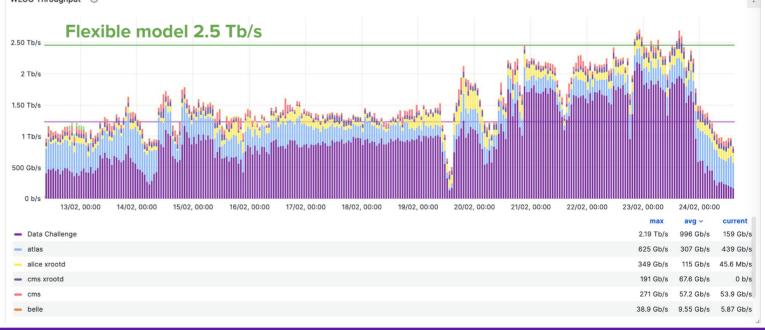

DC24 ATLAS retrospect

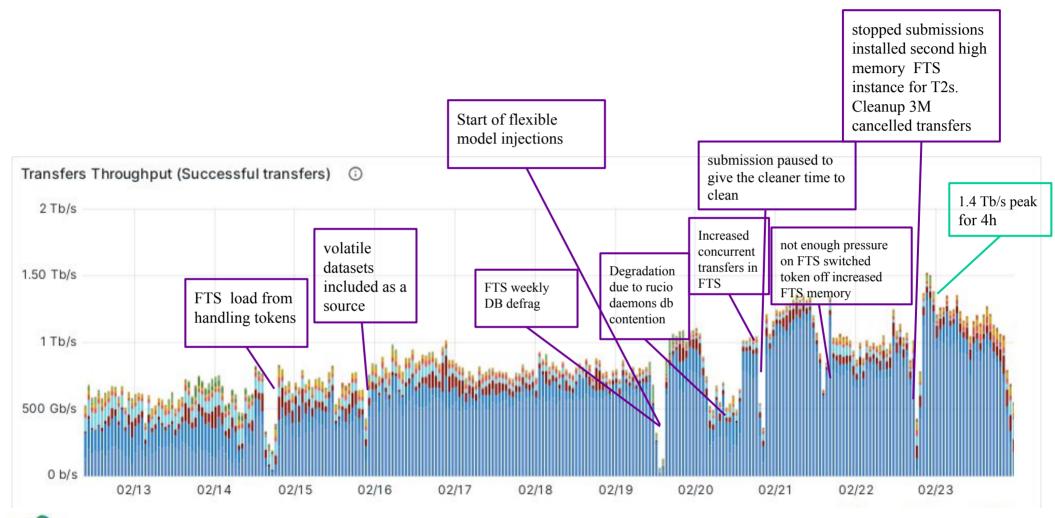


DC21: Production traffic dominant

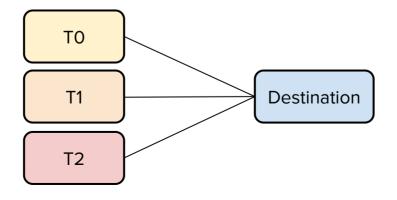
DC24: DC traffic dominant

MANCHESTER 1824

ATLAS


- Challenge pushed the whole system
 - Injections every 15 minutes on ~1200 links
 - ~2000 links if we include production
 - Pushed FTS really hard to orchestrate
 - Short datasets lifetime 1h -> 2h -> 3h to keep the space free
 - Pushed the deletions rates up
 - Pushed rucio to maintain a balance between submissions and deletions
 - 3h space was running out in some places
 - Data Challange traffic backfilling
- This helped highlighting problems that wouldn't have been seen otherwise in the whole infrastructure

