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JUNO physics program
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• JUNO is a multipurpose Neutrino Observatory and it has a rich program in neutrino physics and 
astrophysics studying neutrinos in a large energy range.

45 evts/day 400 evts/year

8B : 16 evts/day
7Be : 490 evts/day/kton

>~100 evts/day104 evts at 10 kpc
DSNB : 2-4 evts/year

→Neutrino mass ordering
→Precision measurement of solar oscillation parameters 

Proton decays : p→ν+K+

Indirect Dark Matter Searches

_
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JUNO detector
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Calibration room
multi-dimension calibration 

systems
Top Tracker

3 layers of plastic scintillator 
(cover ~60% of  Water Pool)

→Precise muon tracker

Water Pool (WP)
35 kilo-ton pure water

2400 20’’ PMTs on CD surface
→High muon detection 
efficiency
→Protects CD against external 
radioactivity 

Central Detector (CD)
SS latticed shell
Acrylic sphere

Liquid Scintillator (LS)
20 kilo-ton based LAB LS

→High light yield : ~ 10 000 
photons/MeV
→ High transparency : ~ 20 
meters attenuation length at 430 
nm

Photomultipliers (PMTs)
17 612 20’’ PMTs
25 600 3’’ PMTs

→~ 78% coverage

High energy precision Backgrounds reduction

Water Pool Ø : 43.5 m

Stainless steel latticed shell Ø : 40.1 m

Acrylic Sphere Ø : 35.4 m
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JUNO Simulation
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• JUNO Simulation software is based on the Geant4 toolkit and the SNiPER (Software for Non-collider 
Physics Experiment) framework (Eur.Phys.J.C 83 (2023) 5, 382, Eur.Phys.J.C 83 (2023) 7, 660 (erratum) ).

• Several processes have been changed in GEANT4 in order to better fit with the requirements of the 
experiment:

• Implementation of positronium decay in G4EmLivermorePhysics.

• Modifications of gamma generation in neutron capture processes.

• Modification of refraction index in G4Cerenkov.

• Modifications of G4OpBoundaryProcess to take into account of the PMT optical model.

• Radioactive decay of cosmogenic nuclei.
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Positronium formation (1)
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Positronium formation (2)

6

e+#+##e$#

direct##
annihilation#

2#x#511##keV##γ’s#

e+# e$#

para$Positronium-
(p$Ps)-

#

Total#Spin#=#0#
τ#(vacuum)#=#125#ps#

ortho$Positronium-
(o$Ps)-

#

Total#Spin#=#1#
τ#(vacuum)#=#142#ns#

3#γ’s#
2#x#me#Etot#

B.R.#75%#
B.R.#25%#

Matter-effects#
Chemical#Reactions,#
Spin#Flip,#Pick$off#
#

oPs#effective#τ#=#O(ns)###

Formation#Probability#f#



C.Jollet

Positronium generator (1)
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• The positronium generator is made with the addition of 6 files (*.cc and *.hh): G4PositroniumFormation, 
G4Positronium, G4PositroniumDecayChannel2G, G4PositroniumDecayChannel3G.

• In G4EmLivermorePhysics.cc, we replace the «  G4eplusAnnihilation  » process by the 
« G4PositroniumFormation » process.

• In G4PositroniumFormation, we set for the volume considered the positronium formation probability 
and its lifetime. In the case of JUNO, the material is Liquid Scintillator and the values are hard-coded 
(formation probability of 0.545 and lifetime of 3.08 ns from Phys.Rev.C 88 (2013) 065502)

From Paolo Crivelli (ETH Zurich): paolo.crivelli@cern.ch, Cécile Jollet (LP2i Bordeaux): cecile.jollet@cern.ch, Anselmo 
Meregaglia (LP2i Bordeaux): anselmo.meregaglia@cern.ch
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Positronium generator (2)
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• A random number is shooted, if it is lower than this oPs formation probability, the positron undergoes 
annihilation, otherwise positronium is formed and the lifetimes are set:

• According to the probability, the annihilation into 3 gammas (2% probability) or 2 gammas is taken into 
account.
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Positronium generator (3)
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G4PositroniumDecayChannel2G.cc G4PositroniumDecayChannel3G.cc

http://G4PositroniumDecayChannel2G.cc
http://G4PositroniumDecayChannel2G.cc
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Positronium generator : results
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• The time emission is consequently different for a positron (which forms positronium) and an electron, 
and this could be very useful for particle identification and e+/e- discrimination.
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Time distribution of the p.e. on the PMT

e+ without positronium
e+ with positronium and annihilation 

delayed by ~4.8 ns

e+ with positronium and annihilation 
delayed by ~10.5 ns

• In data (Double Chooz experiment JHEP 10 (2014) 032) we observed such events and we considered 
that it is important to simulate them.
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Neutron capture
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• The multiplicity and energy of gammas emitted after neutron capture is important for reactor anti-
neutrinos experiment.

