ALGORITHMS FOR NNLO QCD-EW AND EW CALCULATIONS IN $2 \rightarrow 2$ PROCESSES

GHENT UNIVERSITY

FACULTY OF SCIENCES Simone Devoto

European Research Council

In collaboration with: T. Armadillo, R. Bonciani, M. Dradi, N. Rana, A. Vicini

THE FUTURE OF LHC

LHC / HL-LHC Plan

- Run3 at LHC: factor of 2 increase of the data set;
- High Luminosity program(HL-LHC): factor of 10 increase of the data set;
- Dramatic experimental improvement, with an expected goal of 1% precision or better in a key set of observables (1‰ at FCC!)

WHY NNLO EW?

- Theoretical predictions need to match experimental precision.
- Precision tests of the Standard Model will need the computation of N3LO QCD, NNLO EW and mixed NNLO QCDxEW corrections.
- The computation of NNLO EW corrections will be relevant for observables at high invariant masses at LHC and will play a crucial role in the study of key processes (e.g. single boson, diboson, top pair proaction...) at future lepton collider (e⁺e⁻ phase of FCC?).
- One of the main bottlenecks in the computation of higher order corrections is the evaluation of the required two loop virtual amplitudes.

EXTRA CHALLENGES OF NNLO EW

What makes NNLO EW challenging?

additional internal massive lines; additional scales in the problem (m_Z, m_W, m_H...) bring additional complications!

• treatment of γ_5 ; how can γ_5 be consistently used in dimensional regularisation?

need for the complex mass scheme; requires to analytically continue the master integrals on the complex plane of the kinematical invariants!

CONTENTS

 Our Workflow: the building blocks;

- ABISS;
- SEASYDE;
- NNLO QCDxEW: a first application;
 - Neutral Current Drell-Yan;
 - Charged Current Drell-Yan;
- Towards NNLO EW; Future challenges.

OUR WORKFLOW THE BUILDING BLOCKS

STRUCTURE OF A LOOP COMPUTATION

STRUCTURE OF A LOOP COMPUTATION

OUR WORKFLOW

[T. Armadillo, R. Bonciani, **SD**, N.Rana, A.Vicini, arXiv:2205.03345]

The latest version of SEASYDE can be downloaded from: <u>https://github.com/</u> <u>TommasoArmadillo/SeaSyde</u>

- SEASYDE(Series Expansion Approach for SY stem of Differential Equations) is a MATHEMATICA package for solving the system of differential equation, associated to the Master Integrals of a given topology.
- SEASYDE can handle any system of coupled differential equations.
- The method used to solve the system of differential equations is the series expansion approach, providing a semi-analytical solution.

Numerical Result

Monte Carlo integration or similar techniques.

Analytical Result

The result of the master integral can be expressed in closed form as a combination of elementary and special functions, whose **power expansion and functional relations are known**.

Semi-Analytical Result

The result of the master integral can be expanded as a power series at every point of its domain, but <u>without</u> any additional functional relations.

We solve the master integral with **series expansion**!

Method implemented in the Mathematica package DiffExp for real kinematic variables [F.Moriello, arXiv:1907.13234], [M.Hidding, arXiv:2006.05510] (see also AMFLOW [X. Liu and Y.-Q. Ma, arXiv: 2201.11669])

A Simple Example

$$\begin{cases} f'(x) + \frac{1}{x^2 - 4x + 5} f(x) = \frac{1}{x + 2} \\ f(0) = 1 \end{cases}$$

$$f_{hom}(x) = x^r \sum_{k=0}^{\infty} c_k x^k$$

$$f'_{hom}(x) = \sum_{k=0}^{\infty} (k + r) c_k x^{(k+r-1)}$$

$$\begin{cases} rc_0 = 0 \\ \frac{1}{5}c_0 + c_1(r+1) = 0 \\ \frac{4}{25}c_0 + \frac{1}{5}c_1 + c_2(2 + r) = 0 \\ \dots \end{cases}$$

$$f_{hom}(x) = 5 - x - \frac{3}{10}x^2 + \frac{11}{150}x^3 + \dots$$

Expanded around $x' = 0$

$$f_{part}(x) = f_{hom}(x) \int_0^x dx' \frac{1}{(x'+2)} f_{hom}^{-1}(x')$$

$$= \frac{1}{2}x - \frac{7}{40}x^2 + \frac{2}{75}x^3 + \dots$$

$$f(x) = f_{part}(x) + Cf_{hom}(x)$$

$$f(0) = 1 \to C = \frac{1}{5}$$

J

- Starting from NNLO EW, a Gauge invariant definition of the mass requires the introduction of the complex mass scheme;
- ► We introduce the complex mass $\mu_V^2 = m_V^2 i\Gamma_V m_V$;
- > The complex mass scheme regularise the behaviour at the resonance: $\frac{1}{5}$
- $\frac{1}{s-\mu_V^2+i\delta} ;$

► the adimensional kinematical variables become complex valued: $\tilde{s} = \frac{s}{m_V^2} \rightarrow \frac{s}{\mu_V^2}$

QCD meets EW, 08.02.2024 - Simone Devoto 13

- We generalised the series expansion method to arbitrary complex-valued masses —>complex plane of the kinematical invariants!
- ► The radius of convergence of the series is limited by the presence of **poles**;
- "Transport" of the boundary conditions need to consider branch-cuts.

- We generalised the series expansion method to arbitrary complex-valued masses —>complex plane of the kinematical invariants!
- ► The radius of convergence of the series is limited by the presence of **poles**;
- "Transport" of the boundary conditions need to consider branch-cuts.

- We generalised the series expansion method to arbitrary complex-valued masses —>complex plane of the kinematical invariants!
- ► The radius of convergence of the series is limited by the presence of **poles**;
- "Transport" of the boundary conditions need to consider branch-cuts.

