Two-Loop Feynman Integrals for Multi-Scale QCD Corrections

Ben Page

Ghent University, Physics and Astronomy Department

QCD Meets Electroweak

Feb 5th - 9th 2024

European Research Council Established by the European Commission Aim: Compute the amplitude: a sum of Feynman integrals.

• Standard approach: reduce $A^{(2)}$ to master integrals:

$$A^{(2)}(p_i \cdot p_j, p_i \cdot \varepsilon_j) = \sum_k \underbrace{\mathcal{C}_k(p_i \cdot p_j, p_i \cdot \varepsilon_j)}_{\text{rational functions}} \underbrace{\mathcal{I}_k(p_i \cdot p_j)}_{\text{master integrals}}.$$

- Key challenges in computing master integrals:
 - Integrals with many IR/UV divergences \Rightarrow deep ϵ expansion.
 - Instabilities in C_k combination \Rightarrow need strong precision control.
 - Want \mathcal{I}_k , such that \mathcal{C}_k are as easy as possible to compute.

Amplitudes Suitable for Phenomenology

Amplitudes are stable and fast. E.g. NNLO 3-jet production.

[Abreu et al '21]

[Czakon et al].

Many NNLO five-point cross-sections available:

- 3γ [Kallweit et al; Czakon et al].
- ► 3*j* [Czakon et al].
- $\gamma\gamma j$ [Chawdhry et al; Badger et al].
- γjj [Badger et al].

- $Wb\overline{b}$ [Hartanto et al; Buonocore et al]
- ttH (approx) [Catani et al]
- tt
 U
 (approx) [Buonocore et al]

Amplitudes even used in α_S determination. [ATLAS].

State of the Art Two-Loop Five-Point Integrals

One-Mass

[Papadopoulos, Tommasini, Wever '15]

[Canko Papadopoulos, Syrrakos '20]

Chicherin, Sotnikov, Zoia '21]

[Abreu, Ita, Moriello, Page Tschernow, Zeng '20]

(5-scale)

(6-scale)

[Papadopoulos, Tommasini, Wever '15] [Gehrmann, Henn, lo Presti '18] [Abreu, Page, Zeng '18] [Chicherin, Gehrmann, Henn, lo Presti, Mitev, Wasser '18]

[Abreu, Dixon, Herrmann, Page, Zeng '18] [Chicherin, Gehrmann, Henn, Wasser, Zhang, Zoia '18] [Gehrmann, Henn, Io Presti '18] [Chicherin, Sotnikov '20]

[Abreu, Ita, Page, Tschernow '21] [Kardos, Papadopoulos, Smirnov, Syrrakos, Wever '22] [Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia '23]

 $t\bar{t}+j$ family [Badger, Becchetti, Chaubey, Marzucca '22] (6-scale)

• $t\bar{t}$ +H families [Febres, Figueiredo, Kraus, BP, Reina '23] (7-scale)

[Agarwal, Heinrich, Jones, Kerner, Klein, Lang, Magerya, Olsson '24] (numeric)

Ben Page

Integral Computation Wish List

Analytic wishes:

• Must ϵ expand to some set of functions up to $\mathcal{O}(\epsilon)$.

$$\mathcal{I}_{j}(p_{a} \cdot p_{b}, \epsilon) = \sum_{k=-4}^{0} d_{jkl} \epsilon^{k} h_{l}(p_{a} \cdot p_{b}) + \mathcal{O}(\epsilon).$$

• Must understand algebra of relations between h_l .

$$\sum_{i} \alpha_{i} h_{i} = 0 \iff \alpha_{i} = 0, \text{ and } h_{i} h_{j} = c_{ijk} h_{k}.$$

Numerical wishes:

- Must cover all of physical phase space.
- Large phase space \Rightarrow need high speed evaluation.
- Ability to increase precision in dangerous phase-space regions.

Introduction	Differential Equations	Solving DEs	Discussion
0000●		00000000	000

Differential Equations

[Gehrmann Remiddi '01; Henn '13]

In this talk, we will attack this problem using differential equations.

