
traccc
Integrating the Alpaka framework

Ryan Cross
GridPP51 & SWIFT-HEP07

2024/03/27

Overview

This talk will cover:

1. traccc.

2. Cross-Platform Abstraction Libraries.

3. Where We Are

4. Current Work

5. What comes next?

1 / 14Ryan Cross - 2024/03/27

ACTS is a generic, experiment

independent framework/software toolkit,

written in C++. Through it, you can get

algorithms for track reconstruction that

can be used in any experiment, agnostic of

any technical details (detector tech, design

and event processing framework).

It has been designed in a thread-safe

manner, with support for parallel code

execution and optimised data structures

for speeding up the many linear algebra

operations used throughout the code base.

A Common Tracking Software

2 / 14Ryan Cross - 2024/03/27

To tackle this, ACTS has launched several R&D projects:

traccc - Tracking Algorithms on the GPU.

detray - A GPU based Geometry Builder.

algebra-plugin - Provides varying algebra plugins for the

other projects.

vecmem - A GPU Memory Management Tool for the other

projects.

ACTS R&D Projects

Many of the core algorithms in ACTS have been ported to CUDA and SYCL, but there is a limit as to how

far this can go. Full offloading is difficult, with some of the event data model and geometry not being the

most GPU-friendly.

3 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem

To tackle this, ACTS has launched several R&D projects:

traccc - Tracking Algorithms on the GPU.

detray - A GPU based Geometry Builder.

algebra-plugin - Provides varying algebra plugins for the

other projects.

vecmem - A GPU Memory Management Tool for the other

projects.

ACTS R&D Projects

Many of the core algorithms in ACTS have been ported to CUDA and SYCL, but there is a limit as to how

far this can go. Full offloading is difficult, with some of the event data model and geometry not being the

most GPU-friendly.

traccc specifically, is aiming to establish a sensible event data model

and algorithms that are able to exploit parallelisation architecture,

whilst relying heavily on the other projects.

3 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc
https://github.com/acts-project/detray
https://github.com/acts-project/algebra-plugins
https://github.com/acts-project/vecmem

Cross-Platform Abstraction - What?

There is a few abstraction approaches worth talking about in the context of traccc. Whilst the broad goal of

allowing a single code base to target many different accelerator backends is the same, the approach and

technical details differ.

4 / 14Ryan Cross - 2024/03/27

Cross-Platform Abstraction - What?

There is a few abstraction approaches worth talking about in the context of traccc. Whilst the broad goal of

allowing a single code base to target many different accelerator backends is the same, the approach and

technical details differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

4 / 14Ryan Cross - 2024/03/27

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

Kokkos is C++ based programming model, which provides methods that abstract away details of parallel

execution and memory management, such that code can be written for many shared-memory

programming models in a unifed way. Supports CUDA, HIP, SYCL, HPX, OpenMP and std::thread.

4 / 14Ryan Cross - 2024/03/27

Cross-Platform Abstraction - What?

There is a few approaches worth talking about in the context of traccc. Whilst the broad goal of allowing a

single code base to target many different accelerator backends is the same, the approach and technical details

differ.

SYCL is a higher level programming model, developed by the Khronos group (OpenCL/OpenGL/Vulkan

and more). It defines an abstraction layer that enables code for heterogeneous processors via a 'single-

source' style in standard C++. Supports many backends: CUDA, AMD GPUs, Intel GPUs, OpenMP,

MPI, Vulkan, std::thread, OpenCL and more.

Kokkos is C++ based programming model, which provides methods that abstract away details of parallel

execution and memory management, such that code can be written for many shared-memory

programming models in a unifed way. Supports CUDA, HIP, SYCL, HPX, OpenMP and std::thread.

alpaka is a header-only C++ 17 abstraction library for accelerator development. It aims to provide

performance portability across a range of accelerators through the abstraction of the underlying levels of

parallelism. Support CUDA, OpenMP, std::thread, TBB, HIP and OpenAcc.

4 / 14Ryan Cross - 2024/03/27

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

5 / 14Ryan Cross - 2024/03/27

Cross-Platform Abstraction - How?

Despite having differing ways of interacting with them, advertising themselves differently and more...they all

have the same objective: Write your code once, and through the libraries abstraction methods, end up with

a code base that supports a variety of accelerator backends.

The specific interface to achieve this differs between each of the options, but some broad steps are the same.

Get an accelerator device:

accelerator = getAcceleratorDevice();

queue = getDeviceQueue(accelerator);

Define an operation for the device to perform:

job = [](auto accelerator, auto config, auto items) {

 auto item = items[getThreadIndex()];

 ...