- We generalised the series expansion method to arbitrary complex-valued masses —>complex plane of the kinematical invariants!
- ► The radius of convergence of the series is limited by the presence of **poles**;
- "Transport" of the boundary conditions need to consider branch-cuts.

- We generalised the series expansion method to arbitrary complex-valued masses —>complex plane of the kinematical invariants!
- ► The radius of convergence of the series is limited by the presence of **poles**;
- "Transport" of the boundary conditions need to consider branch-cuts.

TAYLOR VS LOGARITHMIC EXPANSION

- ► **Taylor expansion**: **avoids** the singularities;
- ► Logarithmic expansion: uses the singularities as expansion points.
- Logarithmic expansion has larger convergence radius but requires longer evaluation time. We use Taylor expansion as default.

QCD meets EW, 08.02.2024 - Simone Devoto 15

AMFLOW

AMFLOW

- Mathematica package that independently implements the series expansion method;
- by using the auxiliary mass flow method automatically obtains the boundary conditions of any master integral:

$$I_{aux}(\alpha_i; s_j, d, \eta) = \int \prod_{k=1}^l \frac{d^d q_k}{i\pi^{d/2}} \frac{1}{(\mathscr{D}_1 - i\eta)^{\alpha_1} \dots (\mathscr{D}_n - i\eta)^{\alpha_n}}$$

the **auxiliary integral** is analytically solved in the limit $\eta \to \infty$ and then evolved to the physical value with the differential equation in η .

It is an important tool at our disposal: it guarantees we can <u>always</u> find the boundary condition for our system of differential equations!

NNLO QCDXEW A FIRST APPLICATION

 $q(p_1) + \bar{q}(p_2) \rightarrow l^-(p_3) + l^+(p_4) = \sigma^{(0,0)}$ Drell-Yan (1970)

$$q(p_1) + \bar{q}(p_2) \rightarrow l^-(p_3) + l^+(p_4) = \sigma^{(0,0)}$$
 Drell-Yan (1970)

credits: xkcd (2605)

TAYLOR SERIES EXPANSION IS THE WORST.

+
$$\alpha_{S} \sigma^{(1,0)}$$
 + $\alpha \sigma^{(0,1)}$
+ $\alpha_{S}^{2} \sigma^{(2,0)}$ + $\alpha \alpha_{S} \sigma^{(1,1)}$ + $\alpha^{2} \sigma^{(0,2)}$
+ $\alpha_{S}^{3} \sigma^{(3,0)}$ + ...

QCD MIXED EW

$q(p_1) + \bar{q}(p_2) \rightarrow l^-(p_3) + l^+(p_4) =$ **QCD CORRECTIONS**

+
$$\alpha_S \sigma^{(1,0)}$$
 + $\alpha \sigma^{(0,1)}$
+ $\alpha_S^2 \sigma^{(2,0)}$ + $\alpha \alpha_S \sigma^{(1,1)}$ + $\alpha^2 \sigma^{(0,2)}$
+ $\alpha_S^3 \sigma^{(3,0)}$ + ...

NLO:

[G.Altarelli, R.Ellis, G.Martinelli Nucl.Phys.B 157 (1979)];

NNLO:

[R.Hamberg, T.Matsuura, W.van Nerveen, Nucl. Phys. B 359 (1991)];

[C.Anastasiou, L.J.Dixon, K.Melnikov, F.Petriello, hep-ph:0306192]; [S.Catani, L.Cieri, G.Ferrera, D.de Florian, M.Grazzini arXiv:0903.2120];

N3LO:

(0,0)

[C.Duhr, F.Dulat, B.Mistlberger arXiv:2007.13313];
[X.Chen, T.Gehrmann, N.Glover, A.Huss, T.Yang, and H.Zhu arXiv:2107.09085];
[S.Camarda, L.Cieri, G.Ferrera arXiv:2103.04974];
[X.Chen, T.Gehrmann, N.Glover, A.Huss, P.Monni, E.Re, L.Rottoli, P.Torrielli arXiv:2203.01565];
[T.Neumann, J.Campbell arXiv:2207.07056]

$$\begin{split} q(p_1) + \bar{q}(p_2) &\rightarrow l^-(p_3) + l^+(p_4) &= \sigma^{(0,0)} \\ \hline & \textbf{EW CORRECTIONS} &+ \alpha_S \sigma^{(1,0)} + \alpha \sigma^{(0,1)} \\ &+ \alpha_S^2 \sigma^{(2,0)} + \alpha \alpha_S \sigma^{(1,1)} + \alpha^2 \sigma^{(0,2)} \\ &+ \alpha_S^3 \sigma^{(3,0)} + \dots \end{split}$$

► NLO corrections known;
[U.Baur, O.Brein, W.Hollik, C.Schappacher, D.Wackeroth, hep-ph:0108274];

[S.Dittmaier, M.Kramer, hep-ph:0109062]; [U.Baur, D.Wackeroth, hep-ph:0405191];

NNLO corrections still missing (available Sudakov high energy approximation).