• Using Geant4.9 , we found some issues in the gamma emission for neutron capture on these different 
nuclei : Gd, Fe, Ni, Si, P, Mn, S, Cr, O, N and C.

• For all these nuclei we generated *.txt files with the gamma lines from NNDC. In total, 32 files have been 
created.

• We created DsG4NNDCCaptureGammas.cc which read these files and generate the gammas.

• We did not check if modifications have been made with more recent Geant4 versions.

From Guofu Cao (IHEP): caogf@ihep.ac.cn

http://DsG4NNDCCaptureGammas.cc
mailto:caogf@ihep.ac.cn
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Cerenkov process modifications (1)
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https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/electromagnetic/xray_production/
cerenkov.html

 where n(E)>1/β In GEANT4, n(E) is assumed as 
an increasing function of energy.

From Lin Tao (IHEP): lintao@ihep.ac.cn

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/electromagnetic/xray_production/cerenkov.html
https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/electromagnetic/xray_production/cerenkov.html
mailto:lintao@ihep.ac.cn
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Cerenkov process modifications (2)
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• In JUNO, the RINDEX of the Liquid Scintillator is not a monotonic function.

• Consequently, we modified G4Cerenkov.cc in order to calculate the Cherenkov Angle Integral (CAI) 
according to the energy ranges where RINDEX>1/β.

1/beta

http://G4Cerenkov.cc
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G4OpBoundaryProcess modifications
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• The JUNO PMT simulation uses a developed PMT 
optical model (POM) that allows photons to enter 
the PMT and bounce around inside and sometimes 
refract out again to possibly continue on to other 
PMTs. 

• Also the POM accounts for thin film interference 
effects on the stack of layers:  Pyrex, Anti reflection 
coating (ARC), Photocathode (PHC), Vacuum.

• The calculation yields A,R,T (absorption, reflection, 
transmission) probabilities uses as input the 
thicknesses of the ARC and PHC layers and 
refractive indices for the 4 layers. The two inner 
layers can have a complex refractive index, allowing 
absorption.

• The transverse matrix method (TMM) is used to 
sum up the contribution of interference using 
complex refractive indices for ARC and PHC.

From Simon Blyth (IHEP): simon.c.blyth@gmail.com

mailto:simon.c.blyth@gmail.com
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G4OpBoundaryProcess modifications
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• Thus with A,R,T, E the standard boundary is modified in a way that reuses as much of standard Geant4 as 
possible. The customisation allows the minimum change to be “injected” to implement the POM.
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Nuclei radioactive decay
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• One important background of reactor anti-neutrinos experiment is the decay of two cosmogenic 
isotopes: 9Li and 8He.

• Their spectra have been measured by nuclear spectroscopy and their decay is accompanied by neutrons 
and alpha emission. In previous Geant4 versions the excited states decayed by gamma emission.

• We modified the RadioactiveDecay files and we added the decay with the emission of triton (NIM A 949, 
162904 (2020)).

•  These modifications have been implemented officially in the Geant4.

z4.a9

z4.a8

Table 3: File z4.a9.

# 9BE (8.1814e-17)
# Excitation Flag Halflife Mode Ex flag Intensity Q
P 11810 - 4.22e-21

Alpha 0 0.75
Alpha 0 - 28. 9340
Alpha 0 - 47. 8070
Neutron 0 0.25
Neutron 0 - 2. 10140
Neutron 3030 - 11. 7110
Neutron 11350 - 12. 10

P 11282 - 4.22e-21
Alpha 0 0.76
Alpha 0 - 76. 8812
Neutron 0 0.24
Neutron 0 - 3. 9612
Neutron 3030 - 21. 6582

P 7940 - 4.22e-21
Alpha 0 0.8
Alpha 0 - 80. 5470
Neutron 0 0.2
Neutron 0 - 10. 6270
Neutron 3030 - 10. 3240

P 2780 - 4.22e-21
Alpha 0 0.25
Alpha 0 - 25. 310
Neutron 0 0.75
Neutron 0 - 15. 1110
Neutron 3030 - 60. 10

P 2429.4 - 4.22e-21
Alpha 0 0.025
Alpha 0 - 2.5 10
Neutron 0 0.975
Neutron 0 - 11. 759.4
Neutron 3030 - 86.5 10

11

Table 4: File z4.a8.

