Reco Status

Alison Elliot (RAL), Sam Harper (RAL)
SwiftHEP Meeting
March 27t 2024

 Aim is to investigate uses of FPGAs to accelerate “offline”
reconstruction

— HLT reconstruction and offline reconstruction are the same to me,
particularly from a code point of view

 There are two ways you can go here

— FPGA to accelerate targeted c++ functions
— FPGA to accelerate ML inference

Currently focusing on seeing if FPGAs can accelerate c++ functions

— while ML is an approach, it does rather
feel we’re competing with a multi
billion dollar research effort from the
major tech companies

— depends on how cutting edge we are

. o . . T L ate
* fixed silicon may not be optimised for latest N aﬁ;}ﬂ;ﬁ‘r‘e‘zz&dznéode
FPG
algos scho i r

for ML than ou
* also how many different ML algos we use

Disclaimer

e Alison and myself are physicists not firmware experts

* part of the goal here is to see if physicists can write
acceleratable code

— maintainability issue if only a handful of (difficult to retain)
firmware engineers can write/understand the reco code

— in the next step we will be talking to RAL firmware experts
to better utilise the FPGA but again idea is to have this
physicist understandable

* this talk represents our current understanding which
is continuously evolving

— please let us know if its incorrect or you have some
suggestions for improvements

Xilinx (AMD) Tools

https://docs.amd.com/r/2021.1-English/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS
https://github.com/Xilinx/Vitis-Tutorials

e vitis: builds the fpga binary
— both command line and GUI options

— latest GUI version is now vscode based! (old was eclipse ®)
— can be done on any machine

 XRT: runs the fpga binary
— handles the calls in the host program

— library host program links against, apache 2.0 licenced
* therefore need version compiled with correct gcc & arch

* will need multiple versions for athena / CMSSW / whatever

— there has been a problem in that it was hardcoded to install at /opt/xilinx/xrt
» worked around it by installing at /opt/xilinx/xrt_slc7_amd64_gccl1/opt/xilinx/xrt/

latest branch appears to have a fix for this and appears to be able to be installed anywhere
— https://github.com/Xilinx/XRT/pull/7835
— which is necessary for us!

— supports opencl and proprietary xrt api:

currently using the xrt api, haven’t got opencl working yet

Science and
Technology
Facilities Council

https://github.com/Xilinx/XRT/pull/7835
https://docs.amd.com/r/2021.1-English/ug1399-vitis-hls/Getting-Started-with-Vitis-HLS
https://github.com/Xilinx/Vitis-Tutorials

Science and
Technolo
Facilities Council

Setup

Alveo U250 data center card
— https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

— note: algos presented in this talk typically take ~1-2% of the FPGA
— power is ~25-30W (basically idle), max is 225W

server details:
— 2x Xeon Gold 6242R (20 cores 40 threads each) at 3.1GHz
— 192 GB ram
— centos 7, using gcc 11

XRT: 2022.2

— compiled with gcc 11 to enable linking with CMSSW
— custom compilation is a little fiddly but not too bad

* mainly getting cmake to pick up gtest, protobuf , boost libraries also
compiled with gccll

e cmake experienced users may have an easier time

https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

Strategy

* reproduce the CMS GPU effort

— in particular focus on the ECAL reco algos

— contrary to general GridPP perception, CMS GPUs
efforts are highly advanced and are an everyday
thing now

e two methods:

— weights: simple algo which sums observed
amplitudes with given weights to estimate the
energy in the BX

* simple multiplication

ECAL and HCAL
multifit

* aim to gain some basic experience in FPGA algos

— multifit: fits the observed amplitudes to predefined
signal templates to estimate the energy in each
bunch crossing

» standard least squares fit
 takes significant part of the HLT processing time

Workflow Cycle

two main steps: building and linking
* building:
— compiles the HLS code into a xilinx object file (.x0)

— for simple functions, takes ~few mins (both hw and
hw_emu)

— gives a nice summary of how long the algorithm is
expected to take

* eginitiation interval, latency estimates etc etc

* also gives feedback on things to improve to get faster
* linking:
— makes a binary to run on the FPGA (.xclbin)
— takes ~10mins for hw emulation
— takes ~2hrs for hw build

* so vitally important you test it with the hw_emu run that it does
what you want first

Science and

Facilities Council

General Observations

* simple to get code to synthesis to the FPGA

— as long as it doesn’t do anything to crazy and has no dynamic memory
allocation

* to be performant, HLS is still fairly low level, yes its c++ code but
you have to spend a lot of time thinking about loop unrolling, loop
pipelining, DSPs to gain efficiency