[B. Jantzen, J.H.Kühn. A.A.Penin, V.A.Smirnov, hep-ph:0509157];

$$q(p_1) + \bar{q}(p_2) \rightarrow l^-(p_3) + l^+(p_4) = \sigma^{(0,0)}$$

$$\textbf{MIXED CORRECTIONS} + \alpha_S \sigma^{(1,0)} + \alpha \sigma^{(0,1)}$$

$$+ \alpha_S^2 \sigma^{(2,0)} + \alpha \alpha_S \sigma^{(1,1)} + \alpha^2 \sigma^{(0,2)}$$

$$+ \alpha_S^3 \sigma^{(3,0)} + \dots$$

► Recently computed

[R.Bonciani, L.Buonocore, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano, A.Vicini, arXiv:2106.11953] [F.Buccioni, F.Caola, H.Chawdhry, F.Devoto, M.Heller, A.von Manteuffel, K.Melnikov, R.Röntsch, C.Signorile-Signorile, arXiv:2203.11237]

RECENT PROGRESSES IN MIXED CORRECTIONS

Theoretical Developments

2-loop virtual Master Integrals with internal masses [U. Aglietti, R. Bonciani, arXiv:0304028, arXiv:0401193], [R. Bonciani, S. Di Vita, P. Mastrolia, U. Schubert, arXiv:1604.08581], [M.Heller, A.von Manteuffel, R.Schabinger arXiv:1907.00491], [M.Long, R, Zhang, W.Ma, Y, Jiang, L.Han, Z.Li, S.Wang, arXiv:2111.14130], [X.Liu, Y.Ma, arXiv:2201.11669]

- Altarelli-Parisi splitting functions including QCD-QED effects [D. de Florian, G. Sborlini, G. Rodrigo, arXiv:1512.00612]
- Renormalisation [G.Degrassi, A.Vicini, hep-ph/0307122], [S.Dittmaier, T.Schmidt, J.Schwarz, arXiv:2009.02229], [S.Dittmaier, arXiv:2101.05154]
- On-shell Z and W production
 - pole approximation of the NNLO QCD-EW corrections [S.Dittmaier, A.Huss, C.Schwinn, arXiv:1403.3216, 1511.08016]
 - analytical total Z production cross section including NNLO QCD-QED corrections [D. de Florian, M.Der, I.Fabre, arXiv:1805.12214]
 - fully differential on-shell Z production including exact NNLO QCD-QED corrections [M.Delto, M.Jaquier, K.Melnikov, R.Roentsch, arXiv:1909.08428] [S.Hasan, U.Schubert, arXiv:2004.14908]
 - analytical total Z production cross section including NNLO QCD-EW corrections [R. Bonciani, F. Buccioni, R.Mondini, A.Vicini, arXiv:1611.00645], [R. Bonciani, F. Buccioni, N.Rana, I.Triscari, A.Vicini, arXiv:1911.06200], [R. Bonciani, F. Buccioni, N.Rana, A.Vicini, arXiv:2007.06518, arXiv:2111.12694]
 - fully differential Z and W production including NNLO QCD-EW corrections [F. Buccioni, F. Caola, M.Delto, M.Jaquier, K.Melnikov, R.Roentsch, arXiv:2005.10221], [A. Behring, F. Buccioni, F. Caola, M.Delto, M.Jaquier, K.Melnikov, R.Roentsch, arXiv:2009.10386, 2103.02671]

► <u>Complete Drell-Yan</u>

- neutrino-pair production including NNLO QCD-QED corrections [L. Cieri, D. de Florian, M.Der, J.Mazzitelli, arXiv:2005.01315]
- **2-loop amplitudes** [M.Heller, A.von Manteuffel, R.Schabinger, arXiv:2012.05918], [T.Armadillo, R.Bonciani, SD, N.Rana, A.Vicini, arXiv:2201.01754]
- NNLO QCD-EW corrections to neutral-current DY including leptonic decay [R.Bonciani, L.Buonocore, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano, A.Vicini, arXiv:2106.11953], [F.Buccioni, F.Caola, H.Chawdhry, F.Devoto, M.Heller, A.von Manteuffel, K.Melnikov, R.Röntsch, C.Signorile-Signorile, arXiv:2203.11237]
- NNLO QCD-EW corrections to charged-current DY including leptonic decay (2-loop contributions in pole approximation). [L.Buonocore, M.Grazzini, S.Kallweit, C.Savoini, F.Tramontano, arXiv:2102.12539]

COMPUTATIONAL FRAMEWORK

[T. Armadillo, R. Bonciani, **SD**, N.Rana, A.Vicini, arXiv:2201.01754]

[S. Catani, M. Grazzini (2007)]

► IR singularities handled by **q**_T-subtraction formalism;

[L.Buonocore, M. Grazzini, F.Tramontano (2019)]

$$d\sigma_{(N)NLO}^{F} = \mathscr{H}_{(N)NLO}^{F} \otimes d\sigma_{LO}^{F} + \left[d\sigma_{(N)LO}^{F+jets} - d\sigma_{(N)LO}^{CT} \right]$$

straightforward implementation of any other framework by replacing the subtraction operator.

Final-state collinear singularities regularised by the lepton mass;

► small lepton mass limit: consider the ratio m_l/\sqrt{s} and keep only logarithmic terms $\sim \log(m_l/\sqrt{s});$

When dealing with intermediate unstable particles, such as W and Z, it is useful to perform the calculations in the complex-mass scheme;

► We introduce the complex mass $\mu_V^2 = m_V^2 - i\Gamma_V m_V$ for both the Z and W bosons.

BASIS OF MASTER INTEGRALS

Basis of Master integrals composed by:

► MIs relevant for the **QCD-QED corrections**, with massive final state;

[R.Bonciani, A.Ferroglia, T.Gehrmann, D.Maitre, C.Studerus, arXiv:0806.2301, 0906.3671]

► MIs with 1 or 2 internal mass relevant for the **EW form factor**;

[U.Aglietti, R.Bonciani, hep-ph/0304028, hep-ph/0401193]

> 31 MIs with 1 mass and 36 MIs with 2 masses including boxes, relevant for the QCD-EW corrections to the full Drell-Yan.

NUMERICAL GRIDS (MASTERS)

- ► 31 out of 36 masters known in terms of GPLs: validation of SEASYDE.
- ► 5 out of 36 masters are a genuine SEASYDE **prediction**;
- solution can be computed with arbitrary number of significant digits.

