. scalar products involving
loop momenta that cannot be written as a linear combination of the propagators. We set
d0 = 2n for different n 2 N, depending on the family under consideration.

As outlined in the introduction, Feynman integrals that belong to a given family, exhibit
the structure of a finite-dimensional vector space, whose basis we refer to as master integrals.
We indicate them in vector form as I. Moreover, any choice of basis of master integrals I

satisfies a system of linear first-order differential equations with respect to the kinematic
variables and the masses the problem depends on. We indicate the set of all variables with
z. The system of differential equations is also often referred to as Gauss-Manin (GM)
differential system and it takes the general form

dI = GM(z, ✏)I . (2.2)

Our goal is to describe a procedure to find a transformation matrix R(z, ✏) constructed as
a series of subsequent rotations, i.e.

J = R(z, ✏)I with R(z, ✏) = Rr(z, ✏) · · ·R2(z, ✏)R1(z, ✏) , (2.3)

that cast the system of differential equations into ✏-form, namely

dJ = ✏GM✏(z)J , where ✏GM✏(z) = [R(z, ✏)GM(z, ✏) + dR(z, ✏)]R(z, ✏)�1 . (2.4)

The crucial property of eq. (2.4) is that the new matrix GM✏(z) does not depend on ✏. If
the Gauss-Manin system is in this particular form we call it to be ✏-factorised. In addition,
in the polylogarithmic case one can (conjecturally) always bring the Gauss-Manin matrix
GM✏(z) in an even more specific form, where all its entries [GM✏(z)]ij are given in terms
of d log-forms. If this is the case, we say that the system is in canonical form.

An ✏-factorised form implies that the iterative structure of the solution is manifest in
the differential forms appearing in GM✏(z) and, if one understands all non-trivial relations
among these forms, one can claim to fully control the functional relations among the iterated
integrals that stem from them. This statement can be made more precise as follows: If we
call the entries of the matrix [GM✏(z)]ij = !ij , then the condition for the iterated integrals
to be linearly independent with respect to some subalgebra of functions F , is that there is
no exact form ⌘ = df with f 2 F such that

X

ij

aij!ij = ⌘ for aij 2 C (2.5)

– 4 –

By differentiating and reducing to masters we obtain a linear system of differential equations

In this form, iterative structure hidden in arbitrary dependence on ϵ
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Since GM(z) does not depend on , the iterative structure in  becomes manifestϵ ϵ

We refer to such a basis as in epsilon-factorised form [Kotikov ’10; J. Henn ’13; Lee ’13, … ]



CANONICAL AND EPS-FACTORISED BASES

dJ = ϵ GM(z) J

What can we say about GM(z) ?

- Is GM(z) unique ? 

- Are there -factorised bases that are better than others?ϵ

Can we define an optimal basis of master integrals for a given problem?
We understand the problem well in the polylogarithmic case
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- Are there -factorised bases that are better than others?ϵ

Can we define an optimal basis of master integrals for a given problem?
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at any of the subsequent steps. The question becomes therefore, what are general criteria
that allow us to say that the basis we are starting from is not too far from a good basis.

To this aim, it is useful to start from the much better understood polylogarithmic case.
For a rather large class of problems that can be solved in terms of algebraic functions and
Chen iterated integrals over d log-forms, a study of the integrand can provide important
information.5 In fact, as elucidated in [7, 8, 26], candidates for canonical integrals which
fulfil ✏-factorised differential equations, can be identified by selecting integrands which can
be expressed as iterated d log-forms with coefficients equal to numbers. The integrand in
this case is said to be in d log-form and to have unit leading singularities. This can be
achieved in practice by an analysis of the iterated residues of the corresponding integrands,
in any suitable representation (Feynman-Schwinger parameters, Baikov representation, etc).
The analysis is usually performed in d = d0�2✏ dimensions, with typically d0 = 2, 4, 6. As a
matter of fact, studying the integrand exactly in d = d0 provides often enough information
to determine a suitable basis for general values of ✏.6 Intuitively, this can be understood
realising that for d = d0 � 2✏ the integrand can be schematically parameterised as

I ⇠

Z nY

i=1

dxiF(xi, z) (G(xi, z))
✏ (2.6)

with F(xi, z) and G(xi, z) algebraic functions, xi are the integration variables and z the set
of kinematical invariants and masses that the integral depends on. For example, in Baikov
representation xi are the Baikov variables and G(xi, z) is a Gram determinant. Therefore,
if the integrand is in d log-form for ✏ = 0, higher order corrections in ✏ will not invalidate
this form, as they will naturally add only powers of logarithms.

This analysis is extremely powerful and one might wonder how it could be generalised
beyond d log-forms. In the following sections, we will provide an example of how this could
be achieved in the genus one case, building upon the construction of pure elliptic multi-
ple polylogarithms provided in [58]. Nevertheless, despite being informative, the study of
leading singularities has at least two drawbacks. First of all, in a general multi-parameter
case and for increasing numbers of loops, it becomes computationally extremely difficult to
analyse all iterated residues. In these cases, a simpler analysis restricted to some specific
subsets of generalised cuts can provide partial but useful information to define good can-
didates for a canonical integral. More importantly, depending on the parametrization that
one chooses, analysing the residues of the integrand often imposes too restrictive conditions,
such that not enough canonical candidates can be identified unless the family of integrals is
enlarged. In complicated multi-loop and multi-parameter cases, this is often not practical.

A classical example is provided by integrals with squared propagators. Such integrals
are often excluded a priori in the residue analysis since squared propagators typically show
up as double poles in the integrand. When dealing with massless Feynman integrals, in-
sisting on the absence of double propagators is often well justified, since the latter typically

5Note that this goes beyond the realm of multiple polylogarithms, see for example [21].
6One should take extra care if a purely d0-dimensional parametrization of the loop momenta is used, since

numerators proportional to Gram determinants would all be identically zero and one would lose possible
candidates for canonical integrals. This is avoided using Feynman or Baikov parametrization.
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can be written as

∼ ∑
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ci ∫ d log f1
i ∫ d log f2

i . . . ∫ d log fn
i ; ci ∈ ℚ

Conjecturally, these integrals fulfil canonical differential equations

Leading Singularities ~ iterative residues 
of the integrand in all integration variables

We understand the problem well in the polylogarithmic case
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if

can be written as
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ci ∫ d log f1
i ∫ d log f2

i . . . ∫ d log fn
i ; ci ∈ ℚ

Conjecturally, these integrals fulfil canonical differential equations

Leading Singularities ~ iterative residues 
of the integrand in all integration variables

Recipe (in a nutshell):  

1. choose integrals whose integrands have only simple poles and are in d-log form 

2. choose integrals whose iterated residues at all simple poles can be normalized to numbers 
[Arkani-Hamed et al’10; Henn, Mistlberger, Smirnov, Wasser ’20]



What do these conditions imply?
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MPLs are iterated integrals over d-log forms (with rational entries) 

The requirements before, guarantees that Feynman integrals are written as pure, 
uniform weight combinations of MPLs

 = number of integrations or transcendental weightn

CANONICAL BASES: THE POLYLOGARITHMIC CASE

Note: this makes sense, since forms with single poles span the full first de Rham cohomology, 
or in other words MPLs are generated by dlogs!



BEYOND POLYLOGARITHMS: CONCEPTUAL DIFFERENCES

Double poles often imply power-like singularities in the IR which should be excluded in gauge theories

Physics:

Typically true when dealing with massless propagators 

Massive propagators can be squared at will, without changing IR behaviour and (actually) 
improving UV behaviour

Even with MPLs, insisting on simple poles in the integrand (neglecting integration contour) is too strong 
of a requirement, as it forces us to exclude any squared propagator!



BEYOND POLYLOGARITHMS: CONCEPTUAL DIFFERENCES

Double poles often imply power-like singularities in the IR which should be excluded in gauge theories
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Mathematics:
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Think about independent integrands in the elliptic case: 
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improving UV behaviour
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of a requirement, as it forces us to exclude any squared propagator!



A DIFFERENT PERSPECTIVE ON MPLS?



UNIPOTENT FUNCTIONS AND DIFFERENTIAL EQUATIONS
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[…,Remiddi, Vermaseren ’99, Goncharov ’00,…]

Canonical integrals in polylogarithmic case give rise to pure combinations of MPLs

by diff. we lower the weight & length
d

dx
G(c1, . . . , cn; x) =

1
x − c1

G(c2, . . . , cn; x)

MPLs are unipotent: they fulfil particularly simple differential equations
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by diff. we lower the weight & length

[…,Remiddi, Vermaseren ’99, Goncharov ’00,…]

d
dx

G(c1, . . . , cn; x) =
1

x − c1
G(c2, . . . , cn; x)

the basis elements. If that is not the case, and we still have freedom in choosing our
basis, we do that by trial and error avoiding such poles as they increase the complexity
of the next steps drastically.

In conclusion, the points above provide us with a guide to constructing a starting basis
of master integrals which does not have undesirable properties, among which the most
important ones are power-like divergences and non-minimal couplings in the homogeneous
blocks of the individual sectors, in the limit d = d0. We do not claim that all these points
are new elements introduced in this paper but are instead the result of the experience
collected by many research groups working on this topic.

Step 2: Rotation by the inverse of the semi-simple part of the period matrix

The second step is the crucial one in our procedure. For a choice of basis with no finite
poles in ✏ in the Gauss-Manin connection matrices, we start by computing the fundamental
matrix of solutions W at ✏ = 0 for every coupled block in the sector under consideration,
discarding any contributions from integrals whose own differential equations do not couple
to the block. In the following, we refer to this system also as the maximal cut system, as
the maximal cuts of the integrals provide a solution to it [9–11, 14, 15], and to W also
as the Wronskian matrix or period matrix. Beyond the polylogarithmic case, W contains
new classes of transcendental functions for which we can always derive a representation in
terms of locally convergent power series, containing also logarithmic contributions in the
parameters. Furthermore, we note that in the construction of W, it is convenient to order
the solutions such that the powers of logarithms appearing in their power series expansions
increase from left to right in the first row. This is usually referred to as a Frobenius basis.