Part 1: Constructing Differential Equations.

Part 2: Solving Differential Equations (pentagon functions).

	Differential Equations	Solving DEs	Discussion
00000	000000000	0000000	000

Differential Equations and their Construction

Differential Equations Solving DEs Differential Equations Summary Feynman integrals satisfy coupled system of first-order DEs: $\mathrm{d}\mathcal{I}_{k} = \underbrace{\tilde{\mathbf{M}}_{kl}(\epsilon, \vec{s})}_{\text{differential forms}} \mathcal{I}_{l}.$ [Gehrmann, Remiddi '01] • Conjecture: Exists $\mathcal{J}_i = U_{ij}\mathcal{I}_j$, satisfying ϵ -factorized DE: [Henn '13] $\mathrm{d}\mathcal{J}_k = \epsilon \mathbf{M}_{kl}(\vec{s})\mathcal{J}_l.$ \blacktriangleright This trivializes ϵ expansion! $\mathcal{J}_{k} = \sum_{n=1}^{\infty} \epsilon^{n} \mathcal{J}_{k}^{(n)} \quad \Rightarrow \quad \mathcal{J}_{k}^{(n)} = \underbrace{\mathcal{J}_{k}^{(n)}(\gamma_{0})}_{l \neq l \neq l} + \underbrace{\int_{\gamma} \mathbf{M}_{kl}(\gamma) \mathcal{J}_{l}^{(n-1)}(\gamma)}_{l \neq l \neq l}.$ (numeric) boundary iterated integration Crucial Components

 \mathcal{J}_k , \mathbf{M}_{kl} , $\mathcal{J}_k^{(n)}(\gamma_0)$ and iterated integral understanding.

Ben Page

Constructing Differential Equations

- 1. Construct a basis of "pure" integrals. \leftarrow Hardest step.
- 2. Construct a basis of differential forms \leftarrow quasi-systematic.

$$\mathbf{M}_{kl} = \underbrace{M_{klm}}_{\text{rational numbers differential forms}} \underbrace{\omega_m}_{\text{rational numbers differential forms}}$$

3. Use ω_m as Ansatz. Fit with evaluations of DE. \leftarrow Easy.

Important Caveat

Only strong theory understanding for polylogarithmic integrals.

The Computational Backbone: Analytic Reconstruction

• We will constantly study the DE using Ansaetze.

$$\mathcal{F}_k(\vec{s}) = \sum_{j=1}^M f_{jk} \mathfrak{a}_{jk}(\vec{s}), \qquad f_{jk} \in \mathbb{Q}.$$

Finite-field evaluations constrain unknown f_{jk}.

$$\bar{s}^{(0)} \longrightarrow$$

$$\rightarrow \{\mathcal{F}_1(\bar{s}^{(0)}),\ldots,\mathcal{F}_M(\bar{s}^{(0)})\}.$$

[Schabinger, von Manteuffel '14; Peraro '16]

• Often extract properties on "univariate slice". Fix numeric \vec{a}, \vec{b}

$$ec{s} = ec{a} + ec{b}t \qquad \mathcal{F}_k(ec{s}) o \mathcal{F}_k(t).$$

Numerical Differential Equations

Differential equations constructed with algebraic operations:

$$d\mathcal{I}_i = \mathbf{b}_{ia}(\epsilon, \vec{s}) \tilde{\mathcal{I}}_a, \quad \text{and} \quad \tilde{\mathcal{I}}_a = c_{aj}(\epsilon, \vec{s}) \mathcal{I}_j$$

With finite field IBPs, can easily compute c_{aj} for numeric ϵ , \vec{s} .

$$\mathbf{M}_{kl}(\epsilon_0, \vec{s_0}) = \mathbf{b}_{ia}(\epsilon_0, \vec{s_0}) c_{aj}(\epsilon_0, \vec{s_0}).$$

Numerical evaluations of $\mathbf{M}_{kl}(\epsilon_0, \vec{s_0})$ have multiple uses:

- ϵ -factorization check: $M_{kl}(\epsilon_1, \vec{s_0})/\epsilon_1 = M_{kl}(\epsilon_2, \vec{s_0})/\epsilon_2$.
- Compute **alphabet dimension**: linearly independent **M**_{kl}.
- **Data for Ansatz**-based computation of (pieces of) M_{kl}.