QCD meets EW, 08.02.2024 - Simone Devoto 26

NUMERICAL GRIDS

[T. Armadillo, R. Bonciani, **SD**, N.Rana, A.Vicini, arXiv:2201.01754]

- ► After subtracting IR and UV divergences, we obtain the hard function;
- Publicly available as a MATHEMATICA notebook;
- ► Subtraction of the IR poles done in the **qT-subtraction** formalism;
- ▶ Production of the grid (3250 points) required O(12h) on a 32-cores machine;
- ► Interpolation of the grid with excellent accuracy requires **negligible time**.

- Computationally similar to neutral current Drell-Yan;
- Extra complexity coming from new diagrams where two different internal massive lines appear:

CHARGED CURRENT DRELL-YAN - Work In N.Rana, A.Vicini]

▶ 56 Master integrals with two internal masses:

- 34 **identical** to the ones appearing in the neutral current case;
- 22 generalisation of masters with two massive lines to the case of different masses;
- ► Two possible approaches to compute the new masters:
 - Compute the boundary conditions with AMFLOW and use the differential equations in s and t to build the grid;
 - Use the grid of the neutral-current Drell-Yan as a boundary condition and use the differential equation w.r.t. one of the masses.
- ► UV renormalisation & IR subtraction are analogous to the neutral current case.

TOWARDS NNLO EW FUTURE CHALLENGES

EXTRA CHALLENGES OF NNLO EW

What makes NNLO EW challenging?

additional internal massive lines; additional scales in the problem (m_Z, m_W, m_H...) bring additional complications!

• treatment of γ_5 ; how can γ_5 be consistently used in dimensional regularisation?

need for the complex mass scheme; requires to analytically continue the master integrals on the complex plane of the kinematical invariants!

POSSIBLE ISSUES OF NNLO EW

What makes NNLO EW challenging?

additional internal massive lines;
 additional scales in the problem (m_Z, m_W,

Is the ABISS and KIRA running time going to be a problem?

• treatment of γ_5 ; how can γ_5 be consistently used in din

Possibly complicated by the presence of fermionic triangles!

need for the complex mass scheme; requires to analytically continue the master integ kinematical invariants!

Is the SEASYDE running time going to be a problem?

In principle it is just the same more complicated, but technical difficulties possibly lie ahead!

TREATMENT OF γ_5

 γ_5 is not well defined in a non integer number of dimensions!

	ANTICOMMUTATION $\{\gamma_{\mu},\gamma_{5}\}=0$	CYCLICITY OF THE TRACE
't Hooft and Veltmann Nucl. Phys. B 44 (1972) 189–213	×	
Kreimer et al. Phys. Lett. B 237 (1990) 59–62		×

For neutral-current Drell Yan proven that at 2loops the two prescriptions yield:

different scattering amplitudes;
 same finite corrections after subtraction.
 [M. Heller, A. von Manteuffel, R. M. Schabinger and H. Spiesberger, arXiv:hep-ph/2012.05918]

Our procedure for the mixed corrections:

- 1. Use anticommutation relation, bring all γ_5 at the end of the Dirac trace;
- 2. Use $\gamma_5^2 = 1$, end up with zero or one γ_5 in each Dirac trace;
- 3. Replace the (single) leftover γ_5 with the relation: $\gamma_5 = \frac{\iota}{\Delta 1} \epsilon_{\mu\nu\rho\sigma} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}$.

How to handle now γ_5 in a generic NNLO EW computation?

TESTING THE WATERS: qqZ

<u>First test</u>: 1particle irreducible contributions to $q\bar{q}Z$ @ NNLO EW

- Contributes to the form factor and the amplitudes for the process;
- Proof of concept for our framework;
- The computation involves:
 - 2236 diagrams;
 - **52** integral families;
 - 380 master integrals;
 - up to **5 massive propagators** and **3 different masses**.

RUNNING TIMES

	NEUTRAL CURRENT DRELL-YAN	CHARGED CURRENT DRELL- YAN	q ar q Z NNLO EW
Most Complicated Integral Family	2 loop boxes with up to 2 massive lines and 1 different mass	2 loop boxes with up to 2 massive lines and 2 different masses	2 loop vertices with up to 5 massive lines and 3 different masses
Number of Masters	401	274	380
Run KIRA	12 h	16 h	1 d
Run AMFLOW (1 POINT)	1 d	1.5 d	2 d
Run SEASYDE (3250 POINTS)	~ 2 weeks (26 cores)	~ 3 weeks (26 cores)	//

SEASYDE runs are affected by our (limited) number of licenses!

RUNNING TIMES

		Run Se	asyde: 3250 po	INTS		
SEASYDE	MASSIVE FINAL STATE LEGS	# MASSIVE INTERNAL LINES	# DIFFERENT MASSES	# MASTERS	TIME	CORES
Vertex 2L	×	0	0	3	30 min	1
Vertex 2L	×	1	1	6	2.5 h	1
Vertex 2L (non-planar)	×	1	1	14	10 h	1
Box 2L	×	2	1	36	5 d	26
Box 2L		2	2	46	8 d	26
Box 2L	×	2	2	56	10 d	26

RATIONAL COEFFICIENTS

SUMMARY & OUTLOOK

- NNLO EW corrections will be of crucial importance for the future LHC scientific program;
- We developed a framework which relies on ABISS for the evaluation of rational coefficients and
 SEASYDE for the evaluation of the Master Integrals;
- We successfully applied our framework to the computation of mixed QCD-EW corrections to the Drell-Yan process.

SUMMARY & OUTLOOK

- we want to use our framework to compute NNLO EW corrections;
- ► proof of concept for 1 particle irreducible contribution to $q\bar{q}Z$;
- ► Challenges are still ahead:
 - increased number of scales;
 - treatment of γ_5 ;
 - •
- Are more refined strategies required?

