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INTRODUCTION: BHABHA AND MBLLER SCATTERING
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Basic processes in QED, received a lot of attention since the birth of QFT (see Landau’s fourth book)



INTRODUCTION: HaBHA AND MOLLER SCATTERING

High-energy lepton colliders

e\ e' e e Small angle scattering efficient tool for luminosity determination
,Y* @ lepton colliders (radiative corrections QED dominated)
%
¥ Large angle used to measure integrated luminosity at
\/_ ~ 0O(GeV) colliders (flavour factories BELLE, BABAR, ...) +
o & et et in principle ILC!

Mgller e"e™ — e" e~ .
Low-energy lepton colliders

- Dominant physical process in low-energy electron scattering

e e e e . o o
experiments, also used for luminosity monitoring.
b b Particularly relevant @ PRad-II (attempt to resolve proton radius
] ] ] ] puzzle), and recently measured down to energies of 2.5 MeV (see
c ¢ ¢ c arXiv:1903.09265) — mass effects should not be neglected

Also relevant to measure weak mixing angle ...

Basic processes in QED, received a lot of attention since the birth of QFT (see Landau’s fourth book)



INTRODUCTION: HaBHA AND MOLLER SCATTERING

State-of-the-art in QED (ignoring other EW effects here)
NLO QED effects known exactly in Bhabha and Mgller with full mass dependence

NNLO QED effects with full mass dependence remain elusive due to missing two-
loop amplitudes

Leading order mass effects [Becher, Melnikov ‘07]
Leading power-suppressed mass effects also included [Penin, Zerf ’16]
Next-to-soft stabilisation for real-virtual matrix elements [Banerjee et al *21]

NNLO Mgiller including leading order mass effects & next-to-soft stabilisation [Banerjee et al *22]

Fermionic loop corrections with full mass dependence in Bhabha [Bonciani et al ’15]

To have full control on low energy / small angle regions, full mass dependence desirable
— two-loop amplitudes remains last missing ingredient



INTRODUCTION: History cALCULATION OF TWO-LOOP AMPLITUDE

Full massless two loop amplitudes in terms of HPLs [Bern, Dixon, Ghinculov ’00]
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Form factor integrals and purely fermionic contributions [Bonciani et al *03, *04]
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Form factor integrals and purely fermionic contributions [Bonciani et al *03, *04]

P p1—k1 P
p1—p3—ki
ky ko P1—p3—ki+ky
p1—ps—k
D2 p2+k1 Da

Ten years later, ladder planar integrals in terms of MPLs [Henn, Smirnov, Smirnov ’13]




INTRODUCTION: wistory cALCULATION OF TWO-LOOP AMPLITUDE

Full massless two loop amplitudes in terms of HPLs [Bern, Dixon, Ghinculov ’00]

Form factor integrals and purely fermionic contributions [Bonciani et al *03, *04]

D1 1=k p3
p1—p3—ki

ky ko p1—p3—ki+ko
p1—ps—k
D2 p2+k1 Da

Ten years later, ladder planar integrals in terms of MPLs [Henn, Smirnov, Smirnov ’13]

Elght more years for second planar famlly [Duhr, Smirnov, Tancredi ’21]
d-logs but four square roots not rationalisable simultaneously i
exploiting the fact that they don’t mix, one can write results in terms of MPLs, but extremely cumbersome i




MASSES AND GEOMETRY

What about the non-planar integrals?



MASSES AND GEOMETRY
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What about the non-planar integrals?

Mathematically, things start becoming rather interesting in NPL sector
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MASSES AND GEOMETRY

What about the non-planar integrals?