To proceed, we take inspiration from the patterns observed in [58, 59], where pure and
uniform transcendental weight elliptic Feynman integrals could be selected by a rotation
of the basis of integrals by the so-called semi-simple part of the period matrix. In those
references, the observation was based on explicit results obtained by direct integration
and therefore was limited to at most two orders in ✏. Our goal here is to generalise this
procedure to all orders in ✏, working at the level of the differential equations. We split W

into a semi-simple part W
ss and unipotent part W

u, i.e.

W = W
ss
· W

u . (2.8)

In general, this splitting is not unique. The only requirements are that the unipotent part
W

u has to satisfy a unipotent differential equation [67], i.e. of the type

dWu =

 
X

i

Ui(z) dzi

!
W

u, (2.9)

where the matrices Ui(z) are nilpotent matrices, while the semi-simple matrix should only
be invertible. For the purpose of our procedure, we perform the splitting in such a way
that the semi-simple part W

ss has lower triangular form, while the unipotent piece W
u

has upper triangular form, with its diagonal containing only constant entries, normalised to
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Where  are Nilpotent matrices: Ui(z) Ui ⋅ Ui ⋅ ⋯ ⋅ Ui

n

= 0

Canonical integrals in polylogarithmic case give rise to pure combinations of MPLs

MPLs are unipotent: they fulfil particularly simple differential equations

General definition is:  unipotent if it fulfils system of diff equations with Nilpotent matricesWu



BEYOND POLYLOGARITHMS: CONCEPTUAL DIFFERENCES
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We can insist on single poles  logarithmic singularities (Gauge Theory)↔

Price to pay: infinite tower of transcendental kernels [can’t be obtained from “residue of integrand”]

Still fulfil unipotent diff equation: at the basis of definition of symbol! 
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CAN WE USE THE UNIPOTENCE CONDITION?



EXAMPLE: POLYLOGARITHMIC CASE

It works in the (simple) polylogarithmic case: Sunrise with 2 massive and 1 massless propagator

variable z4

MaxCut(I1,1,1,0,0) ⇠
Z

dz4p
P4(z4)

with (3.4)

P4(z4) = (z4 � a1)(z4 � a2)(z4 � a3)(z4 � a4) , (3.5)

a1 = (m2 �m3)
2 , a2 = (m2 +m3)

2 , a3 =
⇣
m1 �

p
p2
⌘2

, a4 =
⇣
m1 +

p
p2
⌘2

. (3.6)

As long as none of the internal masses vanishes, all four roots are distinct and the geometry
is that of an elliptic curve. If at least one of the internal masses is zero, two of the roots
degenerate and the elliptic curve reduces to a genus zero surface. In the following, we
consider three cases explicitly:

1. Two equal non-vanishing masses 0 6= m2
2 = m2

3 =: m
2 and one vanishing mass m2

1 = 0.
This case is polylogarithmic and we can see how our approach works in the case of
genus zero geometries.

2. Three equal non-vanishing masses 0 6= m2
1 = m2

2 = m2
3 =: m2. This is the simplest

genuine elliptic case.

3. Three non-vanishing masses of which two are equal, 0 6= m2
1 6= m2

2 = m2
3 6= 0. This

case is multivariate and of similar complexity as the generic case of three different
internal masses but with considerably more compact mathematical expressions.

3.1 The sunrise with two equal non-vanishing masses and a vanishing mass

For m2
2 = m2

3 =: m
2 and m2

1 = 0, the sunrise integral family admits three master integrals,
a tadpole and two in the top sector. In this case, the underlying geometry is a Riemann
sphere, so if we were to follow our recipe above, we should attempt to identify integrals of
unit leading singularity in d = 2 space-time dimensions. It is immediate to do this analysis
directly or using for example DlogBasis [26]. Three candidates are quickly found to be

M1 = ✏2 I1,1,0,0,0 , M2 = ✏2 r(s,m2) I1,1,1,0,0 , M3 = ✏2 (I1,1,1,�1,0 � s I1,1,1,0,0) , (3.7)

involving the square-root
r(s,m2) =

p
s(s� 4m2) . (3.8)

associated to the threshold for the production of two massive and one massless particle.
We chose it such that it is manifestly real above the threshold s � 4m2. The factor ✏2 is
purely conventional such that the expansions of all integrals start at order ✏0. It is easily
checked that these master integrals satisfy indeed differential equations in canonical form.

Instead of following this standard approach, let us pretend that we were unable to
identify all these candidates and their normalisation factors in the above analysis and
use this example to illustrate the steps involved in our procedure. As we will see, they
yield essentially the same canonical basis. We start from the basis of master integrals
I = {I1, I2, I3} given by

I1 = I0,1,1,0,0 , I2 = I1,1,1,0,0 and I3 = I1,1,2,0,0 . (3.9)

They were chosen based only on the following knowledge of their properties:

– 12 –

Differential equations read:

1. The tadpole integral I1 is trivial and known to evaluate to a pure function of uniform
transcendental weight in d = d� 2✏.

2. The first integral in the coupled sector, I2, has a representation in terms of iterated
d log forms in d = 2 space-time dimensions.

3. The second master, I3, is proportional to the derivative of the first one with respect
to the internal mass squared. In practice, this means that we put a dot on one of its
two massive propagators. This guarantees that no spurious power-like IR divergences
are introduced.

The system of non-✏-factorised differential equations for our starting basis I reads

dI =
�
GMm2 dm2 +GMs ds

�
I ,

GMm2 =

0

B@
�

2✏
m2 0 0

0 0 2
✏2

m4(s�4m2)
(1+2✏)(1+3✏)
m2(s�4m2) �

s�10m2+✏(s�16m2)
m2(s�4m2)

1

CA .
(3.10)

For simplicity, we work with the Gauss-Manin connection matrix with respect to m2. The
one with respect to s follows at each step from a scaling relation implied by dimensional
analysis and Euler’s theorem on homogeneous functions9. Concretely, we have in (3.10)

m2GMm2 + sGMs =

0

B@
�2✏ 0 0

0 �1� 2✏ 0

0 0 �2� 2✏

1

CA . (3.11)

The next step in our procedure is to analyse the maximal cut system, which corresponds
to the following set of differential equations

@

@m2

 
I2
I3

!
=

 
0 2
1

m2(s�4m2)
�s+10m2

m2(s�4m2)

! 
I2
I3

!
. (3.12)

Its fundamental matrix of solutions W can be chosen to take the following form10

W =

 
1 0

0 1
2

! 
$0 $1

@m2$0 @m2$1

!
with

$0(s,m
2) =

1

r(s,m2)
=

1

s

"
1 + 2

m2

s
+ 6

✓
m2

s

◆2

+ 20

✓
m2

s

◆3

+O

 ✓
m2

s

◆4
!#

,

$1(s,m
2) =

1

r(s,m2)
log

✓
s� r(s,m2)

s+ r(s,m2)

◆
= $0(s,m

2) log

✓
m2

s

◆
(3.13)

+
1

s

"
2
m2

s
+ 7

✓
m2

s

◆2

+
74

3

✓
m2

s

◆3

+O

 ✓
m2

s

◆4
!#

,

9Alternatively, one might also reduce this to a one-variable problem by working with the ratio of the
two scales, s/m2.

10If we had started with a better choice of initial master integrals I, i.e. I1,1,1,�1,0 instead of I1,1,2,0,0,
the Wronskian matrix (3.13) would have been simpler. Here, we choose a non-optimal basis intentionally
to illustrate more features of the procedure.
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Homogeneous equation in d=2

dI = [A0 + ϵA1] I
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It works in the (simple) polylogarithmic case: Sunrise with 2 massive and 1 massless propagator

variable z4

MaxCut(I1,1,1,0,0) ⇠
Z

dz4p
P4(z4)

with (3.4)

P4(z4) = (z4 � a1)(z4 � a2)(z4 � a3)(z4 � a4) , (3.5)

a1 = (m2 �m3)
2 , a2 = (m2 +m3)

2 , a3 =
⇣
m1 �

p
p2
⌘2

, a4 =
⇣
m1 +

p
p2
⌘2

. (3.6)

As long as none of the internal masses vanishes, all four roots are distinct and the geometry
is that of an elliptic curve. If at least one of the internal masses is zero, two of the roots
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sphere, so if we were to follow our recipe above, we should attempt to identify integrals of
unit leading singularity in d = 2 space-time dimensions. It is immediate to do this analysis
directly or using for example DlogBasis [26]. Three candidates are quickly found to be

M1 = ✏2 I1,1,0,0,0 , M2 = ✏2 r(s,m2) I1,1,1,0,0 , M3 = ✏2 (I1,1,1,�1,0 � s I1,1,1,0,0) , (3.7)

involving the square-root
r(s,m2) =

p
s(s� 4m2) . (3.8)

associated to the threshold for the production of two massive and one massless particle.
We chose it such that it is manifestly real above the threshold s � 4m2. The factor ✏2 is
purely conventional such that the expansions of all integrals start at order ✏0. It is easily
checked that these master integrals satisfy indeed differential equations in canonical form.

Instead of following this standard approach, let us pretend that we were unable to
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use this example to illustrate the steps involved in our procedure. As we will see, they
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I = {I1, I2, I3} given by
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transcendental weight in d = d� 2✏.

2. The first integral in the coupled sector, I2, has a representation in terms of iterated
d log forms in d = 2 space-time dimensions.

3. The second master, I3, is proportional to the derivative of the first one with respect
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Homogeneous equation in d=2

Matrix of homogeneous solutions contains algebraic functions and logs 

dW = AW → W =

1
r(s, m2)

1
r(s, m2)

log ( s − r(s, m2)
s + r(s, m2) )

s
r(s, m2)3

s
2m2r(s, m2)2 +

s log ( s − r(s, m2)
s + r(s, m2) )

r(s, m2)3

with r(s, m2) = s(s − 4m2)

dI = [A0 + ϵA1] I
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Differential equations read:

1. The tadpole integral I1 is trivial and known to evaluate to a pure function of uniform
transcendental weight in d = d� 2✏.

2. The first integral in the coupled sector, I2, has a representation in terms of iterated
d log forms in d = 2 space-time dimensions.

3. The second master, I3, is proportional to the derivative of the first one with respect
to the internal mass squared. In practice, this means that we put a dot on one of its
two massive propagators. This guarantees that no spurious power-like IR divergences
are introduced.
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9Alternatively, one might also reduce this to a one-variable problem by working with the ratio of the
two scales, s/m2.