};

Run the jobs in parallel:

queue.submit(job, configuration, items);

queue.wait();

5 / 14Ryan Cross - 2024/03/27

Why alpaka?

I've just outlined three projects that support the "write once, support many" paradigm, and both SYCL and

Kokkos are already implemented in traccc, with differing levels of functionality. So why a third?

alpaka was chosen as a possible candidate for a few reasons:

Simplicity: alpaka is a lightweight, header-only library, which makes integration into traccc very easy, as

well as it being written in the same modern C++17 as traccc/acts.

Familiarity: The alpaka abstraction model is very similar to the CUDA grid-blocks-thread model, making

writing code for alpaka simple, and familiar for those with CUDA experience, whilst also providing a CPU

and non-CUDA based implementation.

Community Support: alpaka has been used extensively at CMS, including in cms-sw and their HLT

achieving performance close to that of the native CUDA codebase, from a single source code that can be

utilised on many devices.

6 / 14Ryan Cross - 2024/03/27

https://github.com/cms-sw/cmssw/pull/40465
https://indico.cern.ch/event/1184802/contributions/5096742/subcontributions/400890/attachments/2539901/4372182/swifthep_cmsgpu.pdf

Completed Work

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in Jan 23: PR #300.

7 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc/pull/300

Completed Work

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in Jan 23: PR #300.

I then built upon this base to add the first tracking code, to add a spacepoint binning algorithm. This

algorithm is a reasonable starting point, fairly self-contained and easy to implement. This was added in PR

#431.

7 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc/pull/300
https://github.com/acts-project/traccc/pull/431

Completed Work

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in Jan 23: PR #300.

I then built upon this base to add the first tracking code, to add a spacepoint binning algorithm. This

algorithm is a reasonable starting point, fairly self-contained and easy to implement. This was added in PR

#431.

The spacepoint binning gave me a first look at development with Alpaka, as well as developing inside of

traccc/ACTS. My previous slides, given at a UK SWIFT-HEP / GRIDPP meeting, give a bit of a better

overview of that work, as well as some more basic comparisons of Alpaka vs CUDA.

7 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc/pull/300
https://github.com/acts-project/traccc/pull/431
https://indico.cern.ch/event/1215829/contributions/5306562/

Completed Work

The first steps around integration of alpaka in traccc were performed by Stewart Martin-Haugh, as part of a

PR in Jan 23: PR #300.

I then built upon this base to add the first tracking code, to add a spacepoint binning algorithm. This

algorithm is a reasonable starting point, fairly self-contained and easy to implement. This was added in PR

#431.

The spacepoint binning gave me a first look at development with Alpaka, as well as developing inside of

traccc/ACTS. My previous slides, given at a UK SWIFT-HEP / GRIDPP meeting, give a bit of a better

overview of that work, as well as some more basic comparisons of Alpaka vs CUDA.

7 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc/pull/300
https://github.com/acts-project/traccc/pull/431
https://indico.cern.ch/event/1215829/contributions/5306562/

Completed Work

Following the spacepoint binning, the next portion of completed work was around seeding, which build

from the spacepoint binning.

This comprised of a lot more algorithms, compared to the relatively self-contained and small binning work,

but the end result is something closer to Physics, and as such, means we could compare results against the

native CUDA version more easily.

8 / 14Ryan Cross - 2024/03/27

Completed Work

Following the spacepoint binning, the next portion of completed work was around seeding, which build

from the spacepoint binning.

This comprised of a lot more algorithms, compared to the relatively self-contained and small binning work,

but the end result is something closer to Physics, and as such, means we could compare results against the

native CUDA version more easily.

Most of that work was merged recently as part of PR (#451), with a secondary PR incoming to include the

latest throughput examples and general tidying up.

8 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc/pull/451

Completed Work

Following the spacepoint binning, the next portion of completed work was around seeding, which build

from the spacepoint binning.

This comprised of a lot more algorithms, compared to the relatively self-contained and small binning work,

but the end result is something closer to Physics, and as such, means we could compare results against the

native CUDA version more easily.

Most of that work was merged recently as part of PR (#451), with a secondary PR incoming to include the

latest throughput examples and general tidying up.

8 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc/pull/451

Completed Work

Following the spacepoint binning, the next portion of completed work was around seeding, which build

from the spacepoint binning.