Mathematically, things start becoming rather interesting in NPL sector

P1 NN p : ps3
5 \\ ’ E
|7
D2 < 5 - 1 . P4
I Dii — Pr=ki-m?  Py= (k1 —ko—p2)®—m?
aijasa3a4a5aa7agag 9 m27 m2 P k2 m2 P (k +p +p ) .
3 — hg — ) 2 1 2) —
9
e ( Q)jg / dezl dPk, H Ps= (ki +p1)% Ps=(ky—k)? P;=(ky—p3)
e =
H iTs iz j:l Py = (ky +p1)*, Po= (k1 —p3)

Algebraically “simple” for today’s standards: 2 dimensionless ratios, “only” 52 masters integrals



MASSES AND GEOMETRY

More in detail

D1 - L p3
5 6 propagator graph: 1110111100
XoONT
6,7 6 master integrals in top sector (+ sub-topologies)
P2 — - — P4
2 4

Leading singularities (maximally iterated integrand residues) fulfil homogeneous
differential equation and can be used to build space of solutions [Primo, Tancredi *16,’17]

Start cutting all propagators (max cut). Convenient in Baikov [Frellesvig, Papadopoulos *17]

MaxCutc [I ] / s
xutce ~ .
110111100 ¢ 20/ (21 — 8 — 22)(21 — s+ 4m2 — 29)\/(tz1 — st + 522)2 — 4m2(t2? + s(t — 22)?)



MASSES AND GEOMETRY

More in detail

D1 - p3
5 6 propagator graph: 1110111100
XoONT
6,7 6 master integrals in top sector (+ sub-topologies)
P2 — - — P4
2 4

Leading singularities (maximally iterated integrand residues) fulfil homogeneous
differential equation and can be used to build space of solutions [Primo, Tancredi *16,’17]

Start cutting all propagators (max cut). Convenient in Baikov [Frellesvig, Papadopoulos *17]

MaxCutc [I ] / s
xutce ~ .
110111100 ¢ 20/ (21 — 8 — 22)(21 — s+ 4m2 — 29)\/(tz1 — st + 522)2 — 4m2(t2? + s(t — 22)?)

/

One extra residue! Max cut is not the end of the story, we can “cut again” taking residue at z, =0



MASSES AND GEOMETRY

More in detail

D1 - L p3
5NN 6 propagator graph: 1110111100
XoONT
6,7 6 master integrals in top sector (+ sub-topologies)
P2 — - — P4
2 4

Leading singularities (maximally iterated integrand residues) fulfil homogeneous
differential equation and can be used to build space of solutions [Primo, Tancredi *16,’17]

Start cutting all propagators (max cut). Convenient in Baikov [Frellesvig, Papadopoulos *17]

le

MaxCute [I110111100] ~ J
¢ \/ (21— $)(z — 5 + dm2)((12) — $1)% — Am2(122 + s12)

left with a one-fold integral on a square root of a quartic polynomial: no extra residue but two independent
branch cuts which provide the solutions to the homogeneous differential equation [Primo, Tancredi ’16,’17]



MASSES AND GEOMETRY

More in detail

P1 - - p3
5 6 propagator graph: I110111100

6, N 6 master integrals in top sector (+ sub-topologies)
P2 ——— — P4

Leading singularities (maximally iterated integrand residues) fulfil homogeneous
differential equation and can be used to build space of solutions [Primo, Tancredi *16,’17]

Geometry is an elliptic curve Periods obtained integrating on two branch cuts

A [Primo, Tancredi *17]
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MASSES AND GEOMETRY

More in detail

P1 - - p3
AN 6 propagator graph: 1110111100

6, N 6 master integrals in top sector (+ sub-topologies)
P2 ——— — P4

Leading singularities (maximally iterated integrand residues) fulfil homogeneous
differential equation and can be used to build space of solutions [Primo, Tancredi *16,’17]

Geometry is an elliptic curve Periods obtained integrating on two branch cuts
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HOW DO WE COMPUTE THESE INTEGRALS?