10If we had started with a better choice of initial master integrals I, i.e. I1,1,1,�1,0 instead of I1,1,2,0,0,
the Wronskian matrix (3.13) would have been simpler. Here, we choose a non-optimal basis intentionally
to illustrate more features of the procedure.
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dI = [A0 + ϵA1] I

Homogeneous equation in d=2

Matrix of homogeneous solutions contains algebraic functions and logs 

dI = [A0(z) + ϵ A1(z)] I I = W ⋅ J dJ = ϵ [W−1 ⋅ A1(z) ⋅ W] J

New matrix not in dlog form (logs not dlogs !) and basis  is not pure combination of UT MPLs…J

Since differential equations are linear in , we could be “tempted” to just “rotate W away”ϵ



EXAMPLE: POLYLOGARITHMIC CASE
where r(s,m2) was defined in eq. (3.8). In principle, it is possible to rotate the basis of the
top sector with the inverse of W to solve the system from eq. (3.12) at ✏ = 0. However, this
step does not lead to a canonical basis, not even to a factorisation of ✏. Moreover, the coeffi-
cient functions in the differential equations will be of mixed transcendental weight. Instead,
we follow Step 2 of our procedure and perform the splitting of W into a lower-triangular
semi-simple part W

ss and an upper-triangular unipotent part W
u. This works because our

choice for the first integral in the top sector I2 already has uniform transcendental weight
as we anticipated from the properties of its integrand. Explicitly, we find

W
ss =

 
1

r(s,m2) 0
s

r(s,m2)3
1

2m2(s�4m2)

!
and W

u =

 
1 log

⇣
s�r(s,m2)
s+r(s,m2)

⌘
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!
(3.14)

such that W
u satisfies the unipotent differential equation

dWu =

 
0 d log

⇣
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⌘
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!
W

u . (3.15)

By splitting the Wronskian matrix W in this way, the logarithm appears exclusively in
the unipotent part, while the semi-simple part has uniform transcendental weight zero.
Rotating now the basis in the topsector only with the inverse of W

ss, we arrive at a new
basis

I 0 =

0

B@
1 0 0

0

0
(Wss)�1

1

CA I , (3.16)

which satisfies the differential equation
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r(s,m2)
✏(16m2�s)
m2(s�4m2)

1

CCA I 0. (3.17)

The remaining steps to factor out ✏ in this problem are now straightforward. First,
we rescale the last integral in the basis by a factor 1/✏ with respect to the other two. An
additional factor ✏2 is added to all integrals for the same conventional reasons as for the
basis in eq. (3.7). This leaves us with just a single term that is not yet proportional to ✏.
It is, however, a total derivative of an algebraic function already appearing in the problem
and it is therefore easily integrated out. These manipulations can be summarised in the
rotations

T =

0

B@
1 0 0

0 1 0

0 �
2(s+2m2)
r(s,m2) 1

1

CA

0

B@
✏2 0 0

0 ✏2 0

0 0 ✏

1

CA , (3.18)
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Instead, we will rotate away only a “part” of the homogeneous solution: 

Split it in semi-simple and unipotent W = Wss ⋅ Wu

variable z4

MaxCut(I1,1,1,0,0) ⇠
Z

dz4p
P4(z4)

with (3.4)

P4(z4) = (z4 � a1)(z4 � a2)(z4 � a3)(z4 � a4) , (3.5)

a1 = (m2 �m3)
2 , a2 = (m2 +m3)

2 , a3 =
⇣
m1 �

p
p2
⌘2

, a4 =
⇣
m1 +

p
p2
⌘2

. (3.6)

As long as none of the internal masses vanishes, all four roots are distinct and the geometry
is that of an elliptic curve. If at least one of the internal masses is zero, two of the roots
degenerate and the elliptic curve reduces to a genus zero surface. In the following, we
consider three cases explicitly:

1. Two equal non-vanishing masses 0 6= m2
2 = m2

3 =: m
2 and one vanishing mass m2

1 = 0.
This case is polylogarithmic and we can see how our approach works in the case of
genus zero geometries.

2. Three equal non-vanishing masses 0 6= m2
1 = m2

2 = m2
3 =: m2. This is the simplest

genuine elliptic case.

3. Three non-vanishing masses of which two are equal, 0 6= m2
1 6= m2

2 = m2
3 6= 0. This

case is multivariate and of similar complexity as the generic case of three different
internal masses but with considerably more compact mathematical expressions.

3.1 The sunrise with two equal non-vanishing masses and a vanishing mass

For m2
2 = m2

3 =: m
2 and m2

1 = 0, the sunrise integral family admits three master integrals,
a tadpole and two in the top sector. In this case, the underlying geometry is a Riemann
sphere, so if we were to follow our recipe above, we should attempt to identify integrals of
unit leading singularity in d = 2 space-time dimensions. It is immediate to do this analysis
directly or using for example DlogBasis [26]. Three candidates are quickly found to be

M1 = ✏2 I1,1,0,0,0 , M2 = ✏2 r(s,m2) I1,1,1,0,0 , M3 = ✏2 (I1,1,1,�1,0 � s I1,1,1,0,0) , (3.7)

involving the square-root
r(s,m2) =

p
s(s� 4m2) . (3.8)

associated to the threshold for the production of two massive and one massless particle.
We chose it such that it is manifestly real above the threshold s � 4m2. The factor ✏2 is
purely conventional such that the expansions of all integrals start at order ✏0. It is easily
checked that these master integrals satisfy indeed differential equations in canonical form.

Instead of following this standard approach, let us pretend that we were unable to
identify all these candidates and their normalisation factors in the above analysis and
use this example to illustrate the steps involved in our procedure. As we will see, they
yield essentially the same canonical basis. We start from the basis of master integrals
I = {I1, I2, I3} given by

I1 = I0,1,1,0,0 , I2 = I1,1,1,0,0 and I3 = I1,1,2,0,0 . (3.9)

They were chosen based only on the following knowledge of their properties:
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only algebraic part in semi-simple matrix

unipotent part contains transcendental solution
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where r(s,m2) was defined in eq. (3.8). In principle, it is possible to rotate the basis of the
top sector with the inverse of W to solve the system from eq. (3.12) at ✏ = 0. However, this
step does not lead to a canonical basis, not even to a factorisation of ✏. Moreover, the coeffi-
cient functions in the differential equations will be of mixed transcendental weight. Instead,
we follow Step 2 of our procedure and perform the splitting of W into a lower-triangular
semi-simple part W

ss and an upper-triangular unipotent part W
u. This works because our

choice for the first integral in the top sector I2 already has uniform transcendental weight
as we anticipated from the properties of its integrand. Explicitly, we find
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By splitting the Wronskian matrix W in this way, the logarithm appears exclusively in
the unipotent part, while the semi-simple part has uniform transcendental weight zero.
Rotating now the basis in the topsector only with the inverse of W

ss, we arrive at a new
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The remaining steps to factor out ✏ in this problem are now straightforward. First,
we rescale the last integral in the basis by a factor 1/✏ with respect to the other two. An
additional factor ✏2 is added to all integrals for the same conventional reasons as for the
basis in eq. (3.7). This leaves us with just a single term that is not yet proportional to ✏.
It is, however, a total derivative of an algebraic function already appearing in the problem
and it is therefore easily integrated out. These manipulations can be summarised in the
rotations
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Rotate away only semi-simple part

only algebraic part in semi-simple matrix

unipotent part contains transcendental solution

End basis corresponds to matrix : one master has weight 0, the other has weight 1, weight 
mixing disentangled —> this behaviour is typical at a so-called MUM point (Maximal Unipotent 
Monodromy), which is well understood for elliptic curves and Calabi-Yau generalizations !

Wu
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Clean up remaining non-factorised dependence with a rotation

which allows us to define a basis that satisfies canonical differential equations

dJ = ✏ GM✏J with J = (J1, J2, J3)
T = T I 0 ,

GM✏ =

0

B@
�2↵1 0 0

0 2↵1 � ↵2 � 3↵3 ↵4

2↵1 � 2↵2 �6↵4 �3↵1 + ↵2

1

CA , (3.19)

↵1 = d log(m2) , ↵2 = d log(s) , ↵3 = d log
�
s� 4m2

�
, ↵4 = d log

✓
s� r(s,m2)

s+ r(s,m2)

◆
.

As advertised, the relation to the canonical master integrals found by DlogBasis is a
simple constant rotation that is given by

J1 = M1 , J2 = M2 , J3 = �M1 + 3M3 . (3.20)

We would like to stress the following points concerning the application of our procedure in
the polylogarithmic case:

• The critical step was the splitting of the Wronskian in the semi-simple and unipotent
part. Discarding the latter, allowed us to remove the logarithm appearing in the
Wronksian matrix, which is the function that would have ruined the transcendental
weight properties and the iterative structure of the differential equations.

• In general, we do not expect our procedure to outperform other approaches to find
canonical bases in the polylogarithmic case. In particular, for an increase in the
number of master integrals, the steps involved also increase in complexity. However,
if analysing the leading singularities does not provide enough candidates, our method
could be used complementary.

3.2 The sunrise with three equal non-vanishing masses

We now take one step up in complexity to the simplest elliptic scenario and set all three
internal masses of the sunrise to the same value, i.e. m2

1 = m2
2 = m2

3 =: m2. The number
and sector distribution of master integrals do not change compared to the previous case.

First, we need to choose a basis of integrals to start from. Taking the limit for equal
masses in eq. (3.3), it is easy to study all iterated residues of the integrand corresponding
to I1,1,1,0,0. The complexity of this analysis depends in general on the order in which the
various residues are taken. For this particular problem, it is convenient to take residues in
the natural order z1 to z4. For the first three integration variables, one easily sees that the
integrand has only simple poles in the corresponding variable, such that as expected the
result can be written schematically as follows:

I1,1,1,0,0 ⇠

Z
dz4p
P4(z4)

^ d log f3(z3, z4)^ d log f2(z2, z3, z4)^ d log f1(z1, z2, z3, z4) , (3.21)

where the fi are algebraic functions, at most quadratic in the integration variables z1, z2
and z3. If the last integration in z4 were missing, this integral would be a series of iterated
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We now take one step up in complexity to the simplest elliptic scenario and set all three
internal masses of the sunrise to the same value, i.e. m2

1 = m2
2 = m2

3 =: m2. The number
and sector distribution of master integrals do not change compared to the previous case.

