Reco Status

Alison Elliot (RAL), Sam Harper (RAL) SwiftHEP Meeting March 27th 2024

Introduction

- Aim is to investigate uses of FPGAs to accelerate "offline" reconstruction
 - HLT reconstruction and offline reconstruction are the same to me, particularly from a code point of view
- There are two ways you can go here
 - FPGA to accelerate targeted c++ functions
 - FPGA to accelerate ML inference
- Currently focusing on seeing if FPGAs can accelerate c++ functions
 - while ML is an approach, it does rather feel we're competing with a multi billion dollar research effort from the major tech companies
 - depends on how cutting edge we are
 - fixed silicon may not be optimised for latest algos
 - also how many different ML algos we use

Disclaimer

- Alison and myself are physicists not firmware experts
- part of the goal here is to see if physicists can write acceleratable code
 - maintainability issue if only a handful of (difficult to retain) firmware engineers can write/understand the reco code
 - in the next step we will be talking to RAL firmware experts to better utilise the FPGA but again idea is to have this physicist understandable
- this talk represents our current understanding which is continuously evolving
 - please let us know if its incorrect or you have some suggestions for improvements

Xilinx (AMD) Tools

https://docs.amd.com/r/2021.1-English/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS https://github.com/Xilinx/Vitis-Tutorials

- vitis: builds the fpga binary
 - both command line and GUI options
 - latest GUI version is now vscode based! (old was eclipse ☺)
 - can be done on any machine
- **XRT**: runs the fpga binary
 - handles the calls in the host program
 - library host program links against, apache 2.0 licenced
 - therefore need version compiled with correct gcc & arch
 - will need multiple versions for athena / CMSSW / whatever
 - there has been a problem in that it was hardcoded to install at /opt/xilinx/xrt
 - worked around it by installing at /opt/xilinx/xrt_slc7_amd64_gcc11/opt/xilinx/xrt/
 - latest branch appears to have a fix for this and appears to be able to be installed anywhere
 - <u>https://github.com/Xilinx/XRT/pull/7835</u>
 - which is necessary for us!
 - supports opencl and proprietary xrt api:
 - currently using the xrt api , haven't got opencl working yet

Setup

- Alveo U250 data center card
 - <u>https://www.xilinx.com/products/boards-and-kits/alveo/u250.html</u>
 - note: algos presented in this talk typically take ~1-2% of the FPGA
 - power is ~25-30W (basically idle), max is 225W
- server details:
 - 2x Xeon Gold 6242R (20 cores 40 threads each) at 3.1GHz
 - 192 GB ram
 - centos 7, using gcc 11
- XRT: 2022.2
 - compiled with gcc 11 to enable linking with CMSSW
 - custom compilation is a little fiddly but not too bad
 - mainly getting cmake to pick up gtest, protobuf, boost libraries also compiled with gcc11
 - cmake experienced users may have an easier time

Strategy

- reproduce the CMS GPU effort
 - in particular focus on the ECAL reco algos
 - contrary to general GridPP perception, CMS GPUs efforts are highly advanced and are an everyday thing now
- two methods:
 - weights: simple algo which sums observed amplitudes with given weights to estimate the energy in the BX
 - simple multiplication
 - aim to gain some basic experience in FPGA algos
 - multifit: fits the observed amplitudes to predefined signal templates to estimate the energy in each bunch crossing
 - standard least squares fit
 - takes significant part of the HLT processing time

Circles

ECAL and HCAL multifit

Workflow Cycle

- two main steps: building and linking
- building:
 - compiles the HLS code into a xilinx object file (.xo)
 - for simple functions, takes ~few mins (both hw and hw_emu)
 - gives a nice summary of how long the algorithm is expected to take
 - eg initiation interval, latency estimates etc etc
 - also gives feedback on things to improve to get faster
- linking:
 - makes a binary to run on the FPGA (.xclbin)
 - takes ~10mins for hw emulation
 - takes ~2hrs for hw build
 - so vitally important you test it with the hw_emu run that it does what you want first