— none of this is very straightforward

— while emulation is useful for testing and getting an idea of speed up, to
actually get a measurement you need a 2hr+ build which is annoying

e error messages can be unhelpful and sometimes buried

— simulation output was being buried in a hidden directory we missed at first

Architectures

GPU:
— massively parallel, single instruction , multiple data

— needs careful alignment of the memory

* structure of arrays (SoA)

— more about organising the problem so the exact same
operation can operate an memory block

FPGA:
flow of data through a circuit, everything happens at once

takes a given latency to pass through the circuit

achieves parallelization through pipelining

ie how many events you can send through the circuit at once

the number of cycles before new data can enter the pipeline is known
as the initiation interval (Il)

best is 1 cycle, so if it takes 150 cycles to get a result for 1 event, it’ll
take 151 cycles for two events, 152 cycles for three events etc etc

keeping that pipeline full is key to performance

can also easily create N instances of a kernel

assuming have enough resources

while useful, not the best way to achieve parallelization in an FPGA
algo as it is inefficient in resource usage

72 16 21
A8 | c|
I1=20 A 5 C
A B c

4

Science and
Technology
Facilities Council

Total Latency = 100

Native CMSSW Datatypes
e HLS can synthesis native CMSSW dataformats
— as long as they are not too complex

— pointers is the main stumbling block, typically don’t use those in CMSSW
dataformats

* ironically except the low level hardware 10 formats which are other
probably the easiest for a FPGA to deal with

Ecal Weights algo updated to write the legacy CMSSW
dataformat directly

— no need for AoS -> SoA -> AoS conversions like GPU

— well maybe no need, see how we do performance wise, a definitive
statement there when we have good performance

10

ECAL weights

[3 I =

* In November had a
simple algo on the FPGA

10

— it sums the 16 samples of =
the ADC with their

appropriate weights to

determine hit energy

— it ran, producing rec-hits =

on the FPGA

* speed: ?

— slow...., it does one event -

at a time

11

constexpr int kNrSamples = 16;

Science and
Technology
Facilities Council

void makeUncalibHits(EcallLiteDTUSample* samples, Detld* detlds,

EcalUncalibratedRecHit# hits,int nrHits) {

float ampWeights[kNrSamples] = {...};
float timeWeights[kNrSamples] = {...};
for (int hitMNr=0;hitNr<nrHits;hitNr++) {

bool gl = false;

float amp = 0.;

float t6 = @.;

float amp_e = 0.;

float tl_e = 0.

for (int sampleNr = 0; sampleNr < kNrSamples; ++sampleNr) {
EcallLiteDTUSample sample = samples[nrSamplesxhitNr+sampleNr];
int gratio = ecalPh2::gains[sample.gainId()];
int adctrace = sample.adc();

amp = amp + static_cast<float>(gratic) * adctrace * ampWeights[sampleNr];
tl = t0 + static_cast<float=(gratio) * adctrace * timeWeights[sampleNr];

if (sample.gainId() == 1)
gl = true;
}
hits[hitNr] = EcalUncalibratedRecHit(detIds[hitNr], amp, 0., tB, 0., 0);
hits[hitNr].setAmplitudeError(amp_e);
hits[hitNr].setJitterError(t0_e);

Science and
Technol

ECAL weights L

46 constexpr int KMaxlLocalSize = 14;

&7 constexpr int kMaxlLocalSampleSize = kMaxlLocalSize * ecalparams::kNrSamples;

&8

49 wvoid krnl_vadd(EcalliteDTUSample *samples, DetId *detIds, EcalUncalibratedRecHit *hits, int nrHits)
70 {

1 #pragma HLS INTERFACE m_axi port = samples bundle = gmem®@ max_read_burst_length = 256 max_write_burst_length = 1 depth = 16+%512808
72 #pragma HLS INTERFACE m_axi port = detIds bundle = gmeml max_read_burst_length = 256 depth = $1288
73 #pragma HLS INTERFACE m_axi port = hits bundle = gmem2 offset = slave max_write_burst_length = 254 depth = 41208
T4 #pragma HLS INTERFACE s_axilite port = nrHits
T3 #pragma HLS DATAFLOW
76 hls::stream<int,ecalparams::kNrSamples> ampsStream("ampsStream”);
77 hls::stream<int,ecalparams::kNrSamples> gainldsStream("gainIdsStream”);
78 hls::stream<int> detIdsStream("detIdsStream");
79 hls::stream<EcalRecHitData> hitData[ecalparams::kNrParaStreams];
a0 loadData(samples,detIds, ampsStream, gainIdsStream, detIdsStream, nrHits);
81 calAmpAndTime (ampsStream, gainIdsStream, detldsStream, hitData, nrHits);
82 storeData(hitData, hits, nrHits);
83 }

* now we've pipelined it: ~16 times as fast
— was hoping for more but will take it