(Intermezzo on differential equations and canonical forms)



DIFFERENTIAL EQUATIONS

Most powerful technique to compute Feynman integrals: differential equations method

[Kotikov ’93] [Remiddi ’97]
[Gehrmann, Remiddi ’00]

We compute Feynman integrals as series in ¢ = (4 — d)/2



DIFFERENTIAL EQUATIONS

Most powerful technique to compute Feynman integrals: differential equations method

[Kotikov 93] [Remiddi ’97]
[Gehrmann, Remiddi ’00]

We compute Feynman integrals as series in ¢ = (4 — d)/2

Iterative structure in € made manifest by differentiation

(Scalar) Feynman Integrals Basis of Master Integrals (Mls)
L D b b
z"Hdkl AR i e
2m)P D ... D" [=1{I ool
=1 S " Integration by Parts etc I=th@e)s. vz o)

with S; € {k;- k;.....k; - p;}

[ﬁ dPk, 9 St Sbn .
\% =
L @mP ok | M D{... Dy



DIFFERENTIAL EQUATIONS

Most powerful technique to compute Feynman integrals: differential equations method

[Kotikov ’93] [Remiddi ’97]
[Gehrmann, Remiddi ’00]

By differentiating and reducing to masters we obtain a linear system of differential equations

dl = GM (z,€)1 In this form, iterative structure hidden in arbitrary dependence on ¢



DIFFERENTIAL EQUATIONS

Most powerful technique to compute Feynman integrals: differential equations method

[Kotikov ’93] [Remiddi ’97]
[Gehrmann, Remiddi ’00]

By differentiating and reducing to masters we obtain a linear system of differential equations

dl = GM (z,€)1 In this form, iterative structure hidden in arbitrary dependence on ¢

Imagine to be able to perform a series of rotations R; on the original basis

J=R(z,e)] with R(z,¢) =R,(z,¢)---Ra(z,¢6)R1(z,€)

Such that

dJ =eGM (2)J, where eGM (z) = [R(z,¢)GM(z,¢€) + dR(z,€)]R(z,¢) !



DIFFERENTIAL EQUATIONS

Most powerful technique to compute Feynman integrals: differential equations method

[Kotikov ’93] [Remiddi ’97]
[Gehrmann, Remiddi ’00]

dJ =eGM (z)J, where eGM (z) = [R(z,6)GM(z,¢€) + dR(z, €)] R(z,€)*

1

Since GM(z) does not depend on €, the iterative structure in € becomes manifest

We refer to such a basis as in epsilon-factorised form  [Kotikov ’10; J. Henn 13; Lee ’13, ... ]



CANONICAL AND EPS-FACTORISED BASES

What can we say about GM(z) ?

d._] =€ GM(_Z)_] - Is GM(z) unique ?

- Are there e-factorised bases that are better than others?

—_— Can we define an optimal basis of master integrals for a given problem?

We understand the problem well in the polylogarithmic case
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What can we say about GM(z) ?

d._] =€ GM(_Z)_] - Is GM(z) unique ?

- Are there e-factorised bases that are better than others?

—_— Can we define an optimal basis of master integrals for a given problem?

We understand the problem well in the polylogarithmic case

n .
if

]N/Hdg;if(g;ijz) — NZCinlogﬁinlogﬁi...[dlogfn"; ¢, € Q

1=1 can be written as T

Leading Singularities ~ iterative residues
of the integrand in all integration variables

Conjecturally, these integrals fulfil canonical differential equations [Arkani Hamed et al *10; Kotikov ‘10; J. Henn *13]



CANONICAL BASES: 1 porvLocariamic case

I ~ /dei;r(xi,g) —_— ~ Zcijdlogﬁ[dlogg...Jdlogf,j; ¢, €Q
1=1

can be written as !

Leading Singularities ~ iterative residues
of the integrand in all integration variables

Conjecturally, these integrals fulfil canonical differential equations [Arkani Hamed et al ’10; Kotikov ‘10; J. Henn *13]

Recipe (in a nutshell):
1. choose integrals whose integrands have only simple poles and are in d-log form

2. choose integrals whose iterated residues at all simple poles can be normalized to numbers

[Arkani-Hamed et al’10; Henn, Mistlberger, Smirnov, Wasser ’20]



CANONICAL BASES: 1 porvLocariamic case

What do these conditions imply?