This comprised of a lot more algorithms, compared to the relatively self-contained and small binning work,

but the end result is something closer to Physics, and as such, means we could compare results against the

native CUDA version more easily.

Most of that work was merged recently as part of PR (#451), with a secondary PR incoming to include the

latest throughput examples and general tidying up.

8 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc/pull/451

Current Work

So, since the last update there has been a few main pieces of work from Stewart and myself, which I'll go into

a bit more detail on.

They are:

9 / 14Ryan Cross - 2024/03/27

Current Work

So, since the last update there has been a few main pieces of work from Stewart and myself, which I'll go into

a bit more detail on.

They are:

Verifying Alpaka with HIP. When the main draw of using an abstraction library is multi-vendor support,

that support needs testing and any HIP-specific changes implementing.

9 / 14Ryan Cross - 2024/03/27

Current Work

So, since the last update there has been a few main pieces of work from Stewart and myself, which I'll go into

a bit more detail on.

They are:

Verifying Alpaka with HIP. When the main draw of using an abstraction library is multi-vendor support,

that support needs testing and any HIP-specific changes implementing.

Improving the robustness of the current code. Whilst the current code works well enough and compares

favourably to the CUDA code, we still are not able to get a complete understanding of the multi-threaded

performance of Alpaka, due to various issues.

9 / 14Ryan Cross - 2024/03/27

Current Work

So, since the last update there has been a few main pieces of work from Stewart and myself, which I'll go into

a bit more detail on.

They are:

Verifying Alpaka with HIP. When the main draw of using an abstraction library is multi-vendor support,

that support needs testing and any HIP-specific changes implementing.

Improving the robustness of the current code. Whilst the current code works well enough and compares

favourably to the CUDA code, we still are not able to get a complete understanding of the multi-threaded

performance of Alpaka, due to various issues.

Continue the porting process of further algorithms, bringing the Alpaka implementation closer to

completely matching the CUDA one.

Each of these pieces of work are at different stages of completion, and I'll go into a touch more detail on them

each now.

9 / 14Ryan Cross - 2024/03/27

HIP

Stewart has been championing the work of testing Alpaka with HIP, to verify the code running on an AMD

GPU.

There have been a giant number of PRs around this, covering all the main projects, traccc, vecmem and

detray (PR #504, PR #511, PR #519, PR #272, PR #631, PR #652, PR #654).

10 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc/pull/504
https://github.com/acts-project/traccc/pull/511
https://github.com/acts-project/traccc/pull/519
https://github.com/acts-project/vecmem/pull/272
https://github.com/acts-project/detray/pull/631
https://github.com/acts-project/detray/pull/652
https://github.com/acts-project/detray/pull/654

HIP

Stewart has been championing the work of testing Alpaka with HIP, to verify the code running on an AMD

GPU.

There have been a giant number of PRs around this, covering all the main projects, traccc, vecmem and

detray (PR #504, PR #511, PR #519, PR #272, PR #631, PR #652, PR #654).

This is fairly indicative of the complications around supporting these sorts of abstraction libraries though.

Despite the main draw being "write once, compile N times", that does get more complicated when you

consider that the newly supported accelerator back-ends have their own compiler, with their own flags,

macros, dealing with of code, so your code base needs to support every possible option at once.

10 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc/pull/504
https://github.com/acts-project/traccc/pull/511
https://github.com/acts-project/traccc/pull/519
https://github.com/acts-project/vecmem/pull/272
https://github.com/acts-project/detray/pull/631
https://github.com/acts-project/detray/pull/652
https://github.com/acts-project/detray/pull/654

HIP

Stewart has been championing the work of testing Alpaka with HIP, to verify the code running on an AMD

GPU.

There have been a giant number of PRs around this, covering all the main projects, traccc, vecmem and

detray (PR #504, PR #511, PR #519, PR #272, PR #631, PR #652, PR #654).

This is fairly indicative of the complications around supporting these sorts of abstraction libraries though.

Despite the main draw being "write once, compile N times", that does get more complicated when you

consider that the newly supported accelerator back-ends have their own compiler, with their own flags,

macros, dealing with of code, so your code base needs to support every possible option at once.

This is fairly advanced now, with it actually compiling and being able to partially run the code. Remaining

issues are potentially less to do with architecture level changes still being needed, and more to do with

brittleness in the existing Alpaka code.

10 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc/pull/504
https://github.com/acts-project/traccc/pull/511
https://github.com/acts-project/traccc/pull/519
https://github.com/acts-project/vecmem/pull/272
https://github.com/acts-project/detray/pull/631
https://github.com/acts-project/detray/pull/652
https://github.com/acts-project/detray/pull/654

HIP

Stewart has been championing the work of testing Alpaka with HIP, to verify the code running on an AMD

GPU.

