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What I'm going to say

e Negative side:
o Current ML methods cannot be trusted and cannot be interpreted (by construction).
o  Their use exposes us to strong biases or systematic errors.

e Positive side:

o ML helps with the engineering systems involved in astrophysics projects.
o ML can be used on auxiliary components (nuisances), such as calibration and backgrounds.
o In causal problems, flexibility is paramount (and interpretation is not).
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What we've learned in astrophysics from ML

David W. Hogg / ML in astrophysics / https://dwh.gg/a3d3 3


https://dwh.gg/a3d3

What we've learned in astrophysics from ML

[that’s it; that’s the list]
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What we've learned in science from ML
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“But ML solved protein folding!”

e AlphaFold (eg, PubMed/PMC8728224) can predict structure from sequence.
o  The main functional goal of protein folding.

e This success told us literally nothing about how proteins fold.

e They solved an engineering problem: Given a sequence, what is the
corresponding fold?

o It didn't answer any open question in the physics, chemistry, or biology of protein folding.
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Engineering and science

e My group does lots of engineering for big astrophysics projects.
o Instrument calibration, observatory operations, data analysis pipelines, model building,
optimization and inference systems, project management.

e (Good engineering is an extremely important part of every project.

e [Engineering successes are not the same as science results.

e Don't get me wrong: Great engineering makes all science possible. | love
engineering, and | do it.
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What is machine learning?

e A machine learning method is a method whose capability improves as it sees
more data.

o  Probably meaning: Improves substantially faster than the square-root of N.
e C(lassic: PCA, ICA, SVM, linear regression, Gaussian process, k-means,
K-nearest-neighbor, KDE

e Contemporary: MLP, deep CNN, transformer, diffusion
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What is (supervised) machine learning?

e You have a golden set of data containing N objects, each of which has a list x.
of features and a list y, of labels. This is your training set.
e You try to find the function f(x) that does “the best” job of predicting y in this

data set. This is the training step.
o You give this function immense flexibility—often literally millions or billions (!) of parameters.

e You can now predict new labels y, for any new data point x, with f(x,). This is

sometimes called the test step or prediction.
o Note the deep assumption that the new data are similar to the training data.
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The uses of ML in astrophysics

e C(Classification

o  Which pipeline to apply to which object? Which objects to observe further?
e Outlier detection

o Find moments when the observatory has issues; find unique objects.

e Dimensionality reduction
o Stars and galaxies live in low-dimensional spaces!
e Regression for label transfer
o | know the parameters of these stars, can | get parameters for 200M more stars?

e Emulation of expensive simulations
o The Universe is hard to simulate; our carbon footprint is horrifying.
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The philosophy of machine learning

e Ontology: Only the data exist; models predict data from data.

o The latent structure is irrelevant; judged only on performance.
o  We don't need to understand the internals of f(x).

e [Epistemology: Performance on held-out data is the one arbiter of truth.
o Compare this to the epistemology of physics!
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Interdisciplinarity

e ML methods were (mostly) built by companies for commercial applications.

e They perform incredibly well on those tasks!
o Have you seen TikTok recently?

e How is presenting content to users like or not like doing astrophysics?
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ML vs astrophysics

e ML uses “train, validate, and test” frameworks.

o These don't really exist in astrophysics: We are trying to find new things (higher redshifts,
lower masses, novel signatures of atmospheric chemistry).

e ML takes the data as given.
o  We care about experimental design, noise models, and selection effects.
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Trust issues

e Fundamentally you can't know what an ML method is doing, internally.
o (this is controversial; many experts would disagree)

e Interpretability is much discussed, but is currently a failure.

o Even linear regression is generally uninterpretable once the number of features gets large.
o | believe that interpretability is doomed to failure, because it is at odds with model capacity..
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The question

e Where in science can you use a model that you don't understand?
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Example: Emulation (piras et ar arxiv:2205.07898)

2 Prediction

1
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Adversarial attacks (coodfellow et al 1IcLR 2015)

+.007 x

“vanda” noise “gibbon”

577% confidence 99.3% confidence
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What do adversarial attacks reveal?

e They are carefully tuned, so they don’t represent generic failure modes.

e But they reveal that the model is not doing what we think it is doing.
o In scientific applications, that's pretty disturbing.
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Technical point: Confirmation bias

e Simulations are expensive, so let's replace them with an ML emulator!

o Really expensive! In cosmology and in ocean science, eg, the requirements exceed the
computing capacity of the United States.

e .. [grind on your scientific problem using those emulations as your theory] ...