SUMMARY & OUTLOOK

- we want to use our framework to compute NNLO EW corrections;
- ► proof of concept for 1 particle irreducible contribution to $q\bar{q}Z$;
- ► Challenges are still ahead:
 - increased number of scales;
 - treatment of γ_5 ;
 - •
- Are more refined strategies required?

BACKUP SLIDES

GENERATION OF THE AMPLITUDES

Feynman Amplitudes FeynArts - arXiv:hep-ph/0012260 Mathematica package for the generation and FeynArts visualisation of Feynman diagrams and amplitudes. Several models are available. Input files FeynArts work-flow: Application of the *Creation of the* Insertion of **fields** into the *Feynman rules to produce* topologies topologies Feynman amplitudes {v[p2, 0]. (i EL gWdu CKM[1, 1] * ga[Lor1].om_). U $u[p1, 0] \overline{u}[k1, 0].$ Ŵ (i EL gWNl ga[Lor2].om_).v[k2, 0] d g[Lor1, Lor2] $\frac{1}{-MW^2 + (k1 + k2)^2}$ **T1** T1P1N1

COMPUTATION OF THE INTERFERENCE TERMS

In **ABISS** are included routines to automatise the computation of interferences, in particular:

- Lorentz algebra (handle scalar products)
- Dirac algebra (compute traces of gamma matrices)

• The result can be written as a sum of **tensor integrals** in the form:

$$\int \prod_{i=1}^{L} dq_i \; \frac{q_1^{\mu_1} \dots q_1^{\mu_j} \dots q_L^{\mu_1} \dots q_L^{\mu_l}}{\mathscr{P}_1 \dots \mathscr{P}_t}$$

where:

- $q_i \rightarrow \text{loop momentum};$
- $L \rightarrow$ number of independent loop momenta;
- $\mathcal{P}_i = k_i^2 m^2 \rightarrow$ inverse propagator, k_i linear combination of momenta.

<u>ISSUE</u>: Handling γ_5 in dimensional regularisation.

Object inherently 4D: how can we use it in arbitrary space-time dimension?

SCALAR INTEGRALS

- We rearrange the expressions in terms of scalar integrals, better suited for the reduction algorithms;
- Write all the scalar products involving loop momenta in terms of inverse propagators:

$$\begin{cases} \mathscr{P}_0 = q^2 - m_0^2 \\ \mathscr{P}_1 = (q - p_1)^2 - m_1^2 \end{cases} \rightleftharpoons \begin{cases} q^2 = \mathscr{P}_0 + m_0^2 \\ q \cdot p_1 = 1/2 \left(\mathscr{P}_0 + m_0 - \mathscr{P}_1 - m_1 \right) \end{cases}$$

> To this end, it is necessary to introduce auxiliary propagators $\mathscr{P}_{t+1}^{\alpha_t+1} \dots \mathscr{P}_N^{\alpha_N}$ to close the algebra.

REDUCTION TO MASTER INTEGRALS

- ► Expressions written as a sum of **scalar integrals** with the respective coefficient;
- All the scalar integrals are not independent: linear relations between them are provided by integration by parts (IBP) identities;
- ► We can reduce the large set of scalar integrals to a smaller set of **master integrals**;
- Kira applies Laporta algorithm to apply IBP identities to a set of integrals in order to find the linear relations between them.

INTEGRATION BY PARTS IDENTITIES

By using different IBP relations it is possible to define <u>ladder operators</u> to rise and lower the indices of the powers of the propagators!

MASTERS AS SOLUTIONS OF DIFFERENTIAL EQUATIONS

TO DO: Solve the Master Integrals.

Method of differential equations

- By deriving with respect to one of the kinematic variables one of the master integrals, we obtain a new scalar integral;
- By using the IBP identities, any scalar integral can be written in terms of Master Integrals;
- > We can obtain a system of differential equations for the Master Integrals!

PedagogicalExample.nb

In[*]:= Quit[]

- A pedagogical example

Here we are going to show the potentialities of the package SeaSyde by solving the differential equation presented in eq. (1) in arXiv:2205.03345.

- Import the package and define the differential equation
- Configure and setup the package
- Solving the differential equation
- Extending the solution
- Crossing a branch-cut
- Examples of path

QCD meets EW, 08.02.2024 - Simone Devoto

100% ~

PedagogicalExample.nb • • • 100% ~ In[*]:= Quit[] l+Γ A pedagogical example Here we are going to show the potentialities of the package SeaSyde` by solving the differential equation presented in eg. (1) in arXiv:2205.03345. Import the package and define the differential equation SetDirectory[NotebookDirectory[]]; << ../SeaSyde.m $ln[*]:= \text{Equation} = \left\{ f'[x] + \frac{1}{x^2 - 4x + 5} f[x] = \frac{1}{x + 2} \right\};$ BoundaryCondition = {f[0] == 1}; MasterIntegral = {f[x]}; PointBC = $\{0\}$; Configure and setup the package Solving the differential equation Extending the solution Crossing a branch-cut Examples of path

PedagogicalExample.nb 100% ~ • • • In[*]:= Quit[] A pedagogical example Here we are going to show the potentialities of the package SeaSyde` by solving the differential equation presented in eg. (1) in arXiv:2205.03345. Import the package and define the differential equation w In[1]:= SetDirectory [NotebookDirectory []]; << ../SeaSyde.m +++++ SeaSyde` +++++ Version 1.1.0 SeaSyde is a package for solving the system of differential equation associated to the Master Integrals of a given topology. For any question or comment, please contact: T. Armadillo, R. Bonciani, S. Devoto, N. Rana or A. Vicini. For the latest version please see the GitHub repository. $\ln[3] = \text{Equation} = \left\{ f'[x] + \frac{1}{x^2 - 4x + 5} f[x] = \frac{1}{x + 2} \right\};$ BoundaryCondition = {f[0] == 1}; MasterIntegral = {f[x]}; PointBC = {0}; ۲ L+J Configure and setup the package Solving the differential equation Extending the solution Crossing a branch-cut