* key gains:
— adopt load -> compute - > store model

— use hls::streams to internally buffer from global memory
12

More on pipelining

Science and
Technol
Facilities Council

constexpr int kMaxlLocalSize = 14;
constexpr int kMaxlocalSampleSize = kMaxlLocalSize * ecalparams::kNrSamples;
void krnl_vadd(EcalliteDTUSample *samples, Detld *detIds, EcalUncalibratedRecHit *hits, #DATAFLOW causes funCtlonS
{ . .
s | | _ to be pipelined
#pragma HLS INTERFACE m_axi port = samples bundle = gmem@ max_read_burst_length = 256 n
#pragma HLS INTERFACE m_axi port = detIds bundle = gmeml max_read_burst_length = 256 de
#pragma HLS INTERFACE m_axi port = hits bundle = gmem? offset = slave max_write_burst_1 .
#pragma HLS INTERFACE s_axilite port = nrHits as soon as the detld IS Used,
#pragma HLS DATAFLOW f\ i
’ | next one is |
hls::stream<int,ecalparams::kNrSamples> ampsStream("ampsStream"); t ene tO el1s Oaded
hls::stream<int,ecalparams::kNrSamples> gainldsStream("gainldsStream");
hls::stream<int> detIdsStream("detIdsStream");
hls::stream<EcalRecHitData> hitData[ecalparams::kNrParaStreams]; Whlle the hlt IS belng ertten;
loadData(samples,detIds, ampsStream, gainldsStream, detIdsStream, nrHits); . H
calAmpAndTime (ampsStream, gainldsStream, detIdsStream, hitData, nrHits); the neXt one s belng Ioaded
storeData(hitData, hits, nrHits);
|3
- S -
8 cycles
TPV funcB | funcC
il -2 »
8 cycles 5 cycles

(A) Without Dataflow Pipelining

13

(B) With Dataflow Pipelining

load

11
12
13
14
15
14
17
18
19
20

23

Science and
Technol
Facilities Council

void loadData(const EcalliteDTUSample *samples,const DetId* detlIds,

hls::stream<int=& ampsStream,hls::stream<int>& gainIdsStream,
hls::stream<int>& detIdsStream,int nrHits){
for (int hitNe = 0 ; hitNr < nrHits; hitMr++){
. LOOP TRIPCOUNT min = 1 max = 61268

detIdsStream << detIds[hitNr]:

for (int sampleNr = 0; sampleNr < ecalparams::kNrSamples; sampleNr++){
EcalliteDTUSample sample = samples[sampleNr+hitNr*ecalparams::kNrSamples];
ampsStream << sample.adc();
gainIdsStream << sample.gainId();

* |loads the data from global memory

e hls::streams are 1 and 16 (#samples) depth fifos

14

— this is the model suggested by Xilinx

— using hls::streams rather than direct memory access helps
improve pipelining

Science and
Technology
Facilities Council

compute

25 volid calAmpAndTime(hls::stream<int> &s, hls::stream<int> &gainlds,

26 hls::stream<int>&% detIds,hls::stream<EcalRecHitData> hitDatalecalparams::kNrParaStreams], int nrHits)
27 {4

28 EcalRecHitData hit;

29

30 for (int hitNr = @; hitNr < nrHits ; hitNe++)d

31 #pragma HLS LOOP_TRIPCOUNT min = 1 max = 61200

32 hit.detId = detIds.read();

33 hit.amp = 0;

34 hit.amp_e = 0;

39 hit.t@ = 8;

36 hit.tB_e = B;

37 hit.gl = false;

38 for (int sampleNr = B; sampleNr < ecalparams::kNrSamples; sampleNr++){

39 int amp = amps.read();

40 int gainId = gainlds.read();

41 hit.amp += amp * ecalPh2::gains[gainId] * ecalparams::ampWeights[sampleNr¥%ecalparams::kNrSamples];
42 hit.t8 += amp * ecalPh2::gains[gainld] * ecalparams::timeWeights[sampleNr¥ecalparams::kNrSamples];
43 hit.gl |= gainId == 1;

44 +

45 hitData[hitNr¥%ecalparams::kNrParaStreams].write(hit);

46 }

47 }

 computes the amplitudes

15

write

49
1]
a3l
52
a3
24
a3
56
a7
a8
59

Science and
Technology
Facilities Council

void storeData(hls::stream<EcalRecHitData> hitDatalecalparams::kNrParaStreams], EcallUncalibratedRecHit #hits,int size){

for (int hitNr = @; hitNr < size; hitMr+=ecalparams::kNrParaStreams)d{
#pragma HLS pipeline
#pragma HLS LOOP_TRIPCOUNT min = 1 max = &1200/ecalparams::kNrParaStreams
for (int i =0 ; i < ecalparams::kNrParaStreams; i++){
#pragma HLS unroll
const EcalRecHitData& hit = hitDatalil.read();
hits[hitNr+i] = EcalUncalibratedRecHit(hit.detId, hit.amp, @, hit.t@®, 8, 0, 8);

e writes its to the global memory

16

Benchmark numbers

#Threads | No Pipeline Pipeline (ev/s) | CPU (ev/s)
(ev/s)