Toodt
G(cl,@,...,cn,x):/ . G(ca, ..., Cn,yt1)

o t1—C1

B /”’ dt, /tl dts /tn—l dt,,
0 tl—Cl 0 tQ_CQ.“ 0 tn—Cn

n = number of integrations or transcendental weight

MPLs are iterated integrals over d-log forms (with rational entries)

The requirements before, guarantees that Feynman integrals are written as pure,
uniform weight combinations of MPLs

Note: this makes sense, since forms with single poles span the full first de Rham cohomology,
or in other words MPLs are generated by dlogs!



BEYOND POLYLOGARITHMS: concepruaL niFrerences

Even with MPLs, insisting on simple poles in the integrand (neglecting integration contour) is too strong
of a requirement, as it forces us to exclude any squared propagator!

Physics:
Double poles often imply power-like singularities in the IR which should be excluded in gauge theories

—P  Typically true when dealing with massless propagators

Massive propagators can be squared at will, without changing IR behaviour and (actually)
improving UV behaviour



BEYOND POLYLOGARITHMS: concepruaL niFrerences

Even with MPLs, insisting on simple poles in the integrand (neglecting integration contour) is too strong
of a requirement, as it forces us to exclude any squared propagator!

Physics:

Double poles often imply power-like singularities in the IR which should be excluded in gauge theories

—P  Typically true when dealing with massless propagators

Massive propagators can be squared at will, without changing IR behaviour and (actually)
improving UV behaviour

Mathematics:

Differential forms with simple poles are intrinsically not enough to span full space for more general
problems (elliptic curves or Tori, K3, Calabi-Yaus etc)

—P  Think about independent integrands in the elliptic case:

1

dt by —xt?
K(x) = J has no poles while E(x) = J dt =" has double pole at infinity
0 /(I =2)(1 = x?) 0o y1-1¢2



A DIFFERENT PERSPECTIVE ON MPLS?



UNIPOTENT FUNCTIONS AND DIFFERENTIAL EQUATIONS

Canonical integrals in polylogarithmic case give rise to pure combinations of MPLs

Todty
G(cy,ca,...,Ccp, @) =
(c1,co Cny T) /0 rm—

B /"” dtq /tl dts /tn—l dt,,
0 tl—Cl 0 tQ—CQ.” 0 tn—Cn

[...,Remiddi, Vermaseren 99, Goncharov ’00,...]

G(ca, ...y Cpyty)

MPLs are unipotent: they fulfil particularly simple differential equations

d 1
—G(cyy - - - Cp3X) = G(cy, .., C,; X) by diff. we lower the weight & length
dx X —




UNIPOTENT FUNCTIONS AND DIFFERENTIAL EQUATIONS

Canonical integrals in polylogarithmic case give rise to pure combinations of MPLs

Toodt
G(cl,CQ,...,cn,x):/ ! G(ca, ...y Cpyty)
0

1 — 1

B /x dtq /tl dts /tn—l dt,,
0 tl—Cl 0 tQ—CQ.” 0 tn—Cn

[...,Remiddi, Vermaseren 99, Goncharov ’00,...]

MPLs are unipotent: they fulfil particularly simple differential equations

d 1
—G(cpy...,C5%) =
dx X —

G(cy,...,Cp5%) by diff. we lower the weight & length

General definition is: W" unipotent if it fulfils system of diff equations with Nilpotent matrices

l

<ZU dzz> Where U/(z) are Nilpotent matrices: U;- U;- -+- - U; =0




BEYOND POLYLOGARITHMS: concepruaL niFrerences

Same condition is fulfilled by Elliptic polylogarithms (eMPLs)

[Brown Levin ’11; Brodel, Mafra, Matthes, Schlotterer ’14]
[Brodel, Dulat, Duhr, Penante, Tancredi ’17, ’18]

We can insist on single poles < logarithmic singularities (Gauge Theory)

X
Eslel ekix,ad) = / dt Wy, (c1,t,a@) E4( 2 ek st, )
0

Price to pay: infinite tower of transcendental kernels [can’t be obtained from “residue of integrand”]

Still fulfil unipotent diff equation: at the basis of definition of symbol! (Z U, ( de) )



CAN WE USE THE UNIPOTENCE CONDITION?