General Observations

• simple to get code to synthesis to the FPGA

- as long as it doesn't do anything to crazy and has no dynamic memory allocation
- to be performant, HLS is still fairly low level, yes its c++ code but you have to spend a lot of time thinking about loop unrolling, loop pipelining, DSPs to gain efficiency
 - none of this is very straightforward
 - while emulation is useful for testing and getting an idea of speed up, to actually get a measurement you need a 2hr+ build which is annoying
- error messages can be unhelpful and sometimes buried
 - simulation output was being buried in a hidden directory we missed at first

Architectures

- GPU:
 - massively parallel, single instruction, multiple data
 - needs careful alignment of the memory
 - structure of arrays (SoA)
 - more about organising the problem so the exact same operation can operate an memory block
- FPGA:
 - flow of data through a circuit, everything happens at once
 - takes a given latency to pass through the circuit
 - achieves parallelization through pipelining
 - ie how many events you can send through the circuit at once
 - the number of cycles before new data can enter the pipeline is known as the **initiation interval (II)**
 - best is 1 cycle, so if it takes 150 cycles to get a result for 1 event, it'll take 151 cycles for two events, 152 cycles for three events etc etc
 - keeping that pipeline full is key to performance
 - can also easily create N instances of a kernel
 - assuming have enough resources
 - while useful, not the best way to achieve parallelization in an FPGA algo as it is inefficient in resource usage

Native CMSSW Datatypes

- HLS can synthesis native CMSSW dataformats
 - as long as they are not too complex
 - pointers is the main stumbling block, typically don't use those in CMSSW dataformats
 - ironically except the low level hardware IO formats which are other probably the easiest for a FPGA to deal with
- Ecal Weights algo updated to write the legacy CMSSW dataformat directly
 - no need for AoS -> SoA -> AoS conversions like GPU
 - well maybe no need, see how we do performance wise, a definitive statement there when we have good performance

ECAL weights

 In November had a simple algo on the FPGA 1 2

3

7

8 9

10

11

12 13

14

15

16

17

18

19 20

21

22 23

24

25 26

27

28

29

30 31

32 33

34

- it sums the 16 samples of the ADC with their appropriate weights to determine hit energy
- it ran, producing rec-hits on the FPGA
- speed:
 - slow...., it does one event at a time

```
void makeUncalibHits(EcalLiteDTUSample* samples, DetId* detIds,
                     EcalUncalibratedRecHit* hits, int nrHits) {
#pragma HLS INTERFACE m_axi port = samples bundle = gmem0
#pragma HLS INTERFACE m_axi port = detIds bundle = gmem1
#pragma HLS INTERFACE m_axi port = hits bundle = gmem0
  constexpr int kNrSamples = 16;
  float ampWeights[kNrSamples] = {...};
  float timeWeights[kNrSamples] = {...};
  for (int hitNr=0; hitNr<nrHits; hitNr++) {</pre>
    bool g1 = false;
    float amp = 0.;
    float t0 = 0.:
    float amp_e = 0.;
    float t0_e = 0.;
    for (int sampleNr = 0; sampleNr < kNrSamples; ++sampleNr) {</pre>
      EcalLiteDTUSample sample = samples[nrSamples*hitNr+sampleNr];
      int gratio = ecalPh2::gains[sample.gainId()];
      int adctrace = sample.adc();
      amp = amp + static_cast<float>(gratio) * adctrace * ampWeights[sampleNr];
      t0 = t0 + static_cast<float>(gratio) * adctrace * timeWeights[sampleNr];
      if (sample.gainId() == 1)
        q1 = true;
    hits[hitNr] = EcalUncalibratedRecHit(detIds[hitNr], amp, 0., t0, 0., 0);
    hits[hitNr].setAmplitudeError(amp_e);
    hits[hitNr].setJitterError(t0_e);
```


