
Reco Status

Alison Elliot (RAL), Sam Harper (RAL)

SwiftHEP Meeting

March 27th 2024

1

Introduction
• Aim is to investigate uses of FPGAs to accelerate “offline”

reconstruction
– HLT reconstruction and offline reconstruction are the same to me,

particularly from a code point of view

• There are two ways you can go here
– FPGA to accelerate targeted c++ functions

– FPGA to accelerate ML inference

• Currently focusing on seeing if FPGAs can accelerate c++ functions

2

– while ML is an approach, it does rather
feel we’re competing with a multi
billion dollar research effort from the
major tech companies

– depends on how cutting edge we are
• fixed silicon may not be optimised for latest

algos

• also how many different ML algos we use

Disclaimer

• Alison and myself are physicists not firmware experts

• part of the goal here is to see if physicists can write
acceleratable code

– maintainability issue if only a handful of (difficult to retain)
firmware engineers can write/understand the reco code

– in the next step we will be talking to RAL firmware experts
to better utilise the FPGA but again idea is to have this
physicist understandable

• this talk represents our current understanding which
is continuously evolving

– please let us know if its incorrect or you have some
suggestions for improvements

3

Xilinx (AMD) Tools

• vitis: builds the fpga binary

– both command line and GUI options

– latest GUI version is now vscode based! (old was eclipse)

– can be done on any machine

• XRT: runs the fpga binary

– handles the calls in the host program

– library host program links against, apache 2.0 licenced

• therefore need version compiled with correct gcc & arch

• will need multiple versions for athena / CMSSW / whatever

– there has been a problem in that it was hardcoded to install at /opt/xilinx/xrt
• worked around it by installing at /opt/xilinx/xrt_slc7_amd64_gcc11/opt/xilinx/xrt/

• latest branch appears to have a fix for this and appears to be able to be installed anywhere

– https://github.com/Xilinx/XRT/pull/7835

– which is necessary for us!

– supports opencl and proprietary xrt api:
• currently using the xrt api , haven’t got opencl working yet

4

https://docs.amd.com/r/2021.1-English/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS
https://github.com/Xilinx/Vitis-Tutorials

https://github.com/Xilinx/XRT/pull/7835
https://docs.amd.com/r/2021.1-English/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS
https://github.com/Xilinx/Vitis-Tutorials

Setup

• Alveo U250 data center card
– https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

– note: algos presented in this talk typically take ~1-2% of the FPGA

– power is ~25-30W (basically idle), max is 225W

• server details:
– 2x Xeon Gold 6242R (20 cores 40 threads each) at 3.1GHz

– 192 GB ram

– centos 7 , using gcc 11

• XRT: 2022.2
– compiled with gcc 11 to enable linking with CMSSW

– custom compilation is a little fiddly but not too bad

• mainly getting cmake to pick up gtest, protobuf , boost libraries also
compiled with gcc11

• cmake experienced users may have an easier time

5

https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

Strategy
• reproduce the CMS GPU effort

– in particular focus on the ECAL reco algos

– contrary to general GridPP perception, CMS GPUs
efforts are highly advanced and are an everyday
thing now

• two methods:
– weights: simple algo which sums observed

amplitudes with given weights to estimate the
energy in the BX

• simple multiplication

• aim to gain some basic experience in FPGA algos

– multifit: fits the observed amplitudes to predefined
signal templates to estimate the energy in each
bunch crossing

• standard least squares fit

• takes significant part of the HLT processing time
6

CMS HLT Run3 projection
timing breakdown

ECAL and HCAL
multifit

Workflow Cycle

two main steps: building and linking

• building:
– compiles the HLS code into a xilinx object file (.xo)

– for simple functions, takes ~few mins (both hw and
hw_emu)

– gives a nice summary of how long the algorithm is
expected to take
• eg initiation interval, latency estimates etc etc

• also gives feedback on things to improve to get faster

• linking:
– makes a binary to run on the FPGA (.xclbin)

– takes ~10mins for hw emulation

– takes ~2hrs for hw build
• so vitally important you test it with the hw_emu run that it does

what you want first

7

General Observations

• simple to get code to synthesis to the FPGA
– as long as it doesn’t do anything to crazy and has no dynamic memory

allocation

• to be performant, HLS is still fairly low level, yes its c++ code but
you have to spend a lot of time thinking about loop unrolling, loop
pipelining, DSPs to gain efficiency
– none of this is very straightforward

– while emulation is useful for testing and getting an idea of speed up, to
actually get a measurement you need a 2hr+ build which is annoying

• error messages can be unhelpful and sometimes buried
– simulation output was being buried in a hidden directory we missed at first

8

Architectures
• GPU:

– massively parallel, single instruction , multiple data

– needs careful alignment of the memory

• structure of arrays (SoA)

– more about organising the problem so the exact same
operation can operate an memory block

• FPGA:

– flow of data through a circuit, everything happens at once

– takes a given latency to pass through the circuit

– achieves parallelization through pipelining
• ie how many events you can send through the circuit at once

• the number of cycles before new data can enter the pipeline is known
as the initiation interval (II)

• best is 1 cycle, so if it takes 150 cycles to get a result for 1 event, it’ll
take 151 cycles for two events, 152 cycles for three events etc etc

• keeping that pipeline full is key to performance

– can also easily create N instances of a kernel
• assuming have enough resources

• while useful, not the best way to achieve parallelization in an FPGA
algo as it is inefficient in resource usage

9

51 8 923 3462…

21 8 1222 225…

72 16 2145 5667…

+

=

Native CMSSW Datatypes

• HLS can synthesis native CMSSW dataformats
– as long as they are not too complex

– pointers is the main stumbling block, typically don’t use those in CMSSW
dataformats

• ironically except the low level hardware IO formats which are other
probably the easiest for a FPGA to deal with

• Ecal Weights algo updated to write the legacy CMSSW
dataformat directly
– no need for AoS -> SoA -> AoS conversions like GPU

– well maybe no need, see how we do performance wise, a definitive
statement there when we have good performance

10

ECAL weights

• In November had a
simple algo on the FPGA

– it sums the 16 samples of
the ADC with their
appropriate weights to
determine hit energy

– it ran, producing rec-hits
on the FPGA

• speed:

– slow…., it does one event
at a time

11

ECAL weights

• now we’ve pipelined it: ~16 times as fast

– was hoping for more but will take it

• key gains:

– adopt load -> compute - > store model

– use hls::streams to internally buffer from global memory
12

More on pipelining

13

loadData calAmpAndTime storeData

loadData calAmpAndTime storeData

#DATAFLOW causes functions
to be pipelined

as soon as the detId is used,
the next one is loaded

while the hit is being written,
the next one is being loaded

#1

#2

load

• loads the data from global memory

• hls::streams are 1 and 16 (#samples) depth fifos

– this is the model suggested by Xilinx

– using hls::streams rather than direct memory access helps
improve pipelining

14

compute

• computes the amplitudes

15

write

• writes its to the global memory

16

Benchmark numbers

#Threads No Pipeline
(ev/s)

Pipeline (ev/s) CPU (ev/s)

2 1.19 ± 0.01 15.6± 0.7 15.4 ± 0.2

1 1.11 ± 0.01 10.66 ± 0.03 7.1± 0.3

17

• issue that algo is so fast that the read IO of the digis is bottleneck

• make 8 copies of the producer so makes the hits 8 times such that
I/O is not a bottle neck

• ran either one or two threads for the reconstruction
– 2 threads is probably now saturating the FPGA kernel

• message: we are roughly comparable to CPU now
– some caveats that the FPGA doesn’t do all the CPU does but don’t think it

will effect the general message

Aside

• two implementations of the algo

• left runs 4 times faster then the right…
– 15.6± 0.7 vs 4.79 ± 0.01 ev/s

• admittedly the right is a little weirdly implemented but didn’t
think would be that slow
– looking at it now, it is possible vitis didn’t pipeline the right loop

18

Vitis Reports
• still trying to understand these

• from the numbers I would have thought the speed was the other way around

19

fast version

slow version

Still Room to speed it up

issue with bandwidth writing on gmem

• tried to have multiple streams for writing the hits , didn’t work

• now trying to widen the port width

20

several advisories
impacting
initiation interval

Still Room to speed it up

issue with the 16 samples being read in the adder causing a delay of 16 cycles

• modified it with a stream for each sample -> advisories went away but FIFO
deadlocked -> still trying to understand

21

several advisories
impacting
initiation interval

Aside: Deadlocking

• doing this approach it was really easy to deadlock the
FPGA

– original design naively had two load functions
• 1) loaded all detIds

• 2) loaded all amplitudes

– this caused the FPGA to deadlock and honestly the detection of
the tools to prevent this is subpar
• deadlock detection on the emulator works sometimes

• and when it did, the error message was buried in a non obvious log file
– Emulation-HW/.run/151479/hw_em/device0/binary_0/behav_waveform/xsim/simulate.log

– yes it was in a hidden directory…

• wasted quite a bit of time with this

22

ECAL Multifit

• both ECAL and HCAL local calo reconstruction
work on the same principle

– fit to each amplitude in each bunch crossing

• has CUDA and alpaka based algos
implemented in CMSSW

– large fraction of time spent in the HLT

– probably the single biggest thing to port

• standard linear algebra solve:

– P a = b

– P is the contribution of BX_i deposit to the
counts in BX_j

– a is the amplitudes of each deposit in each BX

– b observe counts in each BX

23

JINST 15 P10002

Vitis Libraries

• vitis has several Apache 2.0 licensed libraries
– https://www.xilinx.com/products/design-tools/vitis/vitis-libraries.html

– https://github.com/Xilinx/Vitis_Libraries

• relevant to the multifit problem are
– blas : basic linear algebra subroutines

– solver: collection of matrix decomposition operations, linear solvers
and eigenvalue solvers
• was attempting to write a NNLS algo myself till I noticed their implementation

although not non negative constrained but good enough

• header only libraries, easy to include
– for some definition of easy, the documentation is merely okay...

– not much guidance on making it fast

24

https://github.com/Xilinx/Vitis_Libraries
https://github.com/Xilinx/Vitis_Libraries

Vitis BLAS

• aimed to test out its matrix methods for multiplication

– use Eigen as a CPU reference

• simple matrix multiplication as a starting point, 1000 4x4
matrix x vector multiplications

– FPGA duration: 875 us

– FPGA mem duration:120 us

– CPU duration: 43us

• not great but then this is something the CPU does very
well

– I also suspect my usage not well pipelined or making efficient
use of FPGA

25

Vitis Solver

• using xf::solver::gelinearsolver
– solves 𝐴𝑥 = 𝑏 where A is a general mxm matrix, x is the vector to solve and

B is the observed vector

– A = pulse shape matrix, x = bx amplitudes, b = observed ADC counts in each
timeslice

• benchmark:
– 10x10 matrices of doubles (ECAL pulse shape matrix size)

– matrix is random numbers in [0,1], A is random ints from [0,1023]

– CPU reference is Eigen:

• https://eigen.tuxfamily.org/dox/group__LeastSquares.html

– also tried Eigen::NNLS

• best method seemed to be: “Using normal equations”

– gcc flags: -O3 -march=cascadelake

26

Solver Benchmark results
• 100 matrixes per event (sent at once)

– 1st event:
• FPGA duration: 4399μs

• FPGA mem duration: 677 μs

• CPU duration: 1004 μs

– subsequent events:
• FPGA duration: 3855 ± 5 μs

• FPGA mem duration:253 ± 3 μs

• CPU duration: 347 ± 2.5 μs

• FPGA offload takes roughly 4-10 times as CPU
– I had hoped this would be faster, particularly as this is a stock algo

– need to understand if there is something we can do to speed this up or if
we’re not using it correctly or something

– major focus here to understand this

• note: this is using ~2% of the FPGA
– but is also only using 1 core of the CPU

27

its not clear to me why the CPU
speeds up on subsequent events

possibly caches or something

Aside on Alpaka
• RAL CMS through Thomas Reis is involved in

porting CMS’s CUDA based code to Alpaka

– specifically the ECAL multifit code

– merged in CMSSW, undergoing validation

– goal is to be in production this year

• CMSSW source code:

– https://github.com/cms-
sw/cmssw/tree/master/RecoLocalCalo/EcalRecProducers/plugins/alpaka

• observations:
– originally thought that it would be simple to port from CUDA

• its heavily inspired by it

– turns out not so much:

• devil in the details

• shared memory an issue

– CMSSW code is an example implementation now but it is heavily CMSSW
framework based

28

https://github.com/cms-sw/cmssw/tree/master/RecoLocalCalo/EcalRecProducers/plugins/alpaka

Summary
• HLS has some nice features:

– can produce CMSSW data types directly

– integrates with CMSSW external work framework nicely

• can now produce ECAL uncalibrated rechits on FPGA in same time as CPU

– also likely room for further improvement, lots of advanced features to try

– still need to verify and test as the setup is a little artificial and may introduce biases

• it is tricky to get performance from

– still fairly slow, tools are a little lacking

• new vitis gui released, to be tested

– development cycles are also a little painful (although now setup to work more
efficiently)

• still want to try a few things to improve algo performance

– focus in on trying to get the multifit algorithm to work and be performant
• takes a huge part of CMS HLT reco time

• aim to document various performance improvements
– still trying to understand why some algos are fast and some algos are slo

• after that, probably should do some ML inference studies
– again though I’m wary of dedicated chips being better for that

29

Spares

30

Useful Info Learnt

• the following is more a reference of issues we
encountered

• it was not presented but could be a useful reference
for folks trying to reproduce our efforts

31

Running Emulated Binaries: Crash

• loading an hw_emu binary without setting

– export XCL_EMULATION_MODE=hw_emu

32

Running HW Binaries: Crash

• loading a hw binary with

– XCL_EMULATION_MODE=hw_emu

33