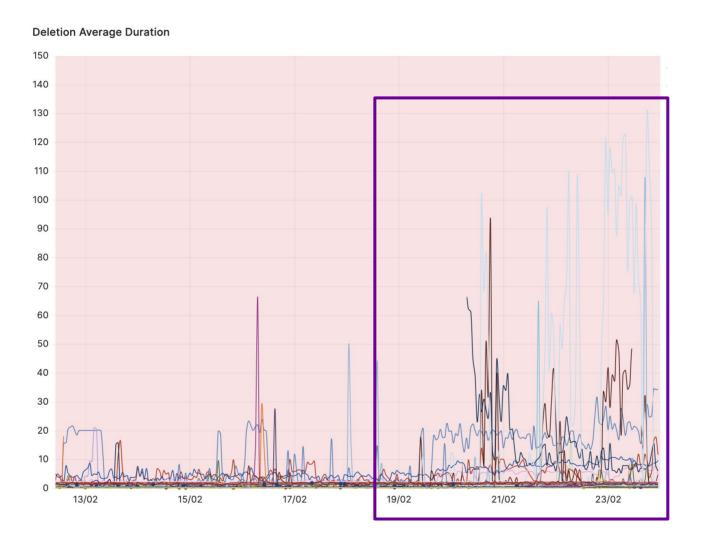
Some explanations



FTS snowball

- FTS orchestrates transfers per link over many links
 - Doesn't orchestrate throughput
 - To increase throughput we had to increase the number of allowed parallel transfers by an over an order of magnitude
 - fts3-atlas 10k -> 25k concurrent transfers
- Has a concept of fair share per activity
 - Doesn't have a concept of links priorities within an activity, i.e. all links are equally treated TO-T1 same level as T2-T2
 - Doesn't prioritise faster transfers
- Tokens put further load on the system

Sites


- Some sites struggled mostly due to storage limitations.
 - Either it wasn't possible to open enough parallel connections (IN2P3-CC)
 - they had a problematic bug (NDGF),
 - or a bottleneck on the gateways due to hardware limitations (RAL).
 - Rates exceeding the expected values and storage not coping (INFN-CNAF)
- Some Tier2s also reported having problems
 - Lancaster had to double the number of gateways from 4 to 8,
 - SWT2 and other sites had a long wave of jobs in transferring state
 - MILANO and other sites saw a large amount of timeouts.
- Overall the number of problems reported, considering the amount of data pushed through, is reasonable
 - 17 problems were reported or GGUS tickets open (list in backup slides)

Deletions

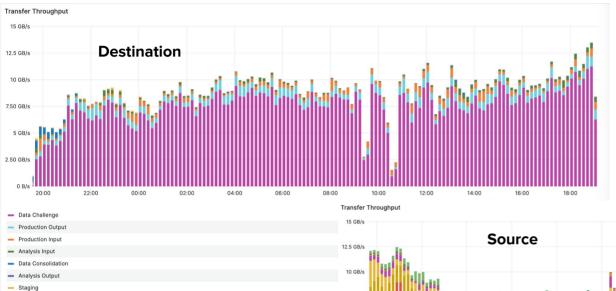
- Increase in deletion time particularly during the second week.
 - Problem was general but some sites had much higher times than others
 - It will need further investigation to see how it maps with storage types

TO - T1

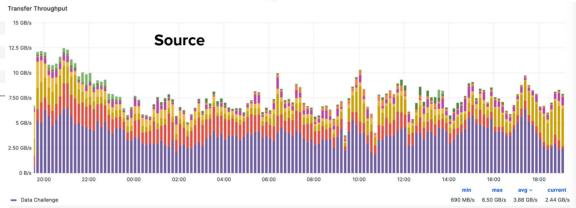
- T0 export rates were not achieved
 - Lack of prioritization in FTS
 - Increased concurrent transfers to all T1 to 5k and from T0 to 1k
- TO exports have been rerun one T1 at the time

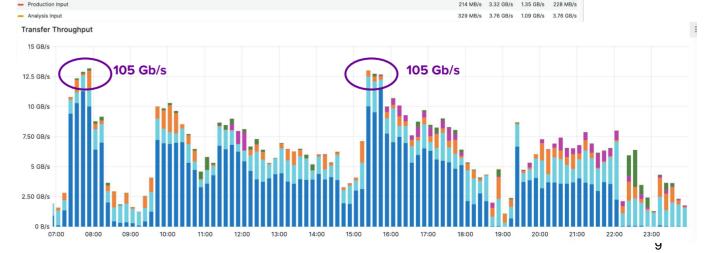
• For at I	east 6h
------------	---------