ECAL weights

```
constexpr int kMaxLocalSize = 16;
66
    constexpr int kMaxLocalSampleSize = kMaxLocalSize * ecalparams::kNrSamples;
67
68
69
    void krnl_vadd(EcalLiteDTUSample *samples, DetId *detIds, EcalUncalibratedRecHit *hits, int nrHits)
70
71
    #pragma HLS INTERFACE m_axi port = samples bundle = gmem0 max_read_burst_length = 256 max_write_burst_length = 1 depth = 16*61200
    #pragma HLS INTERFACE m_axi port = detIds bundle = qmem1 max_read_burst_length = 256 depth = 61200
72
    #pragma HLS INTERFACE m_axi port = hits bundle = gmem2 offset = slave max_write_burst_length = 256 depth = 61200
73
74
    #pragma HLS INTERFACE s_axilite port = nrHits
75
    #pragma HLS DATAFLOW
            hls::stream<int,ecalparams::kNrSamples> ampsStream("ampsStream");
76
77
            hls::stream<int,ecalparams::kNrSamples> gainIdsStream("gainIdsStream");
            hls::stream<int> detIdsStream("detIdsStream");
78
79
             hls::stream<EcalRecHitData> hitData[ecalparams::kNrParaStreams];
            loadData(samples,detIds, ampsStream, gainIdsStream, detIdsStream, nrHits);
80
             calAmpAndTime(ampsStream, gainIdsStream, detIdsStream, hitData, nrHits);
81
82
             storeData(hitData, hits, nrHits);
83
```

now we've pipelined it: ~16 times as fast

was hoping for more but will take it

- key gains:
 - adopt load -> compute > store model
 - use hls::streams to internally buffer from global memory

More on pipelining

(B) With Dataflow Pipelining


```
load
```

```
void loadData(const EcalLiteDTUSample *samples,const DetId* detIds,
11
12
                  hls::stream<int>& ampsStream,hls::stream<int>& gainIdsStream,
13
                               hls::stream<int>& detIdsStream,int nrHits){
             for (int hitNr = 0 ; hitNr < nrHits; hitNr++){</pre>
14
     #pragma HLS LOOP_TRIPCOUNT min = 1 max = 61200
15
             detIdsStream << detIds[hitNr];</pre>
16
             for (int sampleNr = 0; sampleNr < ecalparams::kNrSamples; sampleNr++){</pre>
17
                 EcalLiteDTUSample sample = samples[sampleNr+hitNr*ecalparams::kNrSamples];
18
                 ampsStream << sample.adc();
19
                 gainIdsStream << sample.gainId();</pre>
20
21
             }
22
         }
23
    }
```

- loads the data from global memory
- hls::streams are 1 and 16 (#samples) depth fifos
 - this is the model suggested by Xilinx
 - using hls::streams rather than direct memory access helps improve pipelining

Science and Technology Facilities Council

compute

```
25
    void calAmpAndTime(hls::stream<int> &amps, hls::stream<int> &gainIds,
                                         hls::stream<int>& detIds,hls::stream<EcalRecHitData> hitData[ecalparams::kNrParaStreams], int nrHits)
26
    {
27
28
         EcalRecHitData hit;
29
        for (int hitNr = 0; hitNr < nrHits ; hitNr++){</pre>
30
    #pragma HLS LOOP_TRIPCOUNT min = 1 max = 61200
31
32
             hit.detId = detIds.read();
33
             hit.amp = 0;
            hit.amp_e = 0;
34
             hit.t0 = 0;
35
            hit.t0_e = 0;
36
37
            hit.g1 = false;
             for (int sampleNr = 0; sampleNr < ecalparams::kNrSamples; sampleNr++){</pre>
38
                         int amp = amps.read();
39
                         int gainId = gainIds.read();
40
                         hit.amp += amp * ecalPh2::gains[gainId] * ecalparams::ampWeights[sampleNr%ecalparams::kNrSamples];
41
                         hit.t0 += amp * ecalPh2::gains[gainId] * ecalparams::timeWeights[sampleNr%ecalparams::kNrSamples];
42
                         hit.q1 |= gainId == 1;
43
             3
44
             hitData[hitNr%ecalparams::kNrParaStreams].write(hit);
45
         }
46
47
```