First, we need to choose a basis of integrals to start from. Taking the limit for equal
masses in eq. (3.3), it is easy to study all iterated residues of the integrand corresponding
to I1,1,1,0,0. The complexity of this analysis depends in general on the order in which the
various residues are taken. For this particular problem, it is convenient to take residues in
the natural order z1 to z4. For the first three integration variables, one easily sees that the
integrand has only simple poles in the corresponding variable, such that as expected the
result can be written schematically as follows:

I1,1,1,0,0 ⇠

Z
dz4p
P4(z4)

^ d log f3(z3, z4)^ d log f2(z2, z3, z4)^ d log f1(z1, z2, z3, z4) , (3.21)

where the fi are algebraic functions, at most quadratic in the integration variables z1, z2
and z3. If the last integration in z4 were missing, this integral would be a series of iterated
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EXAMPLE 1: POLYLOGARITHMIC CASE

where r(s,m2) was defined in eq. (3.8). In principle, it is possible to rotate the basis of the
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W
ss =

 
1

r(s,m2) 0
s

r(s,m2)3
1

2m2(s�4m2)

!
and W

u =

 
1 log

⇣
s�r(s,m2)
s+r(s,m2)

⌘

0 1

!
(3.14)

such that W
u satisfies the unipotent differential equation

dWu =

 
0 d log

⇣
s�r(s,m2)
s+r(s,m2)

⌘

0 0

!
W

u . (3.15)
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basis

I 0 =

0

B@
1 0 0

0

0
(Wss)�1

1

CA I , (3.16)

which satisfies the differential equation

@

@m2
I 0 =

0

BB@

�
2✏
m2 0 0

0 0 r(s,m2)
m2(s�4m2)

2✏2

m2
8✏(s�m2)

(s�4m2) r(s,m2) +
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r(s,m2)
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m2(s�4m2)

1

CCA I 0. (3.17)

The remaining steps to factor out ✏ in this problem are now straightforward. First,
we rescale the last integral in the basis by a factor 1/✏ with respect to the other two. An
additional factor ✏2 is added to all integrals for the same conventional reasons as for the
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T =

0

B@
1 0 0

0 1 0

0 �
2(s+2m2)
r(s,m2) 1

1

CA

0

B@
✏2 0 0

0 ✏2 0

0 0 ✏

1

CA , (3.18)
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Clean up remaining non-factorised dependence with a rotation

which allows us to define a basis that satisfies canonical differential equations
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�2↵1 0 0

0 2↵1 � ↵2 � 3↵3 ↵4

2↵1 � 2↵2 �6↵4 �3↵1 + ↵2

1

CA , (3.19)

↵1 = d log(m2) , ↵2 = d log(s) , ↵3 = d log
�
s� 4m2

�
, ↵4 = d log

✓
s� r(s,m2)

s+ r(s,m2)

◆
.

As advertised, the relation to the canonical master integrals found by DlogBasis is a
simple constant rotation that is given by

J1 = M1 , J2 = M2 , J3 = �M1 + 3M3 . (3.20)

We would like to stress the following points concerning the application of our procedure in
the polylogarithmic case:

• The critical step was the splitting of the Wronskian in the semi-simple and unipotent
part. Discarding the latter, allowed us to remove the logarithm appearing in the
Wronksian matrix, which is the function that would have ruined the transcendental
weight properties and the iterative structure of the differential equations.

• In general, we do not expect our procedure to outperform other approaches to find
canonical bases in the polylogarithmic case. In particular, for an increase in the
number of master integrals, the steps involved also increase in complexity. However,
if analysing the leading singularities does not provide enough candidates, our method
could be used complementary.

3.2 The sunrise with three equal non-vanishing masses

We now take one step up in complexity to the simplest elliptic scenario and set all three
internal masses of the sunrise to the same value, i.e. m2

1 = m2
2 = m2

3 =: m2. The number
and sector distribution of master integrals do not change compared to the previous case.

First, we need to choose a basis of integrals to start from. Taking the limit for equal
masses in eq. (3.3), it is easy to study all iterated residues of the integrand corresponding
to I1,1,1,0,0. The complexity of this analysis depends in general on the order in which the
various residues are taken. For this particular problem, it is convenient to take residues in
the natural order z1 to z4. For the first three integration variables, one easily sees that the
integrand has only simple poles in the corresponding variable, such that as expected the
result can be written schematically as follows:

I1,1,1,0,0 ⇠

Z
dz4p
P4(z4)

^ d log f3(z3, z4)^ d log f2(z2, z3, z4)^ d log f1(z1, z2, z3, z4) , (3.21)

where the fi are algebraic functions, at most quadratic in the integration variables z1, z2
and z3. If the last integration in z4 were missing, this integral would be a series of iterated
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NB: by analysing leading singularities with DLogBasis find the same basis up to constant rotation!
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STRATEGY SUCCESSFUL IN MANY NON-TRIVIAL CASES

new functions in the last step to integrate out all undesired terms, and which correspond
to two differentials of the third kind. These can again be represented as integrals over the
corresponding holomorphic period but with additional rational functions in the integrand.
The explicit expressions are provided in an ancillary file to this manuscript.

4 Applications to Feynman integrals with a single elliptic curve

In the previous section, we have worked out explicitly various mass configurations for the
two-loop sunrise graph, showing how our procedure allows us to obtain ✏-factorised systems
of differential equations in almost algorithmic steps. For the multi-scale cases, this came
at the cost of introducing extra objects, defined as integrals over the holomorphic period
of the elliptic curve and rational functions. We have seen that these can be related to
differential forms of the third kind. In this section, we will present several examples of
single- and multivariate Feynman integral families related to a single elliptic curve, where
our approach can be successfully applied. We will see that the patterns we observed can be
extended also to three- and four-point functions.

4.1 A single-scale elliptic three-point function

1

3

2

4

2

5 6s

p21

p22

Figure 2. The graph of non-planar triangle number 1.

As the first example beyond the sunrise topology, we consider the triangle graph shown in
figure 2, for which we use the following integral family [59, 83]11

D1 = (k1 � p1)
2 , D2 = (k2 � p1)

2
�m2 , D3 = (k1 + p2)

2 ,

D4 = (k1 � k2 + p2)
2
�m2 , D5 = (k1 � k2)

2
�m2 , D6 = k22 �m2 ,

N1 = k21 .

(4.1)

We take p21 = p22 = 0 and s = (p1+p2)2 such that the integrals, suitably normalised, depend
on the single variable

z = �
m2

s
. (4.2)

At variance to the sunrise, we consider this two-loop triangle in d = 4� 2✏ dimensions and
we also set m = 1 for simplicity.

11We thank Xing Wang for having shared his results for this integral family with us prior to publica-
tion [84].
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satisfying (4.5). The first matrix gives the basis change to the derivative basis of the first
integral. We can then write the semi-simple part of W as

W
ss =

 
1 0

�
1
4

z
4

! 
$0 0

$0
0

z
(1�16z)$0

!
, (4.8)

and as before we rotate our basis of masters by the inverse of W
ss followed by a suitable

✏-rescaling of the integrals. After that, one immediately sees that the term proportional
to $0

0(z) and the non-✏-factorised term can be removed by shifting the integrals by a total
derivative. The full rotation can then be obtained as

T =

0

B@
9⇥9 0

0
1 0

1�24z
z2 $2

0 1

1

CA

0

B@
9⇥9 0

0
✏4 0

0 ✏3

1

CA

 
9⇥9 0

0 W
ss

!�1 
T

sub 0

0 �
1
z 2⇥2

!
. (4.9)

With this, the ✏-factorised differential equations are given by
d

dz
J = ✏GM

✏ J with J = T I , (4.10)

where the Gauss-Manin connection GM
✏ is given in appendix A eq. (A.1). It can be verified

easily, that the basis for the topsector in J yielded by our approach reproduces the known
basis from the literature [48, 60]. Notice that in this problem, no additional new functions
were needed to achieve the ✏-factorised form. Further, the entries GM

✏ depend only on
the holomorphic period $0, while its derivative $0

0 does not appear. Its absence is an
indication that all differential forms are independent under integration by parts identities.
Nevertheless, we stress that we have not proven this last statement formally and we cannot
exclude that non-trivial relations exist.

4.2 A second single-scale elliptic three-point function

1

3

2

4

2

5 6s

p21

p22

Figure 3. The graph of non-planar triangle number 2.

The next family of Feynman integrals we consider is given by another triangle graph (see
figure 3) but with a different mass configuration of the propagators and numerator

D1 = (k1 � p1)
2 , D2 = (k2 � p1)

2 , D3 = (k1 + p2)
2 ,

D4 = (k1 � k2 + p2)
2 , D5 = (k1 � k2)

2
�m2 , D6 = k22 �m2 ,

N1 = k21 .

(4.11)
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associated with the top sector. Instead, the new function originates from the subtopologies,
which can be understood as follows: First, the additional scale that this problem depends
on does not increase the number of master integrals in the top sector. This can be inter-
preted as the fact that, contrary to the sunrise, there is no extra residue in the integrand
of the maximal cut, which is linearly independent under integration by parts. This implies
that there is no contribution from an elliptic integral of the third kind to the homogeneous
differential equations. Second, there is instead a different singularity structure in the sub-
sectors, namely a new pole compared to the ones found in the homogeneous differential
equations for the top sector. Integrating over this pole gives a contribution formally similar
to an extra residue in the homogeneous equation. The full rotation matrix and the final
form of the GM matrices can be found in an ancillary file.

4.4 Three-parameter double box

1 3

2 4

5 6 7

p21

p22

p23

p24

Figure 4. The double box graph.

As a final example, we consider the double box graph depicted in figure 4. The associated
integral family is defined by the following propagators and irreducible numerators:

D1 = k21 �m2 , D2 = (k1 + p1 + p2)
2
�m2 , D3 = k22 �m2 ,

D4 = (k2 + p1 + p2)
2
�m2 , D5 = (k1 + p1)

2
�m2 , D6 = (k1 � k2)

2 ,

D7 = (k2 � p3)
2
�m2 , N1 = (k2 + p1)

2 , N2 = (k1 � p3)
2 .

(4.26)

The external momenta satisfy p21 = p22 = p23 = 0 and p24 = M2.
With Mandelstam variables defined by s = (p1 + p2)2 and t = (p1 + p3)2, the family

depends on a total of four dimensionful or, by dimensional analysis, three dimensionless
variables. Further, we set d = 4� 2✏ for this example.