Pure Basis Construction: General Summary

Automatic Techniques (Mostly well suited for low scale count):

Many codes: Libra, Fuchsia, Epsilon, INITIAL, DLogBasis.

[Lee; Gituliar, Magerya; Prausa; Dlapa et al; Henn et al]

- The Ad-hoc Approach
 - 1. ϵ -factorize on "maximal cut".
 - "Unit leading singularities".

[Cachazo '08; Arkani-Hamed, Bourjaily, Cachazo, Trnka '10; Henn '13]

Magnus expansion.

[Argeri, Di Vita, Mastrolia, Mirabella, Schlenk, Schubert, Tancredi '14]

Educated guess from literature experience. E.g.

2. Release cut conditions and fix mistakes.

Introduction 00000	Differential Equations	Solving DEs 0000000	Discussion 000
Leading Sing	ularities*: The Mas	sless Double Box	
Start w	ith "good" integral repre	sentation of max cut:	

$$\max\operatorname{-cut}\begin{pmatrix}1&t_1&t_2\\2&t_3\end{pmatrix}=\int \Omega(\epsilon), \quad \Omega(0)=\underbrace{\frac{d\rho_8d\rho_9\mathcal{N}(s,t)}{2s\rho_8\rho_9[(s+\rho_8)\rho_9+s(\rho_8-t)]}}_{\text{Baikov polynomial}}$$

[Frellesvig, Papadopoulos '17]

• Leading singularities are repeated residues of $\Omega(0)$.

$$\operatorname{Res}_{\rho_{9}=\rho_{9}^{i}}\left[\operatorname{Res}_{\rho_{8}=\rho_{8}^{i}}\Omega(0)\right], \quad (\rho_{8},\rho_{9})^{1}=(0,t),$$

 \blacktriangleright Fix ${\cal N}$ by requiring residues to be rational numbers.

$$\mathcal{N} = s^2 t.$$

*Pedagogical resource: [Wasser '18] (Master's thesis).

Magnus Expansion (i)

 \blacktriangleright Let us assume that the precanonical DE is linear in ϵ

$$\tilde{\mathsf{M}}(\epsilon, \vec{s}) = \tilde{\mathsf{M}}^{(0)}(\vec{s}) + \epsilon \tilde{\mathsf{M}}^{(1)}(\vec{s}).$$

• A basis $\mathcal{J}_i = U_{ij}\mathcal{I}_j$ satisfies an ϵ -factorized DE if $\mathrm{d}U_{ij} = \tilde{\mathbf{M}}_{i\mathbf{x}}^{(0)}U_{xj}.$

A particular solution is given by the Magnus expansion.

$$U = \exp\left(\sum_{i=0}^{\infty} \Omega_i\right), \qquad \Omega_1 = \int_{\gamma} \tilde{\mathbf{M}}^{(0)}(\gamma), \quad \Omega_2 = \frac{1}{2} \int_{\gamma_1} \int_{\gamma_2} [\tilde{\mathbf{M}}^{(0)}(\gamma_1), \tilde{\mathbf{M}}^{(0)}(\gamma_2)].$$

• Practical strategy: reconstruct just $\tilde{M}^{(0)}$ from samples.