computes the amplitudes

write

```
void storeData( hls::stream<EcalRecHitData> hitData[ecalparams::kNrParaStreams], EcalUncalibratedRecHit *hits,int size){
49
             for (int hitNr = 0; hitNr < size; hitNr+=ecalparams::kNrParaStreams){</pre>
50
    #pragma HLS pipeline
51
     #pragma HLS LOOP_TRIPCOUNT min = 1 max = 61200/ecalparams::kNrParaStreams
52
                     for (int i =0 ; i < ecalparams::kNrParaStreams; i++){</pre>
53
    #pragma HLS unroll
54
                             const EcalRecHitData& hit = hitData[i].read();
55
                             hits[hitNr+i] = EcalUncalibratedRecHit(hit.detId, hit.amp, 0, hit.t0, 0, 0, 0);
56
                     }
57
             }
58
59
```

writes its to the global memory

Benchmark numbers

#Threads	No Pipeline (ev/s)	Pipeline (ev/s)	CPU (ev/s)
2	1.19 ± 0.01	15.6± 0.7	15.4 ± 0.2
1	1.11 ± 0.01	10.66 ± 0.03	7.1± 0.3

- issue that algo is so fast that the read IO of the digis is bottleneck
- make 8 copies of the producer so makes the hits 8 times such that I/O is not a bottle neck
- ran either one or two threads for the reconstruction
 - 2 threads is probably now saturating the FPGA kernel
- message: we are roughly comparable to CPU now
 - some caveats that the FPGA doesn't do all the CPU does but don't think it will effect the general message

Aside

• two implementations of the algo

1	<pre>void calAmpAndTime(hls::stream<int> &amps, hls::stream<int> &gainIds, hls::stream<int>& detIds,</int></int></int></pre>	1	void calAmpAndTime(hls::stream <int> &amps, hls::stream<int> &gainIds, hls::stream<int>& detIds,</int></int></int>
2	hls::stream <ecalrechitdata> hitData[ecalparams::kNrParaStreams], int nrHits)</ecalrechitdata>	2	hls::stream <ecalrechitdata> hitData[ecalparams::kNrParaStreams], int size)</ecalrechitdata>
3	{	3	(
4	EcalRecHitData hit;	4	EcalRecHitData hit;
5		5	<pre>for (int sampleNr = 0; sampleNr < size; sampleNr++){</pre>
6	<pre>for (int hitNr = 0; hitNr < nrHits ; hitNr++){</pre>	6	if(sampleNr%ecalparams::kNrSamples == 0){
7	#pragma HLS LOOP TRIPCOUNT min = 1 max = 61200	7	<pre>hit.detId = detIds.read();</pre>
8	<pre>hit.detId = detIds.read():</pre>	8	hit.amp = $0;$
9	bit.amp = θ :	9	hit.amp_e = 0;
10	bit amp e = 0:	10	hit.t0 = 0;
11	bit $t \theta = 0$	11	hit.t0_e = 0;
12	bit to $e = 0$.	12	hit.g1 = false;
13	bit of = false.	13	}
14	for (int sampleNr = 0: sampleNr < oralparame::kNrSampleS: sampleNr++){	14	<pre>int amp = amps.read();</pre>
15	int amplem = 0, samplem < couparams Kn samples, samplem (+)[15	<pre>int gainId = gainIds.read();</pre>
14	int anip = anips.read();	16	hit.amp += amp * ecalPh2::gains[gainId] *
17	hit grantu – galilus reau(),	17	ecalparams::ampWeights[sampleNr%ecalparams::kNrSamples];
10		18	hit.t0 += amp * ecalPh2::gains[gainId] *
18	eca(params::ampweights[sampweights];	19	ecalparams::timeWeights[sampleNr%ecalparams::kNrSamples];
19	nit.tU += amp * ecalPnz::gains[gaini0] *	20	hit.gl = gainId == 1;
20	ecalparams::timeWeights[sampleNr%ecalparams::kNrSamples];	21	if(sampleNr%ecalparams::kNrSamples == ecalparams::kNrSamples-1){
21	hit.gl = gain1d == 1;	22	hitData[(sampleNr/ecalparams::kNrSamples)%ecalparams::kNrParaStreams].write(hit);
22	ł	23	1
23	hitData[hitNr%ecalparams::kNrParaStreams].write(hit);	24	³
24	}	25	5

• left runs 4 times faster then the right...