EXAMPLE: powvLosarmmic case

It works in the (simple) polylogarithmic case: Sunrise with 2 massive and 1 massless propagator

It =1p1100, Io=1I11100 and I3=111200

Differential equations read: dI = [AO + €A1] Ji

5. | 1 —s+10m?
3 m2(s—4m?) m?2(s—4m?)

QX X

y

9,
Homogeneous equation in d=2 Im2 (
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It works in the (simple) polylogarithmic case: Sunrise with 2 massive and 1 massless propagator

It =1p1100, Io=1I11100 and I3=111200

Differential equations read: dI = [AO + €A1] Ji

o 0 (J2) _ 0 2
Homogeneous equation in d=2 Im2 35 | 1 —s5+10m?

m2(s—4m?) m?2(s—4m?)

QX X

y

Matrix of homogeneous solutions contains algebraic functions and logs

( 1 L s — r(s,m?) \
r(s, m2) r(s, m2) 0g s+ r(s,m?)
dW =AW — W= , with  r(s,m?) = \/S(S — 4m?)
s 10g < s — r(s, m2) >
s s s + r(s, m#)

\ r(s,m2)3  2m2r(s,m?)? r(s, m2)3 )




EXAMPLE: powvLosarmmic case

It works in the (simple) polylogarithmic case: Sunrise with 2 massive and 1 massless propagator

It =1p1100, Io=1I11100 and I3=111200

Differential equations read: dI = [AO + €A1] Ji

o 0 (J2) _ 0 2
Homogeneous equation in d=2 Im2 35 | 1 —s5+10m?

m2(s—4m?) m?2(s—4m?)

y

QX X

Matrix of homogeneous solutions contains algebraic functions and logs

Since differential equations are linear in €, we could be “tempted” to just “rotate W away”
dl = [A)@) +e AT —> I=W-J df=¢ |W-A@) W J

New matrix not in dlog form (logs not dlogs !) and basis J is not pure combination of UT MPLs...



EXAMPLE: powvLosarmmic case

Instead, we will rotate away only a “part” of the homogeneous solution:

Split it in semi-simple and unipotent W= Wws.w"

1 s—r(s,m?)
WSS = 7“(5?7/2) (1) and WY = 1 log (S—I-T(Samz)) r(s,m?) = \/s(s — 4m?)
r(s,m?)3 2m?2(s—4m?) 0 1

SN

unipotent part contains transcendental solution

only algebraic part in semi-simple matrix



EXAMPLE: powvLosarmmic case

Instead, we will rotate away only a “part” of the homogeneous solution:

Split it in semi-simple and unipotent W= Wws.w"

1 s—r(s,m?)
WSS = 7“(5?12) (1) and WY = 1 log <3—|—r(s,m2)) r(s,m?) = \/s(s — 4m?)
r(s,m?)3 2m?2(s—4m?) 0 1

SN

unipotent part contains transcendental solution

only algebraic part in semi-simple matrix

1 00
Rotate away only semi-simple part I'=10 (W)~ L
0

End basis corresponds to matrix W*: one master has weight 0, the other has weight 1, weight
mixing disentangled —> this behaviour is typical at a so-called MUM point (Maximal Unipotent
Monodromy), which is well understood for elliptic curves and Calabi-Yau generalizations !