1.19+0.01 15.6+£ 0.7 15.4+0.2

1 1.11 +0.01 10.66 £ 0.03 7.1+ 0.3

e jissue that algo is so fast that the read 10 of the digis is bottleneck

* make 8 copies of the producer so makes the hits 8 times such that
1/0 is not a bottle neck

 ran either one or two threads for the reconstruction
— 2 threads is probably now saturating the FPGA kernel

* message: we are roughly comparable to CPU now

— some caveats that the FPGA doesn’t do all the CPU does but don’t think it
will effect the general message

17

19
20
/il
22
23
24
25

side

* two implementations of the algo

void calAmpAndTime(hls::stream<int> &s, hls::stream<int> &gainIds, hls::stream<int>& detIds,
hls::stream<EcalRecHitData> hitData[ecalparams::kNrParaStreams], int nrHits)

{
EcalRecHitData hit;
for (int hitNr = 0; hitNr < nrHits ; hitNr++){
#pragma HLS LOOP_TRIPCOUNT min = 1 max = 61200
hit.detId = detIds.read();
hit.amp = 0;
hit.amp_e = 0;
hit.to = 0;
hit.t0_e = 0;
hit.gl = false;
for (int sampleNr = @; sampleNr < ecalparams::kNrSamples;
int amp = amps.read();
int gainId = gainlds.read();
hit.amp += amp * ecalPh2::gains[gainId] =*
ecalparams: :ampWeights[sampleNr¥%ecalparams:
hit.t@ += amp * ecalPh2::gains[gainId] *
ecalparams::timeWleights[sampleNr%ecalparams:
hit.gl |= gainId == 1;
}
hitData[hitNr%ecalparams::kNrParaStreams].write(hit);
b
}

sampleNr++){

:kNrSamples];

:kNrSamples];

R

Science and
Technol
Facilities Council

void calAmpAndTime(hls::stream<int> &s, hls::stream<int> &gainIds, hls::stream<int>& detIds
hls::stream<EcalRecHitData> hitData[ecalparams::kNrParaStreams], int size)

{
EcalRecHitData hit;
for (int sampleNr = O; sampleNr < size; sampleNr++){
if(sampleNr%ecalparams: :kNrSamples == 0){
hit.detId = detIds.read();
hit.amp = 0;
hit
hit
hit
hit
}
int amp = amps.read();
int gainId = gainIds.read();
hit.amp += amp * ecalPh2::gains[gainId] *
ecalparams::ampWeights[sampleNr%ecalparams: :kNrSamples];
hit.t@ += amp * ecalPh2::gains[gainId] *
ecalparams: :timeWeights[sampleNr%ecalparams: :kNrSamples];
hit.gl |= gainld == 1;
if(sampleNr%ecalparams: :kNrSamples == ecalparams::kNrSamples-1){
hitData[(sampleNr/ecalparams: :kNrSamples)%ecalparams: :kNrParaStreams].write(hit);
}
|
}

e |eft runs 4 times faster then the right...

— 15.6£ 0.7 vs 4.79£0.01 ev/s

* admittedly the right is a little weirdly implemented but didn’t

think would be that slow

— looking at it now, it is possible vitis didn’t pipeline the right loop

18

Vitis Reports

e still trying to understand these

 from the numbers | would have thought the speed was the other way around

Mame
v krnl_vadd

@ entry_proc
~ @ loadData
~ @ loadData_Pipeline_\VITIS_LOOP_21 1
C VITIS_LOOP_21 1
v @ caltmpAndTime

~ @ calampaAndTime_Pipeline MITIS_LOOP_38_1

C VITIS_LOOP 38 1
~ @ storeData
~ (@ storeData_Pipeline_WITIS_LOOP_58_1
C VITIS_LOOP 58 1

MName
w krnl_vadd
@ entry_proc
~ @ loadData
~ @ loadData_Pipeline_\VITIS_LOOP_21 1
C VITIS_LOOP 21 1
@ Elock_entryl3 proc
~ @ calampandTime
C VITIS_LOOP_37_1
~ @ storeData
~ @ storeData_Pipeline_VITIS_LOOP_57_ 1
C* VITIS_LOOP 57 1

17

Issue Type Latency (cycles)
979387
0
979275
II'violation 979203
II'Wiolation 979201
979315
II'violation 979313
II'Wiolation 979311
122478
II'violation 122476
II'Wiolation 122474
Issue Type Latency (cycles)
0
979275
II'Violation 979203
II'Violation 979201
0
IIWiolation
I 'Wiolation
122478
II'Violation 122476
II'violation 122474