- 15.6±0.7 vs 4.79±0.01 ev/s

- admittedly the right is a little weirdly implemented but didn't think would be that slow
 - looking at it now, it is possible vitis didn't pipeline the right loop

25 }

Vitis Reports

- still trying to understand these
- from the numbers I would have thought the speed was the other way around

fast version

Name	Issue Type	Latency (cycles)	Latency (ns)	Iteration Latency	Interval	Trip Count	Pipelined
✓ ∮ krnl_vadd		979387	3.264E6		979316		dataflow
entry_proc		0	0.0		0		no
🗸 🔵 loadData		979275	3.264E6		979275		no
IoadData_Pipeline_VITIS_LOOP_21_1	II Violation	979203	3.264E6		979203		no
C VITIS_LOOP_21_1	II Violation	979201	3.264E6	18	16	1~61200	yes
🗸 🔵 calAmpAndTime		979315	3.264E6		979315		no
v lake calAmpAndTime_Pipeline_VITIS_LOOP_38_1	II Violation	979313	3.264E6		979313		no
C VITIS_LOOP_38_1	II Violation	979311	3.264E6	128	16	1~61200	yes
🗸 🔵 storeData		122478	4.080E5		122478		no
v line storeData_Pipeline_VITIS_LOOP_58_1	II Violation	122476	4.080E5		122476		no
C VITIS_LOOP_58_1	II Violation	122474	4.080E5	79	4	1~30600	yes

slow version

Name	Issue Type	Latency (cycles)	Latency (ns)	Iteration Latency	Interval	Trip Count	Pipelined
√ 🕖 krnl_vadd							dataflow
entry_proc		0	0.0		0		no
🗸 🔵 loadData		979275	3.264E6		979275		no
v loadData_Pipeline_VITIS_LOOP_21_1	II Violation	979203	3.264E6		979203		no
C VITIS_LOOP_21_1	ll Violation	979201	3.264E6	18	16	1~61200	yes
Block_entry13_proc		0	0.0		0		no
🗸 🔵 calAmpAndTime	II Violation						no
C VITIS_LOOP_37_1	II Violation			24	8		yes
🗸 🔵 storeData		122478	4.080E5		122478		no
v storeData_Pipeline_VITIS_LOOP_57_1	II Violation	122476	4.080E5		122476		no
C VITIS_LOOP_57_1	II Violation	122474	4.080E5	79	4	1~30600	yes