PedagogicalExample.nb 100% ~ • • • In[*]:= Quit[] A pedagogical example Here we are going to show the potentialities of the package SeaSyde` by solving the differential equation presented in eg. (1) in arXiv:2205.03345. Import the package and define the differential equation Configure and setup the package In[*]:= Configuration = { EpsilonOrder $\rightarrow 0$, Expansion0rder → 50 }; UpdateConfiguration[Configuration] SetSystemOfDifferentialEquation[Equation, BoundaryCondition, MasterIntegral, {x + I δ}, PointBC] Solving the differential equation Extending the solution Crossing a branch-cut Examples of path

PedagogicalExample.nb 100% ~ • • • In[*]:= Quit[] A pedagogical example Here we are going to show the potentialities of the package SeaSyde` by solving the differential equation presented in eg. (1) in arXiv:2205.03345. Import the package and define the differential equation Configure and setup the package ▼ In[7]:= Configuration = { EpsilonOrder $\rightarrow 0$, ExpansionOrder \rightarrow 50 }; UpdateConfiguration[Configuration] SetSystemOfDifferentialEquation[Equation, BoundaryCondition, MasterIntegral, {x + I δ}, PointBC] ۲ SeaSyde: Updated EpsilonOrder parameter, new value -> 0 SeaSyde: Updated ExpansionOrder parameter, new value -> 50 SeaSyde: There are 1 kinematics variables {x} SeaSyde: The Feynman prescriptions for the variables are $\{i \delta\}$ SeaSyde: There are 1 Master Integrals SeaSyde: The boundary conditions are imposed in x = 0. SeaSyde: The boundary conditions are given as precise value of the solution. SeaSyde: There are 1 equations and 1 boundary conditions SeaSyde: The possible singularities for the kinematics variables $\{x\}$ are respectively $\{\{-2, 2, -1, i, 2, +1, i\}\}$ Ζ SeaSyde: The system of differential equation has been set and expanded in ϵ (±) Solving the differential equation Extending the solution

PedagogicalExample.nb

Solving the differential equation

We can solve the equation in the point where the boundary conditions are imposed, e.g. x=0.

▼ In[*]:= Equation

• • •

 $\textit{Out[=]=} \; \left\{ \frac{f[x]}{5-4\,x+x^2} \, + \, f'[x] \; = \; \frac{1}{2+x} \right\}$

In[*]:= SolveSystem[x]

We can compare the first few terms with the exact result provided in eg. (3), (4) and (5).

 $In[x] := \text{ExactResult} = \frac{1}{2} \times -\frac{7}{40} \times^2 + \frac{2}{75} \times^3 + \frac{1}{5} \left(5 - \chi - \frac{3}{10} \times^2 - \frac{11}{150} \times^3 \right) // \text{ Expand // N}$

In[*]:= Solution[] /. x^{b_} /; b > 3 -> 0 // N

The singularities are in x=-2, x=2±*i*. The closest to the centre of the series, x=0, is x=-2, hence the radius of convergence is ρ =|-2-0|=2. We can see that explicitly by plotting the solution along the real axes.

In[*]:= Plot[Solution[], {x, -2.3, 2.3}]

If we go over x=2 the solution does not converge anymore.

- Extending the solution
- Crossing a branch-cut
- Examples of path

100% ~

• • •	PedagogicalExample.nb	100% ~
▼.	Solving the differential equation]
	We can solve the equation in the point where the boundary conditions are imposed, e.g. x=0.	-
V lp[10]	- Equation	97
Out[10]	$= \left\{ \frac{f[x]}{f[x]} + f'[x] = \frac{1}{f[x]} \right\}$	7
	$15 - 4x + x^2$ $2 + x^3$	
▼ In[11]	<pre>>> SolveSystem[x]</pre>	©]]
r	Solving equation for ϵ order 0	
1+1	I solved the system of equation. The error estimate is: $5.07431 imes 10^{-17}$.]]]
0	We can compare the first few terms with the exact result provided in eq. (3), (4) and (5).]
In[=]	$= \text{ExactResult} = \frac{1}{2} \times -\frac{7}{40} \times^2 + \frac{2}{75} \times^3 + \frac{1}{5} \left(5 - \times -\frac{3}{10} \times^2 - \frac{11}{150} \times^3 \right) // \text{Expand} // \text{N}$	
In[=]	<pre>Solution[] /. x^{b_} /; b > 3 -> 0 // N</pre>]
	The singularities are in x=-2, x=2± <i>i</i> . The closest to the centre of the series, x=0, is x=-2, hence the radius of convergence is ρ = -2-0 =2. We can see that explicitly by plottir the solution along the real axes.	ng
In[=]	<pre>Plot[Solution[], {x, -2.3, 2.3}]</pre>]
	If we go over x=2 the solution does not converge anymore.	
►	Extending the solution	
►	Crossing a branch-cut]]
►	Examples of path	