Latency (ns)

3.264E6

0.0
3.264E6
3.264E6
3.264E6
3.264E6
3.264E6
3.264E6
4,080ES
4,080ES
4,080E5

Latency (ns)

0.0
3.264E8
3.264E6
3.264E6

0.0

4,080E5
4,080E5
4,080E5

[teration Latency

[teration Latency

18

128

79

18

24

79

fast version

Interval

979316
0
979275
979203
156
978315
979313
156
122478
122476
4

Trip Count

1~61200

1~61200

1~30800

slow version

Interval

0
979275
979203

16

0

=]
122478
1224786
4

Trip Count

1~61200

1~20600

Science and
Technology
Facilities Council

Pipelined

dataflow
no

no

no

yas

no

no

yas

no

no

yes

Pipelined

dataflow
no

no

no

yes

no

no

yes

no

no

yes

Still Room to speed it up

Name e

v

Details

» Accelerator (15

v & krnl_vadd (15) Open HLS project for krnl_vadd
v Ga Kernel (2)

Kernel The Il Violation in module ‘storeData_Pipeline_VITIS_LOOP_58_1" (loop "VITIS_LOOP_58_1'): Unable to schedule bus write operation ('gmem2_addr_1_write_In64',
ecalRecHitsWorker.cpp:64) on port ‘gmem2' (ecalRecHitsWorker.cpp:64) due to limited memory ports (Il = 2). Please consider using a memory core with more ports or
partitioning the array.

Kernel The Il Violation in module 'storeData_Pipeline_VITIS_LOOP_58_1' (loop "VITIS_LOOP_58_1'): Unable to schedule bus write operation ('gmem2_addr_1_write_In64',
ecalRecHitsWorker.cpp:64) on port 'gmem2’ (ecalRecHitsWorker.cpp:64) due to limited memory ports (Il = 3). Please consider using a memory core with more ports or
partitioning the array.

v " Throughput (13
Throughput The II Violation in module ‘calAmpAndTime_Pipeline_VITIS_LOOP_38_1" (loop "VITIS_LOOP_38_1"): Unable to enforce a carried dependence constraint (Il = 1, distance = 1, offset =

logy
Facilities Council

) b fif d (T+ B) | ki) (ecal k 7) and fif d I d i i
1) between fifo read operation (‘ampsStreaml_read_1', ecalRecHitsWorker. ch on port amps'stre)eaml ecalRecHitsWorker.cpp:47) and fifo read operation Seve ra a VISO rles

(‘ampsStreaml_read', ecalRecHitsWorker.cpp:4 7) on port ‘ampsStreaml’ (rker,

Throughput The Il Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38_1" (loop "VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (Il = 2, distance = 1, offset = . .
1) between fifo read operation (‘ampsStreaml_read_2', ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47) and fifo read operation I I I I p a Ctl n g
(‘ampsStream]_read", ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml' (ecalRecHitsWorker.cpp:47).

Throughput The I Violation in module ‘calAmpAndTime_Pipeline_VITIS_LOOP_38_1" (loop "VITIS_LOOP_38_1"): Unable to enforce a carried dependence constraint (Il = 3, distance = 1, offset =

1) between fifo read operation (‘ampsStreaml_read_3', ecalRecHitsWorker.cpp:47) on port 'ampsStreaml’ (ecalRecHitsWorker.cpp:47) and fifo read operation i n iti at i O n i nte rva I

(‘ampsStreaml_read’, ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47).

Throughput The I Violation in module 'calAmpAndTime_Pipeline_VITIS_LOOP_38_1" (loop "ITIS_LOOP_38_1"): Unable to enforce a carried dependence constraint (Il = 4, distance = 1, offset =
1) between fifo read operation (‘ampsStreaml_read_4', ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47) and fifo read operation
(‘ampsStreaml_read', ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47).

Throughput The Il Violation in module ‘calAmpAndTime_Pipeline_VITIS_LOOP_38_1" (loop "VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (Il = 11, distance = 1, offset
= 1) between fifo read operation (‘ampsStreaml_read_11', ecalRecHitsWorker.cpp:47) on port 'ampsStreaml’ (ecalRecHitsWorker.cpp:47) and fifo read operation
(‘ampsStreaml_read’, ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47).

Throughput The II Violation in module ‘calAmpAndTime_Pipeline_VITIS_LOOP_38_1" (loop "ITIS_LOOP_38_1'"): Unable to enforce a carried dependence constraint (Il = 15, distance = 1, offset
= 1) between fifo read operation (‘ampsStreaml_read_15', ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47) and fifo read operation
(‘ampsStreaml_read', ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47).