Still Room to speed it up

Name ^ 1	Details
🗸 📬 Accelerator (15)	
🗸 🚘 krnl_vadd (15)	Open HLS project for krnl vadd
🗸 🚡 Kernel (2)	
😑 Kernel	The II Violation in module 'storeData_Pipeline_VITIS_LOOP_58_1' (loop 'VITIS_LOOP_58_1'): Unable to schedule bus write operation ('gmem2_addr_1_write_In64', <u>ecalRecHitsWorker.cpp:64</u>) on port 'gmem2' (<u>ecalRecHitsWorker.cpp:64</u>) due to limited memory ports (II = 2). Please consider using a memory core with more ports or partitioning the array.
🤒 Kernel	The II Violation in module 'storeData_Pipeline_VITIS_LOOP_58_1' (loop 'VITIS_LOOP_58_1'): Unable to schedule bus write operation ('gmem2_addr_1_write_in64', <u>acalRecHitsWorker.cpp:64</u>) on port 'gmem2' (<u>acalRecHitsWorker.cpp:64</u>) due to limited memory ports (II = 3). Please consider using a memory core with more ports or partitioning the array.
🗸 🐤 Throughput (13)	
O Throughput	The II Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38 1' (loop 'VITIS_LOOP_38 1'): Unable to enforce a carried dependence constraint (II = 1, distance = 1, offset = 1) between fifo read operation ('ampsStream1_read_1', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1_read_1', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1_read', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>).
🜖 Throughput	The II Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38_1' (loop 'VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (II = 2, distance = 1, offset = 1) between fifo read operation ('ampsStream1_read_2', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1_read_2', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1_read', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>).
😑 Throughput	The II Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38_1' (loop 'VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (II = 3, distance = 1, offset = 1) between fifo read operation ('ampsStream1_read_3', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1_read_3', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>).
🬖 Throughput	The II Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38 1' (loop 'VITIS_LOOP_38 1'): Unable to enforce a carried dependence constraint (II = 4, distance = 1, offset = 1) between fifo read operation ('ampsStream1_read_4', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1_read_4', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>).
🤨 Throughput	The II Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38_1' (loop 'VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (II = 11, distance = 1, offset = 1) between fifo read operation ('ampsStream1_read_11', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>).
0 Throughput	The II Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38_1' (loop 'VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (II = 15, distance = 1, offset = 1) between fifo read operation ('ampsStream1_read_15', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1_read', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>).
👴 Throughput	The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop 'VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (II = 1, distance = 1, offset = 1) between fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27) and fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27).
👴 Throughput	The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop 'VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (II = 2, distance = 1, offset = 1) between fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27) and fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27).
🤒 Throughput	The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop 'VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (II = 3, distance = 1, offset = 1) between fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27) and fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27).
👴 Throughput	The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop 'VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (II = 4, distance = 1, offset = 1) between fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27) and fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27).
👴 Throughput	The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop 'VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (II = 11, distance = 1, offset = 1) between fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27) and fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27).

several advisories impacting initiation interval

issue with bandwidth writing on gmem

- tried to have multiple streams for writing the hits , didn't work
- now trying to widen the port width

Still Room to speed it up

Name ^1	Details
🗸 📬 Accelerator (15)	
🗸 🔁 krnl_vadd (15)	Open HLS project for kml vadd
🗸 🚡 Kernel (2)	
0 Kernel	The II Violation in module 'storeData_Pipeline_VITIS_LOOP_58_1' (loop 'VITIS_LOOP_58_1'): Unable to schedule bus write operation ('gmem2_addr_1_write_In64', <u>ecalRecHitsWorker.cpp:64</u>) on port 'gmem2' (<u>ecalRecHitsWorker.cpp:64</u>) due to limited memory ports (II = 2). Please consider using a memory core with more ports or partitioning the array.
🤒 Kernel	The II Violation in module 'storeData_Pipeline_VITIS_LOOP_58_1' (loop 'VITIS_LOOP_58_1'): Unable to schedule bus write operation ('gmem2_addr_1_write_in64', <u>acalRecHitsWorker.cpp:64</u>) on port 'gmem2' (<u>acalRecHitsWorker.cpp:64</u>) due to limited memory ports (II = 3). Please consider using a memory core with more ports or partitioning the array.
🗸 🔁 Throughput (13)	
😐 Throughput	The II Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38_1' (loop "VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (II = 1, distance = 1, offset = 1) between fifo read operation ('ampsStream1_read_1', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1_read', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1' (ampsStream1') (<u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>).
🜖 Throughput	The II Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38_1' (loop 'VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (II = 2, distance = 1, offset = 1) between fifo read operation ('ampsStream1_read_2', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1_read_2', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>).
😑 Throughput	The II Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38_1' (loop 'VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (II = 3, distance = 1, offset = 1) between fifo read operation ('ampsStream1_read_3', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1_read_3', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>).
🜖 Throughput	The II Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38_1' (loop 'VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (II = 4, distance = 1, offset = 1) between fifo read operation ('ampsStream1_read_4', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1_read_4', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>).
🤒 Throughput	The II Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38_1' (loop 'VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (II = 11, distance = 1, offset = 1) between fifo read operation ('ampsStream1_read_11', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1_read', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>).
🕚 Throughput	The II Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38_1' (loop 'VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (II = 15, distance = 1, offset = 1) between fifo read operation ('ampsStream1_read_15', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) and fifo read operation ('ampsStream1_read', <u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (<u>ecalRecHitsWorker.cpp:47</u>) on port 'ampsStream1' (
0 Throughput	The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop 'VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (II = 1, distance = 1, offset = 1) between fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27) and fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27).
👴 Throughput	The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop 'VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (II = 2, distance = 1, offset = 1) between fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27) and fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27).
😣 Throughput	The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop 'VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (II = 3, distance = 1, offset = 1) between fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27) and fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27).
0 Throughput	The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop 'VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (II = 4, distance = 1, offset = 1) between fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27) and fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27).
O Throughput	The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop 'VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (II = 11, distance = 1, offset = 1) between fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27) and fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27) and fifo write operation ('ampsStream1_write_In27', ecalRecHitsWorker.cpp:27) on port 'ampsStream1' (ecalRecHitsWorker.cpp:27).