There have been a giant number of PRs around this, covering all the main projects, traccc, vecmem and

detray (PR #504, PR #511, PR #519, PR #272, PR #631, PR #652, PR #654).

This is fairly indicative of the complications around supporting these sorts of abstraction libraries though.

Despite the main draw being "write once, compile N times", that does get more complicated when you

consider that the newly supported accelerator back-ends have their own compiler, with their own flags,

macros, dealing with of code, so your code base needs to support every possible option at once.

This is fairly advanced now, with it actually compiling and being able to partially run the code. Remaining

issues are potentially less to do with architecture level changes still being needed, and more to do with

brittleness in the existing Alpaka code.

The end goal here is that we can have the full examples running on both Nvidia and AMD, with only a single

flag change at compile time to target the relevant architectures. All the changes made for this work also help

improve the code for potential later test with other accelerators.

10 / 14Ryan Cross - 2024/03/27

https://github.com/acts-project/traccc/pull/504
https://github.com/acts-project/traccc/pull/511
https://github.com/acts-project/traccc/pull/519
https://github.com/acts-project/vecmem/pull/272
https://github.com/acts-project/detray/pull/631
https://github.com/acts-project/detray/pull/652
https://github.com/acts-project/detray/pull/654

Alpaka Robustness Testing

That leads nicely into to improving the robustness of the Alpaka code.

Right now, all the code shown works and runs for many 100s of events, but there is intermittent memory

access issues, at least in the CUDA version.

11 / 14Ryan Cross - 2024/03/27

Alpaka Robustness Testing

That leads nicely into to improving the robustness of the Alpaka code.

Right now, all the code shown works and runs for many 100s of events, but there is intermittent memory

access issues, at least in the CUDA version.

I've slowly being debugging this over a number of months, but haven't found any obvious smoking gun yet. I

have gotten much more experience with the CUDA debugging experience in alpaka which has been very

useful, and the bug has been mostly narrowed to a single file, but further work is needed to check what the

exact bug is.

11 / 14Ryan Cross - 2024/03/27

Alpaka Robustness Testing

That leads nicely into to improving the robustness of the Alpaka code.

Right now, all the code shown works and runs for many 100s of events, but there is intermittent memory

access issues, at least in the CUDA version.

I've slowly being debugging this over a number of months, but haven't found any obvious smoking gun yet. I

have gotten much more experience with the CUDA debugging experience in alpaka which has been very

useful, and the bug has been mostly narrowed to a single file, but further work is needed to check what the

exact bug is.

It isn't seen at all in the examples that only run a single event, but only in those that run many events in

sequence, at least when using the CUDA back-end. I'm also doing some testing with a CPU, single-threaded

back-end to see if I can reproduce the error there, which would make debugging a lot easier (at least

compared to hundreds / thousands of CUDA kernels running).

11 / 14Ryan Cross - 2024/03/27

Track Finding + Fitting

The next obvious step, once you have the "Prototracks" from the current code, is to perform a more

sophisticated track finding and fitting procedure, by porting that code from CUDA to Alpaka.

That does, however, come with its own new complications compared to the ported code so far:

12 / 14Ryan Cross - 2024/03/27

Track Finding + Fitting

The next obvious step, once you have the "Prototracks" from the current code, is to perform a more

sophisticated track finding and fitting procedure, by porting that code from CUDA to Alpaka.

That does, however, come with its own new complications compared to the ported code so far:

The largest difference is the very heavy usage of the Thrust library, a Nvidia-maintained CUDA

parallelisation library. This obviously makes my job potentially more difficult, as the behaviours of the code

now need to either be changed, or re-implemented in an Alpaka-friendly way.

12 / 14Ryan Cross - 2024/03/27

Track Finding + Fitting

The next obvious step, once you have the "Prototracks" from the current code, is to perform a more

sophisticated track finding and fitting procedure, by porting that code from CUDA to Alpaka.

That does, however, come with its own new complications compared to the ported code so far:

The largest difference is the very heavy usage of the Thrust library, a Nvidia-maintained CUDA

parallelisation library. This obviously makes my job potentially more difficult, as the behaviours of the code

now need to either be changed, or re-implemented in an Alpaka-friendly way.

The objects and data-structures in use are more complicated, making more work when porting the code to

ensure Alpaka can easily use the objects and they are in a form Alpaka expects.