# 8BE (8.1814e-17)
# Excitation Flag Halflife Mode Ex flag Intensity Q
P 0 - 8.181436e-17

Alpha 0 1.
Alpha 0 - 100. 91.84

P 3030 - 1.3e-22
Alpha 0 1.
Alpha 0 - 100. 3121.84

P 11350 - 1.3e-22
Alpha 0 1.
Alpha 0 - 100. 11441.84

P 16626 - 4.22e-21
Alpha 0 1.
Alpha 0 - 100. 16717.84

Table 5: File z2.a8.

# 8HE (119.1 MS)
# Excitation Flag Halflife Mode Ex flag Intensity Q
P 0 - 0.1191

BetaMinus 0 1.
BetaMinus 980.8 - 83.1 9671.0
BetaMinus 3210 - 8.0 7441.0
BetaMinus 5400 - 8.0 5251.0
BetaMinus 9670 - 0.9 981.0

12
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Nuclei radioactive decay
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z3.a8Table 6: File z3.a8.

# 8LI (839.9 MS)
# Excitation Flag Halflife Mode Ex flag Intensity Q
P 0 - 0.8399

BetaMinus 0 1.
BetaMinus 3030 - 100 12974.13

P 3210 - 4.22e-21
Neutron 0 1
Neutron 0 - 50 1177.7
Neutron 477.6 - 50 700.1

P 5400 - 4.22e-21
Neutron 0 1
Neutron 0 - 50 3367.7
Neutron 477.6 - 50 2890.1

P 9670 - 4.22e-21
Triton 0 0.8
Triton 0 - 80 4280.0
Neutron 0 0.2
Neutron 0 - 10 7637.7
Neutron 477.6 - 10 7160.1

13

We added a triton decay class based on the alpha 
decay process:

 G4TritonDecay.cc and G4TritonDecay.hh in /
processes/hadronic/models/radioactive_decay/

http://G4TritonDecay.cc
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Nuclei radioactive decay

18

• However all these nuclear states have an important energy uncertainties (normal width in particular for 
neutron emission states and spectroscopy uncertainties).

• Consequently the emitted particles are not mono-energetic.

• To reproduce better the data, it would be interesting to add the width of the states. Would it be a project 
to add the uncertainties of the width for the decay of nuclei?

13.61 MeV
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9Be

11.81 MeV
11.28 MeV

7.94 MeV

2.78 MeV
2.43 MeV

8Be
5He

11.35 MeV

3.03 MeV

g.s.
g.s.
1.27 MeV

8Be + n  
α + α 

9Li        9Be + e- + νe  
5He + α  

α + n

9Li        9Be + e- + νe  

10.651 MeV
8He

8Li

9.67 MeV

5.4 MeV

3.21 MeV

0.98 MeV

5He

7Li

g.s.

g.s.
0.48 MeV

7Li + n  
8He        8Li + e- + νe  

5He + 3H 
α + n

8He       8Li + e- + νe  
For 8Li* of 9.67 MeV only

9Li 8He
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• We implemented the positronium generator instead of standard e+ annihilation. The lifetime and the 
probability of positronium are dependent of the material.

• We created several files to reproduce the multiplicity and the energy of gammas for neutron radiative 
captures.

• We customized the Cerenkov process in order to take into account the dependance of the refractive 
index with the photons energy.

• We developed a complex optical model to better reproduce the photons interactions with the PMTS. 
This has been accompanied by a customisation of the boundary processes.

• We would be also interested in a more precise description of radioactive nuclei decay taking into account 
of the width of the energy states.
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G4OpBoundaryProcess modifications
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• The JUNO PMT simulation uses a developed PMT optical model (POM) that allows photons to enter the 
PMT and bounce around inside and sometimes refract out again to possibly continue on to other PMTs. 

• Also the POM accounts for thin film interference effects on the stack of layers:  Pyrex, Anti reflection 
coating (ARC), Photocathode (PHC), Vacuum.

• The calculation yields A,R,T (absorption, reflection, transmission) probabilities uses as input the 
thicknesses of the ARC and PHC layers and refractive indices for the 4 layers. The two inner layers can 
have a complex refractive index, allowing absorption.

• The transverse matrix method (TMM) is used to sum up the contribution of interference using complex 
refractive indices for ARC and PHC.

• Thus with A,R,T, E the standard boundary is modified in a way that reuses as much of standard Geant4 as 
possible. The customisation allows the minimum change to be “injected” to implement the POM.

From Simon Blyth (IHEP): simon.c.blyth@gmail.com

mailto:simon.c.blyth@gmail.com
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