Site	T0 Export	DC24 first 2 days	% of expected rates	T0-T1 single test	% of expected rates
CERN-PROD	310.7	<u>197</u>	-	-	-
BNL-ATLAS	68.4	<u>31.5</u>	46%	<u>61.3</u>	90%
FZK-LCG2	39	<u>26.4</u>	68%	<u>42.2</u>	108%
IN2P3-CC	44.2	<u>43</u>	97%	<u>50.9</u>	115%
INFN-T1	28.3	<u>19.3</u>	68%	<u>33.5</u>	118%
NDGF-T1	24.4	<u>13.8</u>	57%	<u>28.2</u>	116%
SARA-MATRIX	19.3	<u>12.2</u>	63%	<u>274</u>	1420%
pic	13.3	<u>12.3</u>	92%	<u>18.1</u>	136%
RAL-LCG2	44.4	<u>15</u>	34%	<u>27.2</u>	61%
TRIUMF-LCG2	29.3	<u>23.9</u>	82%	<u>27.2</u>	93%
T1 summary	310.6	197.4	64%	562.6	181%
T1 summary -SARA	291.3	185.2	64%	288.6	99%

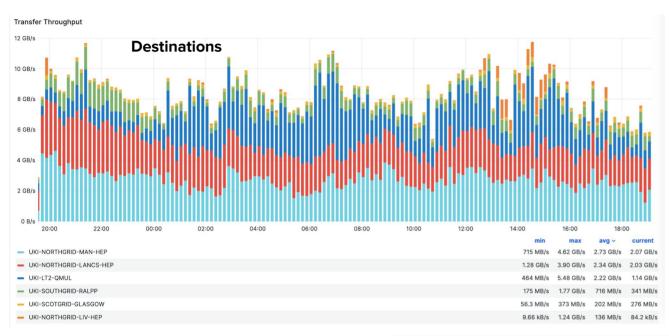

- Testing T1s one by one shows in most cases the original problem was a congested FTS
- TRIUMF was slightly lower but very stable rates
- BNL tends to absorb data too quickly
- RAL will give more details for the WLCG report
 - Internal tape disk traffic in both direction is always present at RAL
 - 40-50 Gb/s internal pushes any other traffic out
 - We tried both echo and antares for different reasons the rates were below
 - \circ 27.2 Gb/s single test was the first 3h of the test
 - after that antares was stable at 10 Gb/s when we removed deletions
 - \circ \quad antares is not connected to LHCOPN yet

8



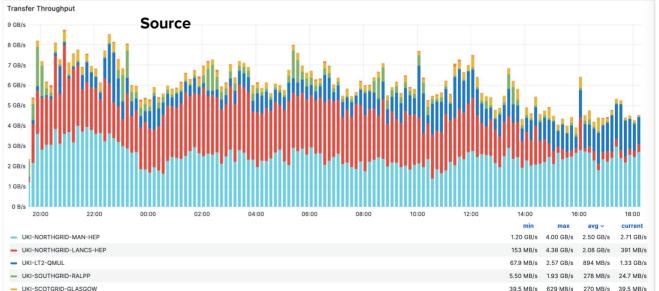

UK: RAL general

 Interval is that of the last day when ATLAS could push the rates higher and Tier2s were involved.


- Destination traffic dominated by the data challenge
 - 70 Gb/s vs 97 Gb/s
- Source more mixed picture
 61.6 Gb/s vs 76 Gb/s
- Combined production traffic in other intervals after the challenge has reached Dc24
 levels with peaks of 105 Gb/s
 No doubt the DC24 tuning helped

UK: T2

- UKI-NORTHGRID-LIV-HEP


Green injected

Site	Ingress	Egress
UKI-NORTHGRID-MAN-HEP	31.4	28.2
UKI-SOUTHGRID-RALPP	4.5	4.1
UKI-SCOTGRID-GLASGOW	13.5	12.2
UKI-LT2-QMUL	5.9	3.2
UKI-NORTHGRID-LANCS-HE	28.6	25.8
UKI-NORTHGRID-LIV-HEP	0.5	0.3

76.0 kB/s

152 MB/s

35.8 MB/s 33.3 MB/s

• QMUL traffic was production but ingress was at the rates of DC24

- RALPP concurrent CMS traffic
- Man/Lancs hit their bandwidth limits
- Glasgow should have been much higher

Conclusions

- Positive: system was definitely stressed and it cracked in places
 - Aim of a challenge is finding bottlenecks not only achieve rates
 - Limitations of certain setups were highlighted and, where possible, corrected on the fly.
 - In other places it will require more thinking
- UK
 - RAL needs to do tuning
 - Tier2s generally well but in some cases already hitting the bandwidth
- My recommendation for WLCG is that these DC should be made more often and be less overloaded
 - UK could also agree to do internal challenges