Ben Page

Magnus (ii): Beyond the Maximal Cut

If max cuts are canonicalized, next-to-max cut DE takes form

$$ilde{\mathsf{M}}^{(\mathbf{0})} = \left(egin{array}{cc} 0 & 0 \ ilde{\mathsf{B}} & 0 \end{array}
ight)$$

▶ For simplicity, let $\tilde{\mathbf{b}} = \tilde{\mathbf{B}}$ be 1 × 1. Magnus expansion simple!

$$dU = \left(\begin{array}{cc} 0 & 0 \\ \tilde{\mathbf{b}} & 0 \end{array}\right) U \qquad \Rightarrow U = \left(\begin{array}{cc} 1 & 0 \\ \int \tilde{\mathbf{b}} & 1 \end{array}\right)$$

Same strategy: reconstruct only $\tilde{\mathbf{b}}$ from samples of $\tilde{\mathbf{M}}^{(0)}$.

Proceed iteratively. Challenges: reconstruction/integrations.

Structure of Canonical Differential Equations

Many entries of DE matrix are linearly dependent.

$$\mathsf{M}_{kl}(ec{s}) = \underbrace{M_{klm}}_{\in \mathbb{Q}} \underbrace{\omega_{oldsymbol{m}}(ec{s})}_{ ext{alphabet}}$$

In considered cases, the differential forms are "d log"

$$\boldsymbol{\omega}_{\boldsymbol{m}} = \mathrm{d}\log(W_{\boldsymbol{m}}).$$

• W_m are algebraic functions of the kinematics, e.g.

$$W_{29} = m_t^2 (v_{15} - v_{34})^2 + q^2 v_{15} v_{34}$$
 $W_{35} = \frac{v_{12} - \sqrt{v_{12}^2 - 4m_t^2 q^2}}{v_{12} + \sqrt{v_{12}^2 - 4m_t^2 q^2}}.$

examples from [Febres Cordero, Figuereido, Kraus, BP, Reina '23]

Ben Page

Algebraic Structures and Galois Groups

Pure basis often involves introduction of square roots, e.g.

$$\boxed{ \left[(\ell_1^{\epsilon} \cdot \ell_2^{\epsilon})(p_1 \cdot p_2) \sqrt{\Delta_5} \right] }$$

Nested square roots can also arise.

$$\sqrt{N_{\pm}} = \sqrt{N_b + \sqrt{N_b^2 - N_c}}.$$

[Febres Cordero, Figueiredo, Kraus, BP, Reina '23; Becchetti et al (to appear)]
 Useful basis property: representation of "Galois group".

$$\underbrace{\alpha}_{\text{alois transformation}} : \sqrt{\Delta_5} \to -\sqrt{\Delta_5} \qquad \Rightarrow \alpha(I_{\text{pb}}) = -I_{\text{pb}}.$$

 \blacktriangleright **M**_{kl} then also organize into representations of Galois group.

Two-Loop Feynman Integrals for Multi-Scale QCD Corrections

G

Multi-scale Alphabet Construction

• Even* W_i are denominators of \mathbf{M}_{kl} . Analytic reconstruction!

$$\mathrm{d}\log(W_i)=\frac{\mathrm{d}W_i}{W_i}.$$

Observation: denominators of odd W_i product of even W_i:

$$\mathrm{d}\log\left(\frac{a+\sqrt{b}}{a-\sqrt{b}}\right) = \frac{1}{\sqrt{b}}\frac{2b(\mathrm{d}a)-a(\mathrm{d}b)}{a^2-b}, \qquad a^2-b = \prod_i W_i^{\mathsf{even}}.$$

Find relevant W_i^{even} on univariate slice. Fix a by Ansatz.

$$\operatorname{Num}(a)^2 - b\operatorname{Den}(a)^2 \mod \prod_i W_i^{\operatorname{even}} = 0.$$

[Abreu, Ita, BP, Tschernow '21; Febres Cordero, Figueiredo, Kraus, BP, Reina '23]

*Assume Galois group is \mathbb{Z}_2 . Otherwise, open problem.