Throughput The Il Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop "ITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (Il = 1, distance = 1, offset = 1)
between fifo write operation (‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml' (ecalRecHitsWorker.cpp:27) and fifo write operation
("ampsStreaml_write_In27", ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27).

Throughput The Il Violation in module ‘loadData_Pipeline_VITIS_LOOP_21_1' (loop "ITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (Il = 2, distance = 1, offset = 1)
between fifo write operation (‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml' (ecalRecHitsWorker.cpp:27) and fifo write operation
(‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27).

Throughput The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop "ITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (Il = 3, distance = 1, offset = 1)
between fifo write operation (‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27) and fifo write operation
(‘ampsStreaml_write_In27", ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27).

Throughput The Il Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop "VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (Il = 4, distance = 1, offset = 1)
between fifo write operation (‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27) and fifo write operation
(‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27).

Throughput The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21 1' (loop "VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (Il = 11, distance =1, offset = 1)
between fifo write operation (‘ampsStream1_write,_| In27' ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27) and fifo write operation
(‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp: 27).

issue with bandwidth writing on gmem
* tried to have multiple streams for writing the hits , didn’t work
* now trying to widen the port width

20

Still Room to speed it up

Name

v

» Accelerator (15

v

= krnl_vadd (15)
v Ga Kernel (2)
Kernel

Kernel

v " Throughput (13

Throughput

Throughput

Throughput

Throughput

Throughput

Throughput

Throughput

Throughput

Throughput

Throughput

Throughput

~

Details
Open HLS project for krnl_vadd

The Il Violation in module ‘storeData_Pipeline_VITIS_LOOP_58_1" (loop "VITIS_LOOP_58_1'): Unable to schedule bus write operation ('gmem2_addr_1_write_In64',
ecalRecHitsWorker.cpp:64) on port ‘gmem?2' (ecalRecHitsWorker.cpp:64) due to limited memory ports (Il = 2). Please consider using a memory core with more ports or
partitioning the array.

The Il Violation in module ‘storeData_Pipeline_VITIS_LOOP_58_1' (loop "VITIS_LOOP_58_1'): Unable to schedule bus write operation (‘gmem2_addr_1_write_In64',
ecalRecHitsWorker.cpp:64) on port 'gmem2’ (ecalRecHitsWorker.cpp:64) due to limited memory ports (Il = 3). Please consider using a memory core with more ports or
partitioning the array.

The II Violation in module ‘calAmpAndTime_Pipeline_VITIS_LOOP_38_1" (loop "VITIS_LOOP_38_1"): Unable to enforce a carried dependence constraint (Il = 1, distance = 1, offset =
1) between fifo read operation (‘ampsStreaml_read_1', ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47) and fifo read operation
(‘ampsStreaml_read', ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47).

The II Violation in module ‘calAmpAndTime_Pipeline_VITIS_LOOP_38_1" (loop "VITIS_LOOP_38_1"): Unable to enforce a carried dependence constraint (Il = 2, distance = 1, offset = . .
1) between fifo read operation (' ampsStreaml read_2', ecalRecHitsWorker.cpp:47) on port ampsStreaml (ecalRecHitsWorker.cpp:47) and fifo read operation I I I I p a Ctl n g
(‘ampsStreaml_read', ecalRecHitsWorker.cpp: 47) on port ‘ampsStreaml’ (ecalRecHitsWorker,cpp:47)

The Il Violation in module ‘calAmpAndTime_Pipeline_VITIS_LOOP_38_1" (loop "VITIS_LOOP_38_1"): Unable to enforce a carried dependence constraint (Il = 3, distance = 1, offset =
1) between fifo read operation (‘ampsStreaml_read_3', ecalRecHitsWorker.cpp:47) on port 'ampsStreaml’ (ecalRecHitsWorker.cpp:47) and fifo read operation
(‘ampsStreaml_read', ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker. :47).

The Il Violation in module ‘calAmpAndTime_Pipeline_VITIS_LOOP_38_1" (loop "VITIS_LOOP_38_1"): Unable to enforce a carried dependence constraint (Il = 4, distance = 1, offset =
1) between fifo read operation (‘ampsStreaml_read_4', ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47) and fifo read operation
(‘ampsStreaml_read', ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47).

The Il Violation in module ‘calAmpAndTime_Pipeline_VITIS_LOOP_38_1" (loop "VITIS_LOOP_38_1'): Unable to enforce a carried dependence constraint (Il = 11, distance = 1, offset
= 1) between fifo read operation (‘ampsStreaml_read_11', ecalRecHitsWorker.cpp:47) on port 'ampsStreaml’ (ecalRecHitsWorker.cpp:47) and fifo read operation
(‘ampsStreaml_read’, ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47).