Alpaka expects all objects to be std::is_trivially_copyable which wasn't an issue so far, but looks

like it could be slightly more awkward here. However, newer Alpaka versions allow you to add traits to

help with convincing Alpaka of that.

12 / 14Ryan Cross - 2024/03/27

Track Finding + Fitting

The next obvious step, once you have the "Prototracks" from the current code, is to perform a more

sophisticated track finding and fitting procedure, by porting that code from CUDA to Alpaka.

That does, however, come with its own new complications compared to the ported code so far:

The largest difference is the very heavy usage of the Thrust library, a Nvidia-maintained CUDA

parallelisation library. This obviously makes my job potentially more difficult, as the behaviours of the code

now need to either be changed, or re-implemented in an Alpaka-friendly way.

The objects and data-structures in use are more complicated, making more work when porting the code to

ensure Alpaka can easily use the objects and they are in a form Alpaka expects.

Alpaka expects all objects to be std::is_trivially_copyable which wasn't an issue so far, but looks

like it could be slightly more awkward here. However, newer Alpaka versions allow you to add traits to

help with convincing Alpaka of that.

Work is slowly moving here, first testing within thrust with a CUDA target only, to slightly delay working

out the best / most appropriate approach to replace the Thrust code.

12 / 14Ryan Cross - 2024/03/27

What is next?

Few things to do:

Continue with the three mentioned bits of work.

13 / 14Ryan Cross - 2024/03/27

What is next?

Few things to do:

Continue with the three mentioned bits of work.

Consider more intelligent ways of dealing with the multiple accelerator backends.

That is, intelligent ways of dealing with the few bits of compiler specific code: vecmem/cuda/X.h vs

vecmem/hip/X.h, or building sensible workDivs to deal with the hardware differences (Fixed vs variable

warp size, CPU core count differences etc.)

13 / 14Ryan Cross - 2024/03/27

What is next?

Few things to do:

Continue with the three mentioned bits of work.

Consider more intelligent ways of dealing with the multiple accelerator backends.

That is, intelligent ways of dealing with the few bits of compiler specific code: vecmem/cuda/X.h vs

vecmem/hip/X.h, or building sensible workDivs to deal with the hardware differences (Fixed vs variable

warp size, CPU core count differences etc.)

Extend the testing and verifying work once HIP is working, to ensure that CUDA and HIP continue to

work.

13 / 14Ryan Cross - 2024/03/27

What is next?

Few things to do:

Continue with the three mentioned bits of work.

Consider more intelligent ways of dealing with the multiple accelerator backends.

That is, intelligent ways of dealing with the few bits of compiler specific code: vecmem/cuda/X.h vs

vecmem/hip/X.h, or building sensible workDivs to deal with the hardware differences (Fixed vs variable

warp size, CPU core count differences etc.)

Extend the testing and verifying work once HIP is working, to ensure that CUDA and HIP continue to

work.

Finally, more in-depth benchmarking of the Alpaka implementation, to help understand if / where

bottlenecks are, and if there is anything in our Alpaka code that needs improving.

13 / 14Ryan Cross - 2024/03/27

Conclusion

In Conclusion:

traccc is a R&D effort as part of the ACTS project, working on exploiting GPUs and other accelerators to

speed up tracking across a range of experiments.

As part of that, many different acceleration abstraction libraries have been implemented, with alpaka being

the newest.

alpaka has good support already in HEP, and its parallelisation model make it a strong candidate for being

the general purpose abstraction library.

This talk gives a brief overview of the already completed work porting algorithms to utilise Alpaka in traccc.

More work in ongoing to verify alpaka with non-CUDA targets, improve the robustness of the alpaka

implementation, and further complete porting of algorithms to alpaka.

14 / 14Ryan Cross - 2024/03/27

traccc
Integrating the Alpaka framework

Ryan Cross
GridPP51 & SWIFT-HEP07

2024/03/27

Backup Slides

14 / 14Ryan Cross - 2024/03/27

CUDA vs alpaka only

14 / 14Ryan Cross - 2024/03/27

CUDA vs alpaka only

14 / 14Ryan Cross - 2024/03/27

CUDA vs alpaka only

14 / 14Ryan Cross - 2024/03/27

CUDA vs alpaka only

14 / 14Ryan Cross - 2024/03/27

CUDA vs alpaka only

14 / 14Ryan Cross - 2024/03/27

CUDA vs alpaka only

14 / 14Ryan Cross - 2024/03/27