EXAMPLE 1: powvLocarmumic case

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Clean up remaining non-factorised dependence with a rotation T = |0 1 0 0 €0
0 _ 2(s+2m?) 1 00 ¢
r(s,m?)

dJ = e GM‘J with J=(Ji,Js,J3) =TI,

—20&1 0 0
GM* = 0 2041 — X2 — 3043 g
2001 — 2009 —06ay —3aq + o

o 2
0 = dlog(m2) , ag =dlog(s), ag=dlog (3 — 4m2) , a4 = dlog (z n :EZZQ;)



EXAMPLE 1: powvLocarmumic case

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Clean up remaining non-factorised dependence with a rotation T = |0 1 0 0 €0
02220 1) \0 0«

dJ = e GM‘J with J=(Ji,Js,J3) =TI,

—20&1 0 0
GM* = 0 2041 — X2 — 3043 g
2001 — 2009 —06ay —3aq + o

o 2
0 = dlog(m2) , ag =dlog(s), ag=dlog (3 — 4m2) , a4 = dlog (z n :Ei::%)

NB: by analysing leading singularities with DLogBasis find the same basis up to constant rotation!
[P. Wasser ’19,’20]
Ji=My, Jo=DMy, J3=—-M+3Ms;



STRATEGY SUCCESSFUL IN MANY NON-TRIVIAL CASES

ki+ka—p




BACK TO MASTER INTEGRALS FOR BHABHA AND MBLLER

Following the strategy above, we obtain a fully e-factorised system of differential equations

Boundary conditions can be fixed by using regularity conditions (absence of pseudo thresholds)
or, equivalently, large mass expansion

The result can then be written in terms of iterated integrals over many differential forms which
involve the period and quasi period of the elliptic curve, and integrals over it

—Z, 9 2442y —y? —z—yt
T = [dy|—(4 dy(z — 4 —4))V =V4 — zv/— — v
02) = [y | 2 4 aye = ) 4o - ) Ta(y,9) VT avz [ dy |2V 222y,
Ltz 4(y+2) 1
8z Iy 0y Vo §z(1—|—y)8y\1!o + V=24 — 2dz | ¥
—z —48 + 4y +2y* + 122 + yz y—4 (y—4)y(l+y)
v v
+dzl4—z z+y—4 0 8 2(y+ 2z —4) 2(—4—|—2y—|—z)8y )1



BACK TO MASTER INTEGRALS FOR BHABHA AND MBLLER

Following the strategy above, we obtain a fully e-factorised system of differential equations

Boundary conditions can be fixed by using regularity conditions (absence of pseudo thresholds)
or, equivalently, large mass expansion

The result can then be written in terms of iterated integrals over many differential forms which
involve the period and quasi period of the elliptic curve, and integrals over it

_ R a2 . (s — ) = 7 E4—|—2y—y2—z—yt
Tl(y,Z)—/dy{y(lly +4y(z —4) + 2(z — 4))¥o Ta(y,2) =V — 2V /dy[y OE TR

L yt+z—4)(y+=2) 1
8z Iy 0y Vo —§z(1—|—y OyWo| +V—2V4 — 2dz|¥g
+dz[ —2 —48—|—4y7t2y2—|—12z—|—y %} (y = +y)8%)]

+
4 —z +y—4 2(y + z — (—4+2y+2) "7

quasi-period period



BACK TO MASTER INTEGRALS FOR BHABHA AND MBLLER

These differential forms look pretty complicated (and there are worse ones) but they can be simplified!

Go to canonical coordinates of elliptic curve

1 — 1 1 — 72

y =m0+t Z:4t4(2 ;172)
by — xe —t] ) :
2(x* — ty
Wo(ata) = 25 k()
In these variables, integrals become “simple” and we find
Ti(x,ts) =8t K(t4) (1 — t)F(x, 1) — 2 —1 where
1(T,l4) =04 . 4 T,14 (1—|—t4)Y :

O f = 2=t K(t
2 _7'(' 1+ 1ty tas — x 4 o

.F(il?, t4) = K(t4)8t4

dX

1 X
K(ts) /_1 VX2 - 1D)(X2 —ty)

(Derivative of) Abel’s Map



BACK TO MASTER INTEGRALS FOR BHABHA AND MBLLER

These differential forms look pretty complicated (and there are worse ones) but they can be simplified!