The II Violation in module ‘calAmpAndTime_Pipeline_VITIS_LOOP_38_1" (loop "ITIS_LOOP_38_1'"): Unable to enforce a carried dependence constraint (Il = 15, distance = 1, offset
= 1) between fifo read operation (‘ampsStreaml_read_15', ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47) and fifo read operation
(‘ampsStreaml_read', ecalRecHitsWorker.cpp:47) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:47).

The Il Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop "ITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (Il = 1, distance = 1, offset = 1)
between fifo write operation (‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27) and fifo write operation
("ampsStreaml_write_In27", ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27).

The Il Violation in module ‘loadData_Pipeline_VITIS_LOOP_21_1' (loop "ITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (Il = 2, distance = 1, offset = 1)
between fifo write operation (‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml' (ecalRecHitsWorker.cpp:27) and fifo write operation
(‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27).

The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop "ITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (Il = 3, distance = 1, offset = 1)
between fifo write operation (‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27) and fifo write operation
(‘ampsStreaml_write_In27", ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27).

The Il Violation in module 'loadData_Pipeline_VITIS_LOOP_21_1' (loop "VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (Il = 4, distance = 1, offset = 1)
between fifo write operation (‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp: 27) and fifo write operation
(‘ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27).

The II Violation in module 'loadData_Pipeline_VITIS_LOOP_21 1' (loop "VITIS_LOOP_21_1'): Unable to enforce a carried dependence constraint (Il = 11, distance =1, offset = 1)
between fifo write operation (‘ampsStream1_write,_| In27' ecalRecHitsWorker.cpp:27) on port ampsstreaml (ecalRecHitsWorker.cpp:27) and fifo write operation
("ampsStreaml_write_In27', ecalRecHitsWorker.cpp:27) on port ‘ampsStreaml’ (ecalRecHitsWorker.cpp:27).

issue with the 16 samples being read in the adder causing a delay of 16 cycles

modified it with a stream for each sample -> advisories went away but FIFO

deadlocked -> still trying to understand

21

logy
Facilities Council

several advisories

initiation interval

Aside: Deadlocking

* doing this approach it was really easy to deadlock the
FPGA

— original design naively had two load functions
* 1) loaded all detlds
e 2)loaded all amplitudes

— this caused the FPGA to deadlock and honestly the detection of
the tools to prevent this is subpar
» deadlock detection on the emulator works sometimes

* and when it did, the error message was buried in a non obvious log file
— Emulation-HW/.run/151479/hw_em/deviceO/binary_0/behav_waveform/xsim/simulate.log
— yes it wasin a hidden directory...

» wasted quite a bit of time with this

22

Science and
Technolo

ECAL Multifit JINST 15 P10005

. CMS Simulation (13 TeV)
> Bf—Toal e
* both ECAL and HCAL local calo reconstruction % e [l e —
work on the same principle L% 2 « Observed v :
— fit to each amplitude in each bunch crossing 4 -
* has CUDA and alpaka based algos 2 _
implemented in CMSSW 1 E
— large fraction of time spent in the HLT I e A R
— probably the single biggest thing to port Time sample
* standard linear algebra solve: o 1.2_C1M? T UES qu.“?TE\T)_
— Pa=b %_ o Readout Extrapolated E
— P is the contribution of BX_i deposit to the o I I : Ef.?ﬁﬁé‘fﬁéds :
counts in BX_j 8T Fit ' 3
— ais the amplitudes of each deposit in each BX E 0.6~) .
— b observe counts in each BX = oal " 7
02f | 0]
- Endcap .
oofeeied o e e

0

23 Time sample

Vitis Libraries

 vitis has several Apache 2.0 licensed libraries

— https://www.xilinx.com/products/design-tools/vitis/vitis-libraries.html
— https://github.com/Xilinx/Vitis Libraries

* relevant to the multifit problem are
— blas : basic linear algebra subroutines

— solver: collection of matrix decomposition operations, linear solvers
and eigenvalue solvers

* was attempting to write a NNLS algo myself till | noticed their implementation
although not non negative constrained but good enough

* header only libraries, easy to include
— for some definition of easy, the documentation is merely okay...
— not much guidance on making it fast

24

https://github.com/Xilinx/Vitis_Libraries
https://github.com/Xilinx/Vitis_Libraries

ccccccccc

V i t i S B L A S Facities Council

25

aimed to test out its matrix methods for multiplication

— use Eigen as a CPU reference

simple matrix multiplication as a starting point, 1000 4x4
matrix x vector multiplications

— FPGA duration: 875 us

— FPGA mem duration:120 us

— CPU duration: 43us

not great but then this is something the CPU does very
well

— | also suspect my usage not well pipelined or making efficient
use of FPGA

Vitis Solver

* using

— solves Ax = b where A is a general mxm matrix, x is the vector to solve and
B is the observed vector

— A = pulse shape matrix, x = bx amplitudes, b = observed ADC counts in each
timeslice

e benchmark:

— 10x10 matrices of doubles (ECAL pulse shape matrix size)

— matrix is random numbers in [0,1], Ais random ints from [0,1023]
— CPU reference is Eigen:

* https://eigen.tuxfamily.org/dox/group__LeastSquares.html
— also tried Eigen::NNLS

* best method seemed to be: “Using normal equations”

— gcc flags: -O3 -march=cascadelake

26

* 100 matrixes per event (sent at once)
— 1t event:

* FPGA duration: 4399us
* FPGA mem duration: 677 us
* CPU duration: 1004 ps

its not clear to me why the CPU
speeds up on subsequent events

— subsequent events:
* FPGA duration: 3855+ 5 s
* FPGA mem duration:253 + 3 us
 CPU duration: 347 £ 2.5 ps

 FPGA offload takes roughly 4-10 times as CPU

— | had hoped this would be faster, particularly as this is a stock algo

— need to understand if there is something we can do to speed this up or if
we’re not using it correctly or something

— major focus here to understand this

* note: thisis using ~2% of the FPGA

— butis also only using 1 core of the CPU

possibly caches or something

27

Aside on Alpaka

RAL CMS through Thomas Reis is involved in
porting CMS’s CUDA based code to Alpaka
— specifically the ECAL multifit code
— merged in CMSSW, undergoing validation
— goalis to be in production this year
e CMSSW source code:
— https://github.com/cms-
sw/cmssw/tree/master/RecolocalCalo/EcalRecProducers/plugins/alpaka
e observations:

— originally thought that it would be simple to port from CUDA
* its heavily inspired by it

— turns out not so much:
e devil in the details

e shared memory an issue

— CMSSW code is an example implementation now but it is heavily CMSSW

framework based
28

https://github.com/cms-sw/cmssw/tree/master/RecoLocalCalo/EcalRecProducers/plugins/alpaka

Summary

29

HLS has some nice features:

— can produce CMSSW data types directly

— integrates with CMSSW external work framework nicely
can now produce ECAL uncalibrated rechits on FPGA in same time as CPU

— also likely room for further improvement, lots of advanced features to try

— still need to verify and test as the setup is a little artificial and may introduce biases
it is tricky to get performance from

— still fairly slow, tools are a little lacking
* new vitis gui released, to be tested

— development cycles are also a little painful (although now setup to work more
efficiently)

still want to try a few things to improve algo performance

— focus in on trying to get the multifit algorithm to work and be performant
* takes a huge part of CMS HLT reco time

aim to document various performance improvements

— still trying to understand why some algos are fast and some algos are slo

after that, probably should do some ML inference studies
— again though I’'m wary of dedicated chips being better for that

Science and

Technology

cilities Council

Fa

Spares

30

Useful Info Learnt

* the following is more a reference of issues we
encountered

* it was not presented but could be a useful reference
for folks trying to reproduce our efforts

31

Science and
Technolog
Facilities Council

Running Emulated Binaries: Crash

XRT build version: 2.14.0

Build hash: 43926231f7183688add2dccfd391b36alfeeebea
Build date: 2823-83-28 19:45:29

Git branch: HEAD

PID: 2886190

UID: 27618

[Mon Mar 25 10:29:31 2024 GMT]

HOST: hepaccl@.pp.rl.ac.uk

EXE: /scratch/harper/fpga_ecalhits/ecalWeights/test.exe

[XRT] ERROR: See dmesg log for details. err = -22

terminate called after throwing an instance of 'xrt_core::system error’
what(): failed to load xclbin: Invalid argument

Aborted (core dumped)

* |loading an hw_emu binary without setting
— export XCL_EMULATION_MODE=hw_emu

32

Science and

End-of-central-directory signature not found. Either this file is not
a zipfile, or it constitutes one disk of a multi-part archive. In the
latter case the central directory and zipfile comment will be found on
the last disk(s) of this archive.

unzip: cannot find zipfile directory in one of /scratch/harper/ECALMultiFitFPGA/.run/163652/hw_em/device®/tempFile_©.zip or

/scratch/harper/ECALMultiFitFPGA/.run/163652/hw_em/device@/tempFile_©.zip.zip, and cannot find /scratch/harper/ECALMultiFitFPGA/.
run/163652/hw_em/device®/tempFile_©.zip.ZIP, period.
ERROR: [EMU 6©-600] unzip -q /scratch/harper/ECALMultiFitFPGA/.run/163652/hw_em/device®/tempFile_B.zip -d /scratch/harper/ECALMultiFitFPG

A/ .run/163652/hw_em/device®/binary_© Exception Caught - Failed with the error code 2304 at the Line Number 7@7. PLEASE CHECK YOUR PERMISS
IONS

* loading a hw binary with
— XCL_EMULATION_MODE=hw_emu

33