PedagogicalExample.nb • • • 100% ~ Solving the differential equation We can solve the equation in the point where the boundary conditions are imposed, e.g. x=0. ▼ In[10]:= Equation Out[10]= $\left\{ \frac{f[x]}{5-4x+x^2} + f'[x] = \frac{1}{2+x} \right\}$ ▼ In[11]:= SolveSystem[X] Solving equation for ϵ order 0 I solved the system of equation. The error estimate is: 5.07431×10^{-17} . We can compare the first few terms with the exact result provided in eq. (3), (4) and (5). ▼ In[12]= ExactResult = $\frac{1}{2} x - \frac{7}{40} x^2 + \frac{2}{75} x^3 + \frac{1}{5} \left(5 - x - \frac{3}{10} x^2 - \frac{11}{150} x^3 \right) // Expand // N$ Out[12]= 1. + 0.3 x - 0.235 x^{2} + 0.012 x^{3} Έ Solution[] /. x^{b_} /; b > 3 -> 0 // N IJ The singularities are in x=-2, x=2±i. The closest to the centre of the series, x=0, is x=-2, hence the radius of convergence is p=|-2-0|=2. We can see that explicitly by plotting the solution along the real axes. In[*]:= Plot[Solution[], {x, -2.3, 2.3}] If we go over x=2 the solution does not converge anymore. Extending the solution Crossing a branch-cut Examples of path

	PedagogicalExample.nb	100% 🗸
v 5	Solving the differential equation	
	We can solve the equation in the point where the boundary conditions are imposed, e.g. x=0.	
In[10]:	= Equation]]
Out[10]	$= \left\{ \frac{f[x]}{5 - 4x + x^2} + f'[x] = \frac{1}{2 + x} \right\}$	
In[11]:	<pre>> SolveSystem[x]</pre>] [
	Solving equation for ϵ order 0	37
	I solved the system of equation. The error estimate is: $5.07431 imes 10^{-17}$.	
	We can compare the first few terms with the exact result provided in eq. (3), (4) and (5).]
In[12]:	= ExactResult = $\frac{1}{2} \times -\frac{7}{40} \times^2 + \frac{2}{75} \times^3 + \frac{1}{5} \left(5 - \chi - \frac{3}{10} \times^2 - \frac{11}{150} \times^3 \right) // \text{ Expand // N}$	
Out[12]	$= 1. + 0.3 \text{ x} - 0.235 \text{ x}^2 + 0.012 \text{ x}^3$	
In[14]:	= Solution[] /. x ^{b_} /; b > 3 -> 0 // N]]
Out[14]	$= \left\{ 1. + 0.3 x - 0.235 x^2 + 0.012 x^3 \right\}$	≥]
+	The singularities are in x=-2, x=2± <i>i</i> . The closest to the centre of the series, x=0, is x=-2, hence the radius of convergence is ρ = -2-0 =2. We can see that explicitly by plottin the solution along the real axes.	g
In[=]:	<pre>= Plot[Solution[], {x, -2.3, 2.3}]</pre>]
	If we go over x=2 the solution does not converge anymore.	
Þ	Extending the solution	
▶ (Crossing a branch-cut	
►	Examples of path	

	PedagogicalExample.nb	100% >
Solving the differential equ	uation	
 Extending the solution]]
If we want the solution in anothe	er point, e.g. x=-1+0.5 <i>i</i> , we can attach multiple series solutions.	
<pre>////////////////////////////////////</pre>	s[{-1+0.5i}]]
And we can access the value of the	he solution in x=-1+0.5 <i>i</i> by using the SolutionValue[] method.]
<pre>// N // N</pre>]
 Crossing a branch-cut]]
Examples of path]]

	PedagogicalExample.nb	100% >
Solving the differ	ential equation	
 Extending the so 	lution	1
If we want the solution	on in another point, e.g. x=-1+0.5 <i>i</i> , we can attach multiple series solutions.	
n[16]:= TransportBoundar	yConditions[{-1+0.5i}]	[]
SeaSyde: Moving fo	ollowing these points: {0., -1.+0.5i}	ا [٢
, avoiding singu	larities. Here you can see the path in the complex plane for the kinematic variable x	
K		
	1.0	
	0.8	
	0.6	
_		
	0.2	
_15 _10	Re x	
-1.5 -1.5	-0.2	
	-0.4 - [
SeaSyde: Moving f	rom the point x=0. to x=-1.+0.5 i, along the line x=(-1.+0.5 i) tInt	7
SeaSyde: The new	point is: x=-0.894427 + 0.447214 i	
SeaSyde: I arrived) at x=-1.+0.5 i. The error estimate is: 5.07431×10^{-17} .	2
Use Solution[] or	SolutionValue[] to access the solution, or CreteGraph to plot it.	
And we can access t	he value of the solution in x=-1+0.5 <i>i</i> by using the SolutionValue[] method.	
<pre>////////////////////////////////////</pre>	// N]
Crossing a branc	h-cut	
Examples of noth		
Examples of patr	I construction of the second se	11.

9 😑	PedagogicalExample.nb	100% 🗸
Solving the differential equation		4
Extending the solution]
 Crossing a branch-cut]]
We might want to overcome a branch-cut. In order to do so it is impo	ortant to circumvent the singularities to the right	
<pre>In[*]:= SetSystemOfDifferentialEquation[Equation, BoundaryCondic TransportVariable[x, 21]</pre>	ition, MasterIntegral, {x + Ιδ}, PointBC]	
In["]:= SolutionValue[] // N]
If we cross the branch-cut directly, the result might be different]
<pre>In[*]:= SetSystemOfDifferentialEquation[Equation, BoundaryCondic TransportVariable[x, 2i, CreateLine[{0, 2i}]]</pre>	ition, MasterIntegral, {x + Ιδ}, PointBC]	
In["]:= SolutionValue[] // N]
We observe that the solution is different from the previous case. This	s is because by crossing the cut directly, we end up on another Riemann sheet.	
Examples of path]]]