This graph contributes to the planar corrections to the production of a Higgs boson
and a jet through a loop of massive quarks and was studied at length in the literature,
see [85, 86], where a complete calculation could only be achieved numerically.14 In the
literature, a total of 73 master integrals had been identified. A new reduction performed
with Kira 2.0 [87] reveals an additional relation, originating from a higher sector, which

14Note that compared to [85], our propagator definitions (4.26) differ by a sign.
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Applied it successfully to elliptic sunrise (equal or different masses)

Step 5: Clean up of the inhomogeneous differential equations

After having completed the ✏-factorisation of all homogeneous blocks, the factorisation of the
whole system can be achieved by performing suitable shifts in the definitions of the master
integrals of a given sector, by integrals in lower sectors. This is in principle a straightforward
procedure. In practice, however, it can become tricky as also the functional dependence
on ✏ of the coefficient functions in these shifts might be complicated. Moreover, if a given
subsector exhibits singularities which were not present in the homogeneous equations for the
sector considered, the introduction of new functions might be required. These are likewise
(iterated) integrals of functions already present in the differential equations.

3 Application to the two-loop sunrise family

k1

k2

k1 + k2 � p

p p

Figure 1. The two-loop sunrise graph.

Let us see explicitly how our procedure works in the case of the two-loop sunrise graph [28–
31, 72–79] shown in figure 1. We work as it is customary in d = 2�2✏ space-time dimensions
and, as it is well known, the result in d = 4� 2✏ can be obtained by dimensional shift [80].
We take the associated integral family in the general case of different masses to be defined
by the following three propagators and two irreducible numerators:

D1 = k21 �m2
1 , D2 = k22 �m2

2 , D3 = (k1 + k2 � p)2 �m2
3 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 .
(3.1)

We assume m1,m2,m3 > 0 and, in the remainder of this section, we set p2 = s.
As the first step, we analyse the integrand of the so-called corner integral I1,1,1,0,0 to

determine the complexity of the problem. We use a loop-by-loop Baikov representation [12–
15] in two space-time dimensions. Working out the change of variables we find

I1,1,1,0,0 ⇠

Z
dz1 dz2 dz3 dz4

[B(z1, z2, z3, z4)]�1/2

z1z2z3
(3.2)

with

B(z1, z2, z3, z4) =
⇣�

�s+m2
1 + z1

�2
� 2

�
s+m2

1 + z1
�
z4 + z24

⌘

⇥

⇣�
m2

2 �m2
3 + z2 � z3

�2
� 2

�
m2

2 +m2
3 + z2 + z3

�
z4 + z24

⌘
.

(3.3)

From this representation, it is easy to see that the maximal cut is proportional to a one-fold
integral over the reciprocal of the square-root of a quartic polynomial in the integration
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Many other multi-scale elliptic problems

k1

k2

k3

P
i ki � p1

P
i ki + p2

p21 = 0 p22 = 0

s = (p1 + p2)2

Figure 6. The three-loop ice cone graph.

and irreducible scalar products of the ice cone family as

D1 = k21 �m2 , D2 = k22 �m2 , D3 = k23 �m2 ,

D4 = (k1 + k2 + k3 � p1)
2
�m2 , D5 = (k1 + k2 + k3 + p2)

2
�m2 ,

N1 = (k1 + k2 + k3)
2 , N2 = k1 · k3 ,

N3 = k2 · k3 , N4 = k2 · p1 , N5 = k2 · p2 , N6 = k3 · p1 , N7 = k3 · p2 .
(5.1)

Again following [66], we take as the set of starting master integrals15

I1 = I1,1,1,0,0,0,0 , I2 = I1,1,1,1,0,0,0 , I3 = I2,2,0,1,1,0,0 ,

I4 = I1,1,1,1,1,0,0 , I5 = I1,1,1,1,1,�1,0 , I6 = I2,1,1,1,1,0,0 , I7 = I2,1,1,1,1,�1,0 ,

I8 = I1,1,1,1,1,�1,�1 +
1

6
I2 +

1

6
I4 �

1� z + z2

6z
I5 .

(5.2)

To simplify the analysis of the leading singularities and to see the two elliptic curves emerge
in d = 2, we reparametrise the problem through the Landau variable s = �

(1�z)2

z with
s = (p1+p2)2 and we set m = 1 for simplicity. We then perform a rotation on the integrals
I4, I5, I6, I7 to disentangle the two elliptic curves

0

BBB@

�z 1 0 0

�1 1
z �3 3

z

�
1
z 1 0 0

1
z2 �

1
z

3
z2 �

3
z

1

CCCA
, (5.3)

such that their maximal cuts satisfy a GM system in block form

GM
E1,E2 =

0

BBBB@

0 1 0 0

�
1�3z

z2(1�z)(1�9z)
(1�3z)(1+3z)
z(1�z)(1�9z) 0 0

0 0 0 1

0 0 3�z
z(1�z)(1�9z) �

9�20z+3z2

z(1�z)(1�9z)

1

CCCCA
. (5.4)

15For simplicity we only write down the first seven ⌫i’s. The other numerators are not needed for our
choice of master integrals.
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5.2 The three-loop banana

It is by now well known that the geometry underlying the l-loop banana graph is an (l�1)-
dimensional Calabi-Yau variety [40–47, 88]. It is, therefore, interesting to see if our approach
can also help to find ✏-factorised bases when such more complicated geometries are involved.

k1

k2
k3

k1 + k2 + k3 � p

p p

Figure 7. The three-loop banana graph.

As the simplest case, we consider the equal-mass three-loop banana family (see figure
7) with propagators and numerators:

D1 = k21 �m2 , D2 = k22 �m2 , D3 = k23 �m2 , D4 = (k1 + k2 + k3 � p)2 �m2 ,

N1 = (k1 � p)2 , N2 = (k2 � p)2 , N3 = (k3 � p)2 , N4 = (k1 � k2)
2 , N5 = (k1 � k3)

2 .
(5.9)

A generic integral is then given by eq. (2.1). As customary when dealing with two-point
functions, it is convenient to study the integrals in this family in d = 2�2✏ dimensions and
as functions of the single dimensionless parameter z = m2/p2. For the master integrals, we
take the dotted basis given by

I1 = I1,1,1,0 , I2 = I1,1,1,1 , I3 = I2,1,1,1 and I4 = I3,1,1,1 . (5.10)

Notice that to simplify our notation we drop the indices corresponding to the additional
numerators since we do not need them in the following. Moreover, we set m = 1 to
shorten our formulas later. These master integrals satisfy a non-✏-factorised GM system
d
dz I = GM I , where the explicit form of GM is given in appendix B eq. (B.2).

The maximal cuts of the three-loop banana master integrals satisfy a GM system
which has as solutions the periods of a K3 surface [11, 59]. As it is well known, differential
operators of one-parameter K3 surfaces are symmetric squares of elliptic operators [89, 90].
This was demonstrated explicitly for the differential operator of the three-loop banana
graph in [11, 88, 91]. The homogeneous (3⇥ 3)-system
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1

CA (5.11)
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Even cases beyond 1 elliptic curve

Strategy is general and does not have to do with details of the geometry*
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Following the strategy above, we obtain a fully -factorised system of differential equationsϵ

Boundary conditions can be fixed by using regularity conditions (absence of pseudo thresholds) 
or, equivalently, large mass expansion

The result can then be written in terms of iterated integrals over many differential forms which 
involve the period and quasi period of the elliptic curve, and integrals over it
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by

y = 2
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y

2 = (x2
� 1)(x2

� t4). In these coordinates, the period
in (15) becomes

 0(x, t4) =
2(x2

� t4)

�Y
K(t4) . (20)

We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions
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where f(t4) is given by
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and F(x, t4) is the derivative of the Abel map:

F(x, t4) =K(t4)@t4

"
1

K(t4)

Z x

�1

dXp
(X2 � 1)(X2 � t4)

#
.

(23)

Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
p
x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,

p
t4 ,

p
1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to

A
r(↵e,m, s, t, ✏) = Z

2

2
A(↵0

e,mb, s, t, ✏) , (24)

with the relation between bare and physical quantities
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Ze↵e(µ) , mb = Zmm. (25)

Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y
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� t4). In these coordinates, the period
in (15) becomes
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
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x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,
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t4 ,
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1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to

A
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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Following the strategy above, we obtain a fully -factorised system of differential equationsϵ

Boundary conditions can be fixed by using regularity conditions (absence of pseudo thresholds) 
or, equivalently, large mass expansion

The result can then be written in terms of iterated integrals over many differential forms which 
involve the period and quasi period of the elliptic curve, and integrals over it
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y

2 = (x2
� 1)(x2

� t4). In these coordinates, the period
in (15) becomes

 0(x, t4) =
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions

T1(x, t4) =8t4
K(t4)
⇡


(1� t4)F(x, t4)�

x2 � 1
(1 + t4)Y

�
, (21)

T2(x, t4) =
1
⇡

r
t4

1 + t4

t4(3� 2x)� 3x+ 2
t4 � x

K(t4)�
f(t4)
2⇡

,

where f(t4) is given by
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
p
x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,

p
t4 ,

p
1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to
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with the relation between bare and physical quantities
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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the individual master integrals. In particular, we ob-
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are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
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renormalized according to

A
r(↵e,m, s, t, ✏) = Z

2

2
A(↵0

e,mb, s, t, ✏) , (24)

with the relation between bare and physical quantities

e
2

4⇡
= ↵

0

e =

✓
e
�E

4⇡
µ
2

◆✏

Ze↵e(µ) , mb = Zmm. (25)
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stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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These differential forms look pretty complicated (and there are worse ones) but they can be simplified!
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by

y = 2
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, z = 4
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y

2 = (x2
� 1)(x2

� t4). In these coordinates, the period
in (15) becomes
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�Y
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions
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where f(t4) is given by

@t4f = 2 1�t4p
t4(1+t4)3/2

K(t4) , (22)
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
p
x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,

p
t4 ,

p
1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to

A
r(↵e,m, s, t, ✏) = Z
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with the relation between bare and physical quantities
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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in (15) becomes
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
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x2 � t4 ,

p
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three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y

2 = (x2
� 1)(x2

� t4). In these coordinates, the period
in (15) becomes
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions
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K(t4)
⇡