	Differential Equations	Solving DEs	Discussion
00000	0000000000	0000000	000

Solving DEs and "Pentagon Functions"

DE Solutions and Iterated Integrals

As solution to DE, integrals satisfy recursion relation

$$\mathcal{J}_{k}^{(n)} = \mathcal{J}_{k}^{(n)}(\gamma_{0}) + \int_{\gamma} M_{klm} \boldsymbol{\omega}_{m}(\gamma) \mathcal{J}_{l}^{(n-1)}(\gamma).$$

This evolves solutions from boundary point to target point.

$$\gamma(t)$$
 : $\gamma(0)=ec{s}_{ ext{boundary}}, \quad \gamma(1)=ec{s},$

• To describe the solutions, one defines iterated integrals. $[\omega_{a_1}, \ldots, \omega_{a_n}](\vec{s}) = \int_0^1 \omega_{a_n}(\gamma[t_n])[\omega_{a_1}, \ldots, \omega_{a_{n-1}}](\vec{s}(\gamma[t_n])).$ [Chen '72]

Solutions are naturally expressed in terms of iterated integrals.

$$\mathcal{J}_k^{(n)} = c_{i_1,\ldots,i_n}^k [\omega_{i_1},\ldots,\omega_{i_n}] + \mathcal{O}(\mathtt{boundary}), \qquad c_{i_1,\ldots,i_n} = M_{kji_n} c_{i_1,\ldots,i_{n-1}}^j$$

Algebraic Properties of Iterated Integrals

Iterated integrals products controlled by "shuffle algebra".

$$[\boldsymbol{\omega}_{a_1},\ldots,\boldsymbol{\omega}_{a_m}][\boldsymbol{\omega}_{b_1},\ldots,\boldsymbol{\omega}_{b_n}] = \sum_{c\in a\sqcup b} [\boldsymbol{\omega}_{c_1},\ldots,\boldsymbol{\omega}_{c_{m+n}}].$$

 \blacktriangleright Linear independence of functions from ω_i independence

 $\label{eq:alpha_i} ``\alpha_i \boldsymbol{\omega}_i = d\eta \ \Rightarrow \ \alpha_i = 0 `` \ \Rightarrow \ [\boldsymbol{\omega}_{i_1}, \dots, \boldsymbol{\omega}_{i_n}] \text{ are linearly independent.}$ [Chen '72]

▶ For d log-forms, all relations are "logarithm-like".

Iterated integrals inherit Galois properties of alphabet.

$$oldsymbol{lpha}(oldsymbol{\omega}_i) = (-1)^{lpha_i} oldsymbol{\omega}_j \quad \Rightarrow \quad oldsymbol{lpha}([oldsymbol{\omega}_{i_1},\ldots,oldsymbol{\omega}_{i_n}]) = (-1)^{\sum_k lpha_{i_k}} [oldsymbol{\omega}_{j_1},\ldots,oldsymbol{\omega}_{j_n}].$$

This understanding was a large chunk of our wishlist!

We follow the approach of [Chicherin, Sotnikov '20].

 \blacktriangleright Weights 1, 2: Solve explicitly in terms of logs and ${\rm Li}_2 s.$

[Duhr, Gangl, Rhodes '11]

Weight 3: Numerical integration with tanh-sinh quadrature

$$\mathcal{J}_i^{(3)}(\vec{s}) = \mathcal{J}_i^{(3)}(\vec{s}_0) + \int_0^1 \mathrm{d}t \mathcal{M}_{ijk} \frac{\partial \mathrm{log}(W_k[\gamma(t)])}{\partial t} \mathcal{J}_j^{(2)}[\gamma(t)].$$

• Weight 4: Perform 1 integral analytically \Rightarrow one-fold integral.

$$\int_0^1 \mathrm{d}t_n \frac{\partial \log[W_i(t_n)]}{\partial t_n} \int_0^{t_n} \mathrm{d}t_{n-1}g(t_{n-1}) = \int_0^1 \mathrm{d}t_{n-1}g(t_{n-1}) \underbrace{\left[\int_{t_{n-1}}^1 \mathrm{d}t_n \frac{\partial \log[W_i(t_n)]}{\partial t_n}\right]}_{\log(W_i(1)) - \log(W_i(t_{n-1}))}$$

[Caron-Huot, Henn '14]

Two-Loop Feynman Integrals for Multi-Scale QCD Corrections

.