Go to canonical coordinates of elliptic curve

(1 — CE)(l —|—t4)
t4—CB

t4(1 — 5172)
r? — t4

Yy =2 ., z=4

Similarly, all other differential forms become products of | {vz2 —1, Va2 —tsa, V1 + s, Vs, VI —t4}

{K(t4) ) f(t4) ) f(x7t4)}
2
S

where b —

F(x,ty) :K(t4)8t4

1 v dX
/ V(X2 —1)(X2 —ty) Total of 87 differential forms
~ “letters of the alphabet” ?

O, | = 2\/5(11?:751)3/2 K(t4)




BACK TO MASTER INTEGRALS FOR BHABHA AND MBLLER

These differential forms look pretty complicated (and there are worse ones) but they can be simplified!

Go to canonical coordinates of elliptic curve

1 —x)(1+4ty)

y=2(

) 2
ty — T x? — tg

Sirps

checked agains AMFlow [Liu, Ma ’22] in different kinematic regions (Bhabha and Mgller)

O f = 214 K(t4)

Vita(14t4)3/2



WHAT ABOUT THE AMPLITUDE?



AMPLITUDES AND TENSOR DECOMPOSITION

We use the fact that equal lepton scattering (Bhabha & Mgller) can be obtained
from scattering of different flavour by crossing, schematically:

(ete™ = ete™) = (efe] = efer) + (s & 1)

We perform a tensor decomposition with external states in D = 4 dimensions to retain
full dependence on the electron polarizations [Peraro, Tancredi 19, *21]

8
A(16+726_736_746+) — ZJT:Z Tz
1=1

By working in D = 4, we are guaranteed to have as many tensors as many different
polarizations: 16/2 = 8, only a physically relevant number of combinations is computed



AMPLITUDES AND TENSOR DECOMPOSITION

Tensor structures can be chosen conveniently as follows:

3
A(16+726_736_746+) — ZFZ Tz
1=1

t: = Uo(pa) T Vo (p1) x Ual(ps) TPV,
(p2) I Ve(p1) (p3) I';™ Ve(pa) I, — 1 @)

Ty =m? x ty, To =m X [ty + t3] 'y ={1,1}, Ly ={p,,1},
T3 =14, Ty =m® X t5, Is =11.9,}, Ly =Wy st
Ts =m X [t +t7] +ts, To=m X [tg+ t7] — ts s ={v"" %} Lo = {p, 7" Y } -
Tr =m X [ty — t3] | Ts =m X [tg — t7] Lo ={v" Pyt Ts={p7"" Pyru}

Two tensors are odd under p, < p; p; < p,, under which the amplitude must be invariant,
which implies that &, = %3 = 0 to all orders in perturbation theory!

Note: with this choice, we obtain amplitude directly in tHV scheme [Peraro, Tancredi ’19, ’21]



AMPLITUDES AND TENSOR DECOMPOSITION

From the form factors one can easily obtained both polarized and unpolarized amplitudes

We use standard programs QGRAF, FORM, Mathematica, Reduze2, Kira (with FireFly)

/ [Vermaseren] l [Meierhofer, Usovitsch; Klappert et al]

[Nogueira]
[Manteuffel, Studerus]

This allows us to easily express our amplitudes in terms of master integrals

All in all, including planar integrals and crossings, there are 252 masters

PL integrals can be expressed as MPLs. NPL integrals as iterated integrals over elliptic
differential forms. Before discussing evaluation strategy, what checks have we done?