(1� t4)F(x, t4)�

x2 � 1
(1 + t4)Y

�
, (21)

T2(x, t4) =
1
⇡

r
t4

1 + t4

t4(3� 2x)� 3x+ 2
t4 � x

K(t4)�
f(t4)
2⇡

,

where f(t4) is given by

@t4f = 2 1�t4p
t4(1+t4)3/2

K(t4) , (22)

and F(x, t4) is the derivative of the Abel map:
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
p
x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,

p
t4 ,

p
1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to

A
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with the relation between bare and physical quantities
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
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in (15) becomes

 0(x, t4) =
2(x2

� t4)

�Y
K(t4) . (20)

We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions
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three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.
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FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-

4

two functions

T1(y, z) =

Z
dy


�z
y

(4y2 + 4y(z � 4) + z(z � 4)) 0

�8z
(y + z � 4)(y + z)

(t+ 2y � 4)
@y 0

�

+dz


�z
4� z

�48 + 4y + 2y2 + 12z + yz
z + y � 4

 0

�
,

T2(y, z) =
p
4� z

p
�z

Z
dy


z
y
4 + 2y � y2 � z � yt

2(y + z � 4)
 0

�1
2
z(1 + y)@y 0

�
+

p
�z

p
4� z dz


 0

⇥ y � 4
2(y + z � 4)

+
(y � 4)y(1 + y)
2(�4 + 2y + z)

@y 0

◆�
, (18)

which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions
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three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions
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three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.
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Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
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renormalized according to
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-

where

(Derivative of) Abel’s Map



BACK TO MASTER INTEGRALS FOR BHABHA AND MØLLER

These differential forms look pretty complicated (and there are worse ones) but they can be simplified!

4

two functions

T1(y, z) =

Z
dy


�z
y

(4y2 + 4y(z � 4) + z(z � 4)) 0

�8z
(y + z � 4)(y + z)

(t+ 2y � 4)
@y 0

�

+dz


�z
4� z

�48 + 4y + 2y2 + 12z + yz
z + y � 4

 0

�
,

T2(y, z) =
p
4� z

p
�z

Z
dy


z
y
4 + 2y � y2 � z � yt

2(y + z � 4)
 0

�1
2
z(1 + y)@y 0

�
+

p
�z

p
4� z dz


 0

⇥ y � 4
2(y + z � 4)

+
(y � 4)y(1 + y)
2(�4 + 2y + z)

@y 0

◆�
, (18)

which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
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where {[x : Y : 1], t4} are the canonical coordinates on
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in (15) becomes
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
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x2 � 1 ,

p
x2 � t4 ,

p
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p
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three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
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in (15) becomes
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions
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three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
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the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.
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Here Z2 and Zm are on-shell wave function and mass
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stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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tegrals in (18) are just combinations of simpler functions
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where f(t4) is given by
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and F(x, t4) is the derivative of the Abel map:
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
p
x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,

p
t4 ,

p
1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to

A
r(↵e,m, s, t, ✏) = Z

2

2
A(↵0

e,mb, s, t, ✏) , (24)

with the relation between bare and physical quantities
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by

y = 2
(1� x)(1 + t4)

t4 � x
, z = 4

t4(1� x
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4

, (19)

where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y

2 = (x2
� 1)(x2

� t4). In these coordinates, the period
in (15) becomes

 0(x, t4) =
2(x2

� t4)

�Y
K(t4) . (20)

We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions

T1(x, t4) =8t4
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⇡
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where f(t4) is given by

@t4f = 2 1�t4p
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and F(x, t4) is the derivative of the Abel map:
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
p
x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,

p
t4 ,

p
1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to

A
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with the relation between bare and physical quantities
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by

y = 2
(1� x)(1 + t4)
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, z = 4

t4(1� x
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, (19)

where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y

2 = (x2
� 1)(x2

� t4). In these coordinates, the period
in (15) becomes

 0(x, t4) =
2(x2

� t4)

�Y
K(t4) . (20)

We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions

T1(x, t4) =8t4
K(t4)
⇡


(1� t4)F(x, t4)�
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where f(t4) is given by

@t4f = 2 1�t4p
t4(1+t4)3/2

K(t4) , (22)

and F(x, t4) is the derivative of the Abel map:
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
p
x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,

p
t4 ,

p
1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to

A
r(↵e,m, s, t, ✏) = Z

2

2
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e,mb, s, t, ✏) , (24)

with the relation between bare and physical quantities
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by

y = 2
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, z = 4
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, (19)

where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y

2 = (x2
� 1)(x2

� t4). In these coordinates, the period
in (15) becomes

 0(x, t4) =
2(x2

� t4)

�Y
K(t4) . (20)

We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions

T1(x, t4) =8t4
K(t4)
⇡
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where f(t4) is given by
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and F(x, t4) is the derivative of the Abel map:
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
p
x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,

p
t4 ,

p
1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to

A
r(↵e,m, s, t, ✏) = Z

2

2
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e,mb, s, t, ✏) , (24)

with the relation between bare and physical quantities
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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These differential forms look pretty complicated (and there are worse ones) but they can be simplified!
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y
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� 1)(x2

� t4). In these coordinates, the period
in (15) becomes
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions
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where f(t4) is given by
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
p
x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,

p
t4 ,

p
1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to

A
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with the relation between bare and physical quantities
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y

2 = (x2
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� t4). In these coordinates, the period
in (15) becomes
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
p
x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,

p
t4 ,

p
1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to

A
r(↵e,m, s, t, ✏) = Z
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y
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� t4). In these coordinates, the period
in (15) becomes
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions

T1(x, t4) =8t4
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
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p
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p
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p
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three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y
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� 1)(x2

� t4). In these coordinates, the period
in (15) becomes
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions
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where f(t4) is given by
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and F(x, t4) is the derivative of the Abel map:
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
p
x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,

p
t4 ,

p
1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y

2 = (x2
� 1)(x2

� t4). In these coordinates, the period
in (15) becomes
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We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
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three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by
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where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
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We can identifying t4 with a Hauptmodul for the congru-
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out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
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Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions
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three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to
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Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-
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AMPLITUDES AND TENSOR DECOMPOSITION

We use the fact that equal lepton scattering (Bhabha & Møller) can be obtained 
from scattering of different flavour by crossing, schematically:

(e+e− → e+e−) = (e+
1 e−

1 → e+
2 e−

2 ) + (s ↔ t)

We perform a tensor decomposition with external states in  dimensions to retain 
full dependence on the electron polarizations

D = 4
[Peraro, Tancredi ’19, ’21]

By working in , we are guaranteed to have as many tensors as many different 
polarizations: 16/2 = 8, only a physically relevant number of combinations is computed

D = 4

2

where, due to momentum conservation, s+ t+ u = 4m2.
Following [53, 54], we work in ’t Hooft-Veltman dimen-

sional regularization scheme [55] (tHV) and decompose
the scattering amplitude into eight independent Lorentz-
covariant, physical tensors Ti and respective scalar form
factors Fi,

A(1e+ , 2e� , 3e� , 4e+) =
8X

i=1

Fi Ti . (3)

We choose the tensors as

T1 = m
2
⇥ t1 , T2 = m⇥ [t2 + t3]

T3 = t4 , T4 = m
2
⇥ t5 ,

T5 = m⇥ [t6 + t7] + t8 , T6 = m⇥ [t6 + t7]� t8

T7 = m⇥ [t2 � t3] , T8 = m⇥ [t6 � t7] , (4)

where the spinor chains ti are defined as

ti = Ue(p2)�
(1)

i Ve(p1)⇥ Ue(p3) �
(2)

i Ve(p4) , (5)

and �i = {�(1)

i ,�(2)

i } represent the following sets of Dirac
matrices

�1 = {1, 1} , �2 = {/p
3
, 1} ,

�3 = {1, /p
2
} , �4 = {/p

3
, /p

2
} ,

�5 = {�
µ1 , �µ1} , �6 = {/p

3
�
µ1 , �µ1} ,

�7 = {�
µ1 , /p

2
�µ1} , �8 = {/p

3
�
µ1 , /p

2
�µ1} . (6)

In this computational scheme, external momenta and po-
larizations are considered four-dimensional, while inter-
nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
which matches the eight tensors above. Furthermore, we
note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
ingly, by symmetry we conclude that the corresponding
form factors must be zero F7 = F8 = 0 to all orders.

Following the standard approach, we compute the form
factors in (3), by defining a set of projection operators

Pi =
h�
T

†
· T

��1
i

ik
T

†
k as combinations of dual tensors

T
†
i . Here “·” denotes the scalar product between tensors

and their dual, which is realized in practice by summation
over spins of the external fermions, such that Fi = Pi ·A.

By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].

CANONICAL BASES FOR THE NON-PLANAR
FEYNMAN INTEGRALS

While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
of integrals displayed in the left graph of fig (1). We work
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FIG. 1: The non-planar topology (left) and its
next-to-top sector (right) with 6 master integrals. Solid
lines correspond to massive propagators of mass m,
dashed lines correspond to massless propagators.

in dimensional regularization and define the integrals as
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where �E denotes the Euler-Mascheroni constant, D =
4�2✏ is the dimension of space-time, and µ is an auxiliary
scale introduced to render Feynman integrals dimension-
less. The propagators are given by

P1 = k
2

1
�m

2
, P2 = (k1 � k2 � p2)

2
�m

2
,

P3 = k
2
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,
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, P7 = (k2 � p3)

2
,

P8 = (k2 + p1)
2
, P9 = (k1 � p3)

2
. (8)

The integrals in (7) are functions of homogeneous coor-
dinates [ s : t : m

2 ] on CP2 and, without loss of gen-
erality, we may set µ = m, or equivalently work on the
patch [ y : z : 1 ] with y = s/m

2 and z = t/m
2. For
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nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
which matches the eight tensors above. Furthermore, we
note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
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vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
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Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
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While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
of integrals displayed in the left graph of fig (1). We work
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next-to-top sector (right) with 6 master integrals. Solid
lines correspond to massive propagators of mass m,
dashed lines correspond to massless propagators.
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In this computational scheme, external momenta and po-
larizations are considered four-dimensional, while inter-
nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
which matches the eight tensors above. Furthermore, we
note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
ingly, by symmetry we conclude that the corresponding
form factors must be zero F7 = F8 = 0 to all orders.