several advisories impacting initiation interval

issue with the 16 samples being read in the adder causing a delay of 16 cycles

 modified it with a stream for each sample -> advisories went away but FIFO deadlocked -> still trying to understand

Aside: Deadlocking

- doing this approach it was really easy to deadlock the FPGA
 - original design naively had two load functions
 - 1) loaded all detIds
 - 2) loaded all amplitudes
 - this caused the FPGA to deadlock and honestly the detection of the tools to prevent this is subpar
 - deadlock detection on the emulator works sometimes
 - and when it did, the error message was buried in a non obvious log file
 - Emulation-HW/.run/151479/hw_em/device0/binary_0/behav_waveform/xsim/simulate.log
 - yes it was in a hidden directory...
 - wasted quite a bit of time with this

ECAL Multifit

- both ECAL and HCAL local calo reconstruction work on the same principle
 - fit to each amplitude in each bunch crossing
- has CUDA and alpaka based algos implemented in CMSSW
 - large fraction of time spent in the HLT
 - probably the single biggest thing to port
- standard linear algebra solve:
 - -Pa=b
 - P is the contribution of BX_i deposit to the counts in BX_j
 - a is the amplitudes of each deposit in each BX
 - b observe counts in each BX

Time sample

Science and Technology Facilities Council

Vitis Libraries

- vitis has several Apache 2.0 licensed libraries
 - <u>https://www.xilinx.com/products/design-tools/vitis/vitis-libraries.html</u>
 - <u>https://github.com/Xilinx/Vitis_Libraries</u>
- relevant to the multifit problem are
 - blas : basic linear algebra subroutines
 - solver: collection of matrix decomposition operations, linear solvers and eigenvalue solvers
 - was attempting to write a NNLS algo myself till I noticed their implementation although not non negative constrained but good enough
- header only libraries, easy to include
 - for some definition of easy, the documentation is merely *okay...*
 - not much guidance on making it fast

Vitis BLAS

- aimed to test out its matrix methods for multiplication
 - use Eigen as a CPU reference
- simple matrix multiplication as a starting point, 1000 4x4 matrix x vector multiplications
 - FPGA duration: 875 us
 - FPGA mem duration:120 us
 - CPU duration: 43us
- not great but then this is something the CPU does very well
 - I also suspect my usage not well pipelined or making efficient use of FPGA

Science and Technology Facilities Council

Vitis Solver

- using xf::solver::gelinearsolver
 - solves Ax = b where A is a general mxm matrix, x is the vector to solve and B is the observed vector
 - A = pulse shape matrix, x = bx amplitudes, b = observed ADC counts in each timeslice
- benchmark:
 - 10x10 matrices of doubles (ECAL pulse shape matrix size)
 - matrix is random numbers in [0,1], A is random ints from [0,1023]
 - CPU reference is Eigen:
 - https://eigen.tuxfamily.org/dox/group__LeastSquares.html
 - also tried Eigen::NNLS
 - best method seemed to be: "Using normal equations"
 - gcc flags: -O3 -march=cascadelake