[Abreu, Chicherin, Ita, BP, Sotnikov, Tschernow, Zoia '23]

► All integrals for $pp \rightarrow H + 2j$. See also [Kardos, Papadopoulos, Smirnov, Syrrakos, Wever '22]

9s/point: Double precision (+ quad precision rescue system).

[Abreu, Ita, Moriello, BP, Tschernow, Zeng '20]

- Many public implementations: DiffExp/SeaSyde/AMFlow. [Hidding '20] [Armadillo et al '22] [Liu, Ma '22] [See Simone's talk]
- Only game in town for elliptic five-point.
- Low algebra control. How to optimize for $2 \rightarrow 3$ phase space?
- NB: Can use series tools to evaluate pentagon functions [Badger, Hartanto, Zoia '21]

Boundary Values (i): Regularity Constraints

- Lots of approaches! Will discuss numerical implementation of [Abreu, Ita, Moriello, BP, Tschernow, Zeng '20]
- Consider DE on path $\gamma(t)$ going through singularity at t_0 .

$$\mathbf{M}[\gamma(t)] = \frac{M_{-1}}{t-t_0} \mathrm{d}t + \mathcal{O}(t-t_0)^0.$$

Singularities in the DE might cause branch points of solution:

$$\mathcal{J}^{(n+1)} = \int \mathrm{d}\log(t-t_0)(M_{-1}\mathcal{J}^{(n)}(\gamma[t_0])) + \mathcal{O}(t-t_0)^0.$$

► Absent singularity [Sebastian's talk] ⇒ constraint!

$$M_{-1}\mathcal{J}^{(n)}[\gamma(t_0)]=0.$$

• Combine constraints from multiple surfaces $\Rightarrow \mathcal{J}^{(n)}(\vec{s_0})$.

	Differential Equations	Solving DEs	Discussion
00000	0000000000	0000000	000

Boundary Values (ii)

The Pragmatic Solution

High precision AMFlow evaluations.

[Liu, Ma '22], See also [Hidding, Usovitsch '22]

	Differential Equations	Solving DEs	Discussion
00000	0000000000	0000000	000

Discussion/Summary

Bottlenecks in (Polylogarithmic) Integral Calculation

Growing integral count: efficiently automate canonicalization?

In multi-scale case residue techniques very desirable.

$$\oint_{\{|f_i(\ell)|=\epsilon\}} \frac{d^4\ell_1 d^4\ell_2}{D_1 \cdots D_n}.$$
[Cachazo '08]

Can we improve understanding and automate?

See dlogBasis [Henn, Mistlberger, Smirnov, Wasser '20]

Symbol alphabets without the DE?

- Even letters ~ Landau equations. [see Sebastian's talk].
- Odd letters "from even". Algebraic factorizations?

$$W_{\mathsf{odd}}\overline{W}_{\mathsf{odd}} = \prod W^{lpha_i}_{i,\mathsf{even}}.$$

see also [Heller, von Manteuffel, Schabinger '19], [Jiang, Liu, Xu, Yang '24]

Take-Home Messages

- Large progress in multi-scale Feynman integral calculation.
- Integrals understanding required for amplitude computation.
- Canonical differential equations give strong analytic control.
- Numerical constructions of DE very useful!
- "Pentagon functions approach" has good stability/efficiency.

How Many Integral Topologies?

One-loop integrals with 4D externals stop at pentagons.

▶ No solution for 6-prop cut \Rightarrow identity:

$$1 = \sum_{i=1}^{6} c_i D_i \qquad \Rightarrow \qquad - \sum_{i=1}^{6} c_i \sum_{j=1}^{6} c_j \sum_{j=1}^{6}$$

[Hilbert's Weak Nullstellensatz]

At two loops, there is no solution to 12-propagator cut:

*Masters potentially $O(\epsilon)$, but analysis more intricate.

Many more integral topologies to compute!