Following the standard approach, we compute the form
factors in (3), by defining a set of projection operators

Pi =
h�
T

†
· T

��1
i

ik
T

†
k as combinations of dual tensors

T
†
i . Here “·” denotes the scalar product between tensors

and their dual, which is realized in practice by summation
over spins of the external fermions, such that Fi = Pi ·A.

By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].

CANONICAL BASES FOR THE NON-PLANAR
FEYNMAN INTEGRALS

While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
of integrals displayed in the left graph of fig (1). We work
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FIG. 1: The non-planar topology (left) and its
next-to-top sector (right) with 6 master integrals. Solid
lines correspond to massive propagators of mass m,
dashed lines correspond to massless propagators.
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By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
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FIG. 1: The non-planar topology (left) and its
next-to-top sector (right) with 6 master integrals. Solid
lines correspond to massive propagators of mass m,
dashed lines correspond to massless propagators.
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larizations are considered four-dimensional, while inter-
nal states and loop momenta are treated inD dimensions.
One can then show that the number of tensors is equal
to the number of independent chirality configurations to
all orders in perturbation theory [53, 54]. In our case
there are 24 = 16 configurations, of which only half are
independent in a parity-invariant theory such as QED,
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note that the process under consideration is invariant un-
der the simultaneous exchange p2 $ p3 and p1 $ p4. We
find that under this transformation two tensor structures
are mapped onto each other, i.e. t2 $ t3 and t6 $ t7,
cf. (6), which in turn implies that T7,8 are odd. Accord-
ingly, by symmetry we conclude that the corresponding
form factors must be zero F7 = F8 = 0 to all orders.
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By applying the projectors on the corresponding rele-
vant QED Feynman diagrams, we can express each form
factor as a linear combination of scalar Feynman inte-
grals and organize the one- and two-loop integrals into

several integral topologies. On the technical level, our
computation proceeds as follows. We begin by generating
relevant Feynman diagrams with QGRAF [56]. Using the
computer algebra system FORM [57–60], we insert Feyn-
man rules and apply projectors. We employ the public
tool Reduze2 [61] to find mappings onto topologies and
to expose their symmetries. Finally, with the help of
Kira [62–64] we solve the required integration-by-parts
(IBP) relations [65, 66] and reduce all integrals to 267
master integrals. This is achieved following Laporta’s al-
gorithm [67], improved by finite field techniques [68, 69].
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While all planar two-loop topologies have been known
in fully analytic form for some time [34, 35], their non-
planar counterparts have remained elusive due to the ap-
pearance of new mathematical functions of elliptic type.
In particular, we are interested in the non-planar family
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patch [ y : z : 1 ] with y = s/m
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[Peraro, Tancredi ’19, ’21]Note: with this choice, we obtain amplitude directly in tHV scheme



AMPLITUDES AND TENSOR DECOMPOSITION

From the form factors one can easily obtained both polarized and unpolarized amplitudes

We use standard programs QGRAF, FORM, Mathematica, Reduze2, Kira (with FireFly)

[Manteuffel, Studerus]

[Vermaseren]
[Nogueira]

[Meierhöfer, Usovitsch; Klappert et al]

This allows us to easily express our amplitudes in terms of master integrals 

All in all, including planar integrals and crossings, there are 252 masters

PL integrals can be expressed as MPLs. NPL integrals as iterated integrals over elliptic 
differential forms. Before discussing evaluation strategy, what checks have we done?



CHECKS: UV & IR FACTORIZATION

UV renormalization requires renormalizing coupling, electron mass and wave function. 
We perform renormalization on-shell

4

two functions
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, (18)

which are among the objects required to express the
matrix A in (10). Again, formulas are given assuming
y > 4 and z < 0 for definiteness. While the details of
the construction are immaterial for this paper and are
discussed elsewhere [82, 83], it su�ces to say that one
can parameterize the kinematical variables by

y = 2
(1� x)(1 + t4)

t4 � x
, z = 4

t4(1� x
2)

x2 � t
2
4

, (19)

where {[x : Y : 1], t4} are the canonical coordinates on
the moduli space of elliptic curves given by the variety
Y

2 = (x2
� 1)(x2

� t4). In these coordinates, the period
in (15) becomes

 0(x, t4) =
2(x2

� t4)

�Y
K(t4) . (20)

We can identifying t4 with a Hauptmodul for the congru-
ence subgroup �1(4) ⇢ SL2(Z) [84]. Strikingly, it turns
out that by changing variables to the canonical coordi-
nates, one can easily see that the two transcendental in-
tegrals in (18) are just combinations of simpler functions

T1(x, t4) =8t4
K(t4)
⇡


(1� t4)F(x, t4)�

x2 � 1
(1 + t4)Y

�
, (21)
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1
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r
t4

1 + t4

t4(3� 2x)� 3x+ 2
t4 � x

K(t4)�
f(t4)
2⇡

,

where f(t4) is given by

@t4f = 2 1�t4p
t4(1+t4)3/2

K(t4) , (22)

and F(x, t4) is the derivative of the Abel map:

F(x, t4) =K(t4)@t4

"
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K(t4)
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dXp
(X2 � 1)(X2 � t4)

#
.

(23)

Other di↵erential forms in the alphabet can also be sub-
stantially simplified and all double integrals over the pe-
riods can be rewritten in terms of rational functions of
T1 and T2. One can then show that all di↵erential forms
are given by combinations of the five algebraic functions

{
p
x2 � 1 ,

p
x2 � t4 ,

p
1 + t4 ,

p
t4 ,

p
1� t4}, and the

three transcendental functions {K(t4) , f(t4) , F(x, t4)}.
We want to stress that the choice of canonical coordi-
nates in (19) is not merely an academic curiosity, and
the final, simplified form is essential to e�ciently imple-
ment the numerical evaluation of the iterated integrals
described below. To explicitly solve the integrals, we
first expand (11) in ✏. At each order, the solution of the
di↵erential equation is expressed by Chen iterated inte-
grals [85] and we fix all boundary conditions imposing
regularities at di↵erent phase-space points. In this way
we obtain fully analytic results for the non-planar master
integrals in terms of Chen iterated integrals.
Currently, there are no public numerical routines to

evaluate the special functions that appear in the non-
planar sector. We therefore obtain generalized series ex-
panions for all master integrals. More precisely, we start
from the di↵erential equations in ✏-factorized form in or-
der to algorithmically obtain a small mass expansion for
the individual master integrals. In particular, we ob-
tain a generalized power series (including logarithms of
the mass), whose coe�cients can be expressed in terms
of harmonic polylogarithms [86]. We obtain results that
are valid both for the kinematics relevant for Bhabha and
Møller scattering. As a cross check, we compared individ-
ual master integrals against a direct numerical evaluation
with AMFlow [87], both for Bhabha and Møller scatter-
ing kinematics, and found agreement to high precision.
Our series expansions allow for fast numerical evaluation,
appropriate for phenomenological studies. A precise de-
scription of the numerical implementations can be found
in the description of the ancillary files along with the
arXiv submission of this manuscript.

UV RENORMALIZATION AND IR
FACTORIZATION

Using the master integrals calculated above, as well as
the planar integrals from [34, 35], we can obtain an ana-
lytic result for the bare amplitude for both polarized and
unpolarized scattering. The UV divergences can then be
renormalized according to

A
r(↵e,m, s, t, ✏) = Z

2

2
A(↵0

e,mb, s, t, ✏) , (24)

with the relation between bare and physical quantities

e
2
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✓
e
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µ
2
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Ze↵e(µ) , mb = Zmm. (25)

Here Z2 and Zm are on-shell wave function and mass
renormalization constants, and Ze refers to coupling con-
stant renormalization either in the MS or on-shell (OS)
scheme. The relevant quantities are collected in the sup-
plemental material. As expected [88], after UV renormal-

5

ization we are left with IR poles which are one-loop-exact,

A
OS(↵,m, s, t, ✏) = e

↵
4⇡

ZIR
1

✏ C(↵,m, s, t, ✏) , (26)

where C is the finite remainder function, ↵ is the on-shell
electromagnetic coupling, and Z

IR
1

is the anomalous di-
mension which controls the soft singularities of the am-
plitude to all-orders through exponentiation [89, 90]. The
exact form of ZIR is immaterial for the present discussion
and we report it for completeness in the supplemental
material.

We performed several checks on our results. First of
all, we verified that our two-loop amplitudes have the
correct UV and IR behavior, as illustrated above. In ad-
dition, we compared both the bare and the finite remain-
ders of our one-loop amplitudes against OpenLoops [91,
92] and found perfect agreement. We stress here that
the unpolarized finite remainders in Conventional Di-
mensional Regularization equal those in the tHV scheme,
while the bare and UV-renormalized amplitudes in gen-
eral di↵er. The equality of the finite remainders provides
another check of our calculation.

DISCUSSION AND CONCLUSIONS

Our results for the two-loop amplitudes for Bhabha
and Møller scattering are given as generalized series ex-
pansion in x = m/ECM. They are provided as computer-
readable files in the ancillary material of the arXiv sub-
mission for both the polarized and unpolarized scattering
amplitudes. We provide su�ciently high orders to ob-
tain reliable predictions for the low-energy experiments
mentioned in the introduction, where we expect the mass
e↵ects to be the largest. In the following we discuss some
of the phenomenological implications of our results. We
focus here on unpolarized Møller scattering, but all con-
clusions equally apply to Bhabha scattering.

Let us start by assessing the accuracy of the small-
mass expansion. We begin by noticing that we expect the
expansion to become unreliable in the extreme forward or
backward regions, where the coe�cients of the series in x

develop large logarithms in (�t)/s which can invalidate
the convergence of the expansion.1 To quantify the region
of convergence, we compare the exact results for the one-
loop amplitude A

1l
exact

with the corresponding expansion
A

1l
20

to O(x20) and study the ratio �
1l
exact,20 = (A1l

exact
�

A
1l
20
)/A1l

exact
. Depending on the scattering energy ECM =

p
s, we find that �1l

exact,20  1% for di↵erent ranges of the

1 This can be interpreted as a manifestation of the lack of commu-
tativity of the small mass limit with the forward limit.

scattering angle ✓:

ECM = 150m ! 2� < ✓ < 179� ,

ECM = 32m ! 9� < ✓ < 174� , (27)

ECM = 5m ! 70� < ✓ < 130� ,

where the energy values are chosen to match those probed
at present and future experiments. This shows that at
very low energies the expansions must be interpreted with
care outside of the central region. To extend this to the
two-loop amplitudes, we repeat the same analysis at one
and two loops, comparing this time the series expanded
to order 20 with the one expanded to order 18. We find
that the same applies: for L = 1, 2 (ALl

20
� A

Ll
18
)/ALl

20


1% for the same values of ✓ as in (27). In fig. 2 we
display the various orders of the series for the two-loop
amplitude, for di↵erent values of the scattering at the
intermediate energy of ECM = 32m. We highlight the
lack of convergence for ✓ not in the range [9�, 174�] in
the two sub plots.