CHECKS: UV & IR FACTORIZATION

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

All master integrals checked versus AMFlow [Liu, Ma *22]

UV renormalization requires renormalizing coupling, electron mass and wave function.
We perform renormalization on-shell

We are then left with IR poles that are one-loop exact

a IR
4 Zl

A% (a,m,s,t,e) =e <« Cla,m,s,t,€)

g _ A2mits) (0 s 1 fos [ s
L/ TsvAm? — s 2m? 2\ m? m?




SMALL MASS EXPANSION & NUMERICAL EVALUATION

From e-factorised differential equations, it is “easy” to obtain series expansions in any
kinematical region



SMALL MASS EXPANSION & NUMERICAL EVALUATION

From e-factorised differential equations, it is “easy” to obtain series expansions in any
kinematical region

For most applications the electron mass can be considered small — we perform a small
mass expansion of the individual master integrals and of the whole amplitude

A(s.t,m?) =Y (m?) loglm?)e" A(s, 1)
ik

Coefficients of the series Ag‘)(s, f) can be written in terms of harmonic polylogarithms

[Remiddi, Vermaseren ’19]

Boundary conditions can be all fixed by regularity and eigenvalue conditions (which
should then be transported to the region m? < s, | ¢|)



SMALL MASS EXPANSION & NUMERICAL EVALUATION

Series converges very well in the bulk of the phase-space, but one must take special care in
considering forward or backward limit 1 — 0 or u — 0 (scattering angle going to O or x)



SMALL MASS EXPANSION & NUMERICAL EVALUATION

Series converges very well in the bulk of the phase-space, but one must take special care in
considering forward or backward limit t - 0 or u — 0O (scattering angle going to O or )

(s, t,m?) = Y (m) logim?)ek AP(s, 1

ijk l

AB(s,1) = Y AL™™(s) (1" log"(~1s))

n,m

logarithms log (—1/s) can spoil the convergences of the mass expansion

As expected, “Regge” limit does not commute with small mass limit...



SMALL MASS EXPANSION & NUMERICAL EVALUATION

00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

This effect can be seen clearly plotting the 2Re (%(2)%(0)*) in extreme regions
(here for Mgller scattering)
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SMALL MASS EXPANSION & NUMERICAL EVALUATION

Effects are stronger at very low energies (£, = 2.5MeV)

Here compare 2Re (‘5(1)%(0)*) expanded versus exact, and separately 2Re (%(2)%(0)*) function of 6

m
e e - e e, m=0.511MeV, E.,=5m X=—E
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- | e - 8—y0
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~0.0005 |
i — a*—x"
~0.0010 L o
. s
- . 16 2 loop
~0.0015 - —_—— X
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80 90 100 110 120 130 A at—x?Y

2-loop amplitudes are magnified by factor 25!



CONCLUSIONS AND OUTLOOK

» Bhabha and Mgller scattering are fundamental “standard candles” in QED, both for
phenomenological applications and as experimental ground for new techniques

» Pushing the calculation to two loops required new techniques to handle integrals of elliptic
type

» We derived an e-factorised basis leveraging new algorithms that can be extended beyond
polylogs

» Having differential equations in this form, it becomes in principle straightforward to obtain
series expansions

» For Bhabha and Mgller, we constructed a small mass expansion

» We proved that it converges extremely well in the bulk of the phase space, but non-trivial
effects can be observed at the boundaries (forward / backward region)

> Next step will be implementation of our results in McMule framework for NNLO studies
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» Bhabha and Mgller scattering are fundamental “standard candles” in QED, both for
phenomenological applications and as experimental ground for new techniques

» Pushing the calculation to two loops required new techniques to handle integrals of elliptic
type

» We derived an e-factorised basis leveraging new algorithms that can be extended beyond
polylogs

» Having differential equations in this form, it becomes in principle straightforward to obtain
series expansions

» For Bhabha and Mgller, we constructed a small mass expansion

» We proved that it converges extremely well in the bulk of the phase space, but non-trivial
effects can be observed at the boundaries (forward / backward region)

> Next step will be implementation of our results in McMule framework for NNLO studies

Stay tuned :-)

and thank you for your attention!