Solver Benchmark results

- 100 matrixes per event (sent at once)
 - -1^{st} event:
 - FPGA duration: 4399µs
 - FPGA mem duration: 677 μs
 - CPU duration: 1004 μs
 - subsequent events:
 - FPGA duration: $3855 \pm 5 \ \mu s$
 - FPGA mem duration:253 ± 3 μs
 - CPU duration: 347 ± 2.5 μs
 - FPGA offload takes roughly 4-10 times as CPU
 - I had hoped this would be faster, particularly as this is a stock algo
 - need to understand if there is something we can do to speed this up or if we're not using it correctly or something
 - major focus here to understand this
- note: this is using ~2% of the FPGA
 - but is also only using 1 core of the CPU

its not clear to me why the CPU speeds up on subsequent events

possibly caches or something

Aside on Alpaka

- RAL CMS through Thomas Reis is involved in porting CMS's CUDA based code to Alpaka
 - specifically the ECAL multifit code
 - merged in CMSSW, undergoing validation
 - goal is to be in production this year
- CMSSW source code:
 - <u>https://github.com/cms-</u>
 <u>sw/cmssw/tree/master/RecoLocalCalo/EcalRecProducers/plugins/alpaka</u>
- observations:
 - originally thought that it would be simple to port from CUDA
 - its heavily inspired by it
 - turns out not so much:
 - devil in the details
 - shared memory an issue
 - CMSSW code is an example implementation now but it is heavily CMSSW framework based

Summary

- HLS has some nice features:
 - can produce CMSSW data types directly
 - integrates with CMSSW external work framework nicely
- can now produce ECAL uncalibrated rechits on FPGA in same time as CPU
 - also likely room for further improvement, lots of advanced features to try
 - still need to verify and test as the setup is a little artificial and may introduce biases
- it is tricky to get performance from
 - still fairly slow, tools are a little lacking
 - new vitis gui released, to be tested
 - development cycles are also a little painful (although now setup to work more efficiently)
- still want to try a few things to improve algo performance
 - focus in on trying to get the multifit algorithm to work and be performant
 - takes a huge part of CMS HLT reco time
- aim to document various performance improvements
 - still trying to understand why some algos are fast and some algos are slo
- after that, probably should do some ML inference studies
 - again though I'm wary of dedicated chips being better for that

Spares

Useful Info Learnt

- the following is more a reference of issues we encountered
- it was not presented but could be a useful reference for folks trying to reproduce our efforts

Running Emulated Binaries: Crash

XRT build version: 2.14.0 Build hash: 43926231f7183688add2dccfd391b36a1f000bea Build date: 2023-03-28 19:45:29 Git branch: HEAD PID: 288610 UID: 27618 [Mon Mar 25 10:29:31 2024 GMT] HOST: hepacc10.pp.rl.ac.uk EXE: /scratch/harper/fpga_ecalhits/ecalWeights/test.exe [XRT] ERROR: See dmesg log for details. err = -22 terminate called after throwing an instance of 'xrt_core::system_error' what(): failed to load xclbin: Invalid argument Aborted (core dumped)

loading an hw_emu binary without setting

– export XCL_EMULATION_MODE=hw_emu

Running HW Binaries: Crash

End-of-central-directory signature not found. Either this file is not a zipfile, or it constitutes one disk of a multi-part archive. In the latter case the central directory and zipfile comment will be found on the last disk(s) of this archive.

unzip: cannot find zipfile directory in one of /scratch/harper/ECALMultiFitFPGA/.run/163652/hw_em/device0/tempFile_0.zip or /scratch/harper/ECALMultiFitFPGA/.run/163652/hw_em/device0/tempFile_0.zip.zip, and cannot find /scratch/harper/ECALMultiFitFPGA/. run/163652/hw_em/device0/tempFile_0.zip.ZIP, period.

ERROR: [EMU 60-600] unzip -q /scratch/harper/ECALMultiFitFPGA/.run/163652/hw_em/device0/tempFile_0.zip -d /scratch/harper/ECALMultiFitFPG A/.run/163652/hw_em/device0/binary_0 Exception Caught - Failed with the error code 2304 at the Line Number 707. PLEASE CHECK YOUR PERMISS IONS

• loading a hw binary with

– XCL_EMULATION_MODE=hw_emu