FIG. 2: Convergence of the mass expansion. Plotted are
the 2-loop finite remainders C†(2)

C
(0) as functions of

scattering angle in degrees, at various truncation orders.

After having assessed the validity of our small-mass
expansions, let us comment on the phenomenological rel-
evance of the mass e↵ects. We only discuss here the mass
e↵ects in the purely virtual corrections. So far two-loop
mass e↵ects had only been included to leading-power,
O(x0). We expect that the finite-mass e↵ects are more
pronounced for small values of ECM. In fig. 2 we see
that, for ECM = 32m, the two-loop leading-power ap-
proximation does not capture the full extend of the mass
e↵ects for ✓ & 150� (for small angles, we are outside the
region of (27)). We therefore expect that in that region
precise NNLO results can only be obtained by including
the subleading terms we have computed. The e↵ect is
even more pronounced for ECM = 5m: in fig. 3 we show
that, even in the range of intermediate angles in (27), the
leading-power approximation does not provide a reliable
prediction of the finite-mass e↵ects. At the same time, we
observe a very nice convergence of the mass expansion,
corroborating that we can provide reliable and precise
predictions for the two-loop corrections even at such low

We are then left with IR poles that are one-loop exact
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UV and IR poles

In this section, we collect useful formulas required to perform the renormalization of the UV poles of the amplitude.
The renormalization constants can be taken from [93–97] and to the required order they read
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where D✏ = e
�E✏�(1 + ✏)

�
µ
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/m

2
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, and the QED beta function coe�cients are given by �0 = �

4

3
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running coupling ↵e(µ) is related to the on-shell coupling ↵ by [98]
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As described in the main text, IR singularities exponentiate in QED in terms of the anomalous dimension Z
IR
1
. For

our process, its explicit form reads
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whose analytic continuation to either Bhabha or Møller scattering can be obtained by giving a positive imaginary
part to the Mandelstam variable that lies above the branch cut.

All master integrals checked versus AMFlow [Liu, Ma ’22]
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From -factorised differential equations, it is “easy” to obtain series expansions in any 
kinematical region 

For most applications the electron mass can be considered small  we perform a small 
mass expansion of the individual master integrals and of the whole amplitude 

 

Coefficients of the series  can be written in terms of harmonic polylogarithms 

Boundary conditions can be all fixed by regularity and eigenvalue conditions (which 
should then be transported to the region )

ϵ

→

𝒜(s, t, m2) = ∑
ijk

(m2)iϵ logj(m2)ϵk A(k)
ij (s, t)

A(k)
ij (s, t)

m2 ≪ s, | t |

[Remiddi, Vermaseren ’19]
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Series converges very well in the bulk of the phase-space, but one must take special care in 
considering forward or backward limit  (scattering angle going to  or )t → 0 or u → 0 0 π

𝒜(s, t, m2) = ∑
ijk

(m2)iϵ logj(m2)ϵk A(k)
ij (s, t)

A(k)
ij (s, t) = ∑

n,m

A(k,n,m)
ij (s) (tn logm(−t/s))

logarithms  can spoil the convergences of the mass expansion 

As expected, “Regge” limit does not commute with small mass limit…

log (−t/s)
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This effect can be seen clearly plotting the  in extreme regions 
(here for Møller scattering)

2Re (𝒞(2)𝒞(0)*)

5

ization we are left with IR poles which are one-loop-exact,

A
OS(↵,m, s, t, ✏) = e

↵
4⇡

ZIR
1

✏ C(↵,m, s, t, ✏) , (26)

where C is the finite remainder function, ↵ is the on-shell
electromagnetic coupling, and Z

IR
1

is the anomalous di-
mension which controls the soft singularities of the am-
plitude to all-orders through exponentiation [89, 90]. The
exact form of ZIR is immaterial for the present discussion
and we report it for completeness in the supplemental
material.

We performed several checks on our results. First of
all, we verified that our two-loop amplitudes have the
correct UV and IR behavior, as illustrated above. In ad-
dition, we compared both the bare and the finite remain-
ders of our one-loop amplitudes against OpenLoops [91,
92] and found perfect agreement. We stress here that
the unpolarized finite remainders in Conventional Di-
mensional Regularization equal those in the tHV scheme,
while the bare and UV-renormalized amplitudes in gen-
eral di↵er. The equality of the finite remainders provides
another check of our calculation.

DISCUSSION AND CONCLUSIONS

Our results for the two-loop amplitudes for Bhabha
and Møller scattering are given as generalized series ex-
pansion in x = m/ECM. They are provided as computer-
readable files in the ancillary material of the arXiv sub-
mission for both the polarized and unpolarized scattering
amplitudes. We provide su�ciently high orders to ob-
tain reliable predictions for the low-energy experiments
mentioned in the introduction, where we expect the mass
e↵ects to be the largest. In the following we discuss some
of the phenomenological implications of our results. We
focus here on unpolarized Møller scattering, but all con-
clusions equally apply to Bhabha scattering.

Let us start by assessing the accuracy of the small-
mass expansion. We begin by noticing that we expect the
expansion to become unreliable in the extreme forward or
backward regions, where the coe�cients of the series in x

develop large logarithms in (�t)/s which can invalidate
the convergence of the expansion.1 To quantify the region
of convergence, we compare the exact results for the one-
loop amplitude A

1l
exact

with the corresponding expansion
A

1l
20

to O(x20) and study the ratio �
1l
exact,20 = (A1l

exact
�

A
1l
20
)/A1l

exact
. Depending on the scattering energy ECM =

p
s, we find that �1l

exact,20  1% for di↵erent ranges of the

1 This can be interpreted as a manifestation of the lack of commu-
tativity of the small mass limit with the forward limit.

scattering angle ✓:

ECM = 150m ! 2� < ✓ < 179� ,

ECM = 32m ! 9� < ✓ < 174� , (27)

ECM = 5m ! 70� < ✓ < 130� ,

where the energy values are chosen to match those probed
at present and future experiments. This shows that at
very low energies the expansions must be interpreted with
care outside of the central region. To extend this to the
two-loop amplitudes, we repeat the same analysis at one
and two loops, comparing this time the series expanded
to order 20 with the one expanded to order 18. We find
that the same applies: for L = 1, 2 (ALl

20
� A

Ll
18
)/ALl

20


1% for the same values of ✓ as in (27). In fig. 2 we
display the various orders of the series for the two-loop
amplitude, for di↵erent values of the scattering at the
intermediate energy of ECM = 32m. We highlight the
lack of convergence for ✓ not in the range [9�, 174�] in
the two sub plots.
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→ e- e-, m=0.511MeV, Ecm=32m
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FIG. 2: Convergence of the mass expansion. Plotted are
the 2-loop finite remainders C†(2)

C
(0) as functions of

scattering angle in degrees, at various truncation orders.

After having assessed the validity of our small-mass
expansions, let us comment on the phenomenological rel-
evance of the mass e↵ects. We only discuss here the mass
e↵ects in the purely virtual corrections. So far two-loop
mass e↵ects had only been included to leading-power,
O(x0). We expect that the finite-mass e↵ects are more
pronounced for small values of ECM. In fig. 2 we see
that, for ECM = 32m, the two-loop leading-power ap-
proximation does not capture the full extend of the mass
e↵ects for ✓ & 150� (for small angles, we are outside the
region of (27)). We therefore expect that in that region
precise NNLO results can only be obtained by including
the subleading terms we have computed. The e↵ect is
even more pronounced for ECM = 5m: in fig. 3 we show
that, even in the range of intermediate angles in (27), the
leading-power approximation does not provide a reliable
prediction of the finite-mass e↵ects. At the same time, we
observe a very nice convergence of the mass expansion,
corroborating that we can provide reliable and precise
predictions for the two-loop corrections even at such low

x =
m

ECM



SMALL MASS EXPANSION & NUMERICAL EVALUATION

Effects are stronger at very low energies ( )ECM = 2.5MeV

x =
m

ECM

6

energies. A full discussion of the size of the NNLO QED
corrections will be presented elsewhere.

e- e-
→ e- e-, m=0.511MeV, Ecm=5m
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FIG. 3: Mass e↵ects at low energies. Plotted are the
1-loop C

†(1)
C
(0) and 2-loop C

†(2)
C
(0) finite remainders as

functions of scattering angle in degrees. The 2-loop
amplitudes are rescaled by a factor of 25.

To conclude, in this letter we have addressed the cal-
culation of the two-loop QED corrections to the scat-
tering of four identical massive leptons, retaining full
dependence on the lepton mass. This constitutes the
last outstanding ingredient necessary to perform NNLO
QED phenomenological studies for standard processes
as Bhabha and Møller scattering. In addition to the
phenomenological interest behind these calculations, the
scattering amplitudes computed in this paper are an im-
portant example of physical processes that receive a non-
trivial contribution from Feynman integrals of elliptic
type. We presented a strategy to compute these am-
plitudes analytically through the di↵erential equations
method and provided a robust numerical implementa-
tion. We demonstrated that for low values of ECM, the
mass e↵ect can be sizeable and is not captured by the
leading-power approximation. We therefore expect that
our results will play an important role in making precise
predictions for lepton collider experiments possible.
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type 

➤ We derived an -factorised basis leveraging new algorithms that can be extended beyond 
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➤ Having differential equations in this form, it becomes in principle straightforward to obtain 
series expansions  

➤ For Bhabha and Møller, we constructed a small mass expansion 

➤ We proved that it converges extremely well in the bulk of the phase space, but non-trivial 
effects can be observed at the boundaries (forward / backward region) 

➤ Next step will be implementation of our results in McMule framework for NNLO studies 
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Stay tuned :-)

and thank you for your attention!