e Now you discover something really really surprising. What do you do?
o Checking your result is very expensive (by construction), so you will only check if the result is
very surprising.
e Thisis the very definition of confirmation bias.
o Emulation forces us inevitably into a confirmation-bias setting.
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Technical point: Confirmation bias

e |/don't have a solution for this problem.
o (ButI'll return to it at the end.)
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Stellar parameters

e Take a spectrum of a star, infer the mass, age, and composition of that star.
e Very hard to do; requires excellent data, good judgement, and a whole lot of
computation.

e So we label a few stars, and then use ML regression to label the rest.
o  With the ESA Gaia Mission data, this has become a cottage industry.
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Example: The Cannon (ness et a arxiv:1501.07604)

Normalized Flux

15660 15680 15700 15720 15740 15760 15780 16160 16180 16200 16220 16240 16260 16280
Wavelength A Wavelength A
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Example: The Cannon (ness et al arxiv:1501.07604)

[Fe/H], (dex)

A [Fe/H], (dex)

Corrected-ASPCAP: input labels
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Example: AspGap (et al, arxiv:2309.14294)
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Technical point: Population and joint analyses

e If you want to perform joint analyses on multiple objects (or multiple data

sets), you have to combine their likelihood functions.
o If you try to combine their posterior pdfs, you will end up exponentiating your prior pdfs.

e Almost no ML regressions or classifications return quantities related to

likelihood functions.
o They tend to return posterior quantities, where the training set takes the role of the prior.

David W. Hogg / ML in astrophysics / https://dwh.gg/a3d3 25


https://dwh.gg/a3d3

Technical point: Population and joint analyses

e Example: You have 1000 stars in some region of the Galaxy. What is their
average age?
e |If you take the average of maximum-likelihood estimates of their ages, you

get an unbiased estimate of the average age.
e If you take the average of posterior estimates of their ages, you get a highly

biased estimate.
o It's like you took your prior to the 1000th power.
o ML regressions generally return posterior estimates.
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Technical point: Population and joint analyses
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Technical point: Population and joint analyses

e |/don't have a solution for this problem.
o (well actually, some ML methods—like The Cannon—return maximum-likelihood estimates)
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Causal inference in astrophysics?

e Social sciences and health sciences often foreground causal inference.

e Physical sciences less so, but:

o  Was this data feature produced by the star, or by the atmosphere? Or by my instrument?
o lIsthat a signal or just a background effect?
o If I had observed for longer, what would | have seen?
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Instrument calibration

e Say we are measuring the brightness of a star extremely sensitively.

e What variations are due to the star, what are due to the instrument?
o And what are due to any planets?

e You make the best argument that the signal is due to the star, when you have
given your instrument model a lot of flexibility.
e Often (but not always), you don’t need to interpret your instrument model.
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Example.’ Planets in NASA K2 (Foreman-Mackey et al, arXiv:1502.04715)
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Instrument calibration

e Note the connections to engineering.

o ML is useful in instrument calibration precisely because instrument calibration is part of the
engineering infrastructure of the scientific project.
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Backgrounds (or foregrounds)

e Most astrophysical data are contaminated by backgrounds and foregrounds.
e A subtle signal of interest is only believable when the background and

foreground models have been given lots of flexibility.
e And by assumption, these are the signals you don't care to understand!
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Example: Foregrounds in ESA Planck

-10° -10° -10 <101 10 10° 10° 10* 10° 10° 107
30-353 GHz: 8T [Krg); 545 and 857 GHz: surface brightness [kly/sr]

David W. Hogg / ML in astrophysics / https://dwh.gg/a3d3

34


https://dwh.gg/a3d3

Residuals

Example: wobble spectral mode
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Conservatism

e |tis generally considered cavalier, and not conservative, to throw ML at your

scientific data.
e However, in causal inferences, the most conservative thing you can do is give

your nuisances and confounders maximum flexibility.
o ML can provide the most conservative possible approaches to these problems!
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Open question: Trust in emulators

e Itis obvious that emulation of expensive simulations (and other expensive

computation) is here to stay. It's happening.
e So, we need to figure out ways to build trust systems for emulators.

o  We're exploring methods involving exact symmetries.
o  We're exploring methods built on adversarial training.
o Maybe there are ways to introduce sanity checks and sparse resimulations?

o (all joint work with Soledad Villar @ JHU)
e Many of these issues arise in artificial intelligence more generally.
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What | said

e Machine learning tools are dangerous.

e Their use can lead to badly biased outcomes.

e However, there are contexts in which ML methods are our only choice, for
computational reasons (eg, emulation), and for intellectual reasons (eg,

calibration).
o We have work to do if we are going to ensure that our scientific results remain accurate.
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