PedagogicalExample.nb	100% ~
aj≔ SetSystemOfDifferentialEquation[Equation, BoundaryCondition, MasterIntegral, {x + I δ}, PointBC]	
TransportVariable[x, 2i]	۱
SeaSyde: There are 1 kinematics variables {x}]][[[E
SeaSyde: The Feynman prescriptions for the variables are $\{i \ \delta\}$	
SeaSyde: There are 1 Master Integrals	
SeaSyde: The boundary conditions are imposed in $x = 0$.	
SeaSyde: The boundary conditions are given as precise value of the solution.	
SeaSyde: There are 1 equations and 1 boundary conditions	
SeaSyde: The possible singularities for the kinematics variables {x} are respectively {{-2., 21. i, 2. +1. i}}	
SeaSyde: The system of differential equation has been set and expanded in ϵ	E
SeaSyde: Moving following these points: {0., 2.5, 2.5 + 2. i, 0. + 2. i}	2
, avoiding singularities. Here you can see the path in the complex plane for the kinematic variable x	
Line nauc variable. x	
$_{-0.5}^{\lfloor}$ SeaSyde: Moving from the point x=0. to x=2.5, along the line x=2.5 tInt SeaSyde: The new point is: x=1. SeaSyde: The new point is: x=2.70711 SeaSyde: The new point is: x=2.22811 SeaSyde: Moving from the point x=2.5 to x=2.5 + 2. i. along the line x=2.5 + (0. + 2. i) tInt	ן מון מון מון מון מון מון מון מון מון מו

• • •	PedagogicalExample.nb	100%
	-0.5 1.0 1.5 2.0 2.5 3.0	
	-U.5-	
	Seasyde: Moving from the point x=0. to x=2.5, along the line x=2.5 tint	
	SeaSyde: The new point is: x=1.	2
	SeaSyde: The new point is: x=1.70711	
	Seasyde: The new point is: $x=2.22811$	2
	Seasyde: Moving from the point x=2.5 to x=2.5 + 2.1, along the time $x=2.5 + (0.+2.1)$ time	
	Seasyde: The new point is: $x=2.5 + 0.5550171$	
	Seasyde: The new point is: $x=2.5 + 0.892358$	
	Seasyde: The new point is: $x=2.5 + 1.148091$	2
	Seasyde: The new point is: $x=2.5 + 1.400021$	
	Seasyde: The new point is: $x=2.5 + 1.751751$	
	Seasyde: Noving from the point $x=2.5+2.1$ to $x=0.+2.1$, along the time $x=(2.5+2.1)-2.5$ time	
	SeaSyde: The new point is: $x=1.94030+2.1$	
	SeaSyde: The new point is: $x=0.867079 \pm 2$ i	
	SeaSyde: The new point is: $x=0.007079+2.1$	
	SeeSyde: The new point is: $x=0.111514+2.1$	
	Use Solution[] or SolutionValue[] to access the solution, or CreteGraph to plot it.	
- I-(00)-	SolutionValue11 // N	
Out[20]=	{0.545912 + 0.443234 1}	ا ۱۱ 🕲
(+)	If we cross the branch-cut directly, the result might be different	7
	SatSustarOfDifferentialEquation FoundaryCondition MasterIntegral (v. T.S) DaintPC1	-
In[=]:=	TransportVariable[x, 2 i, CreateLine[{0, 2 i}]]	
▼ In[∘]:=	SolutionValue[] // N	
Out[=]=	{1.66537 + 0.582592 i}	
	We observe that the solution is different from the previous case. This is because by crossing the cut directly, we end up on another Riemann sheet	Ę
	the observe that the solution is uncreated on the previous case. This is because by crossing the cut uncetty, we can up on another identialitisheet.	

• • •	PedagogicalExample.nb	100% 🗸
▼ In[21]:=	<pre>SetSystemOfDifferentialEquation[Equation, BoundaryCondition, MasterIntegral, {x + I δ}, PointBC]</pre>	٦
	TransportVariable[x, 2i, CreateLine[{0, 2i}]]	ا ا
V	SeaSyde: There are 1 kinematics variables {x}	31
	SeaSyde: The Feynman prescriptions for the variables are $\{i \ \delta\}$	
	SeaSyde: There are 1 Master Integrals	E
	SeaSyde: The boundary conditions are imposed in $x = 0$.	E
	SeaSyde: The boundary conditions are given as precise value of the solution.	
	SeaSyde: There are 1 equations and 1 boundary conditions	
	SeaSyde: The possible singularities for the kinematics variables {x} are respectively {{-2., 21. i, 2. +1. i}}	
	SeaSyde: The system of differential equation has been set and expanded in ϵ	
	SeaSyde: Moving following these points: {0., 0. + 2. i}	2
	, avoiding singularities. Here you can see the path in the complex plane for the kinematic variable x	
	Kinematic variable: x	7
	^{2.5}	
	2.0	
	1.5 -	
	1.0	
	0.5	
	-0.4 -0.2 0.2 0.4 Re x	

	PedagogicalExample.nb	100% ~
SeaSyde: Moving following these po , avoiding singularities. Here yo	ints: {0.,0.+2.i} ou can see the path in the complex plane for the kinematic variable x	2
Kinematic variable: x		
2.5		
-		
2.0		
1.5 -		
0.5 -		
-0.4 -0.2 . 0.2 0.4 Re x		
-		
_0.5 L		
SeaSyde: Moving from the point x=0.	. to x=0. + 2. i, along the line x=(0. + 2. i) tInt	
SeaSyde: The new point is: $x=0.+2$.i	
SeaSyde: I arrived at x=0.+2.i. T	he error estimate is: 1.2243×10^{-16} .	7
Use Solution[] or SolutionValue[] f	to access the solution, or CreteGraph to plot it.	
<pre>w In[23]:= SolutionValue[] // N</pre>] [[
Out[23]= {1.66537 + 0.582592 i}		S]
We observe that the solution is different	t from the previous case. This is because by crossing the cut directly, we end up on another Riemann sheet.	1