Graphical Tools for Detector Operations and Validation: Should we be involved?

Sam Harper (RAL) SwiftHEP Meeting

March 27th 2024

Introduction

- was CMS trigger coordinator, during my term oversaw
 - Phase II HLT TDR with first realistic compute estimates
 - CMS's transition to GPUs
 - Run3 prep
- During my term, the biggest problem I identified was not making our code faster
 - this is under control, its challenging but there is a wellthought out plan which SWIFTHEP is a key part of
- It was the lack of tools to operate and run CMS
 - there is laughably little effort on this and the skill set to do so does not overlap with typical skill set we have available

Introduction (II)

More succinctly

- I'm not worried about CMS not being able to meet the computing of the HL-LHC
 - GPU efforts are advanced, lots of code development on going, this is going to converge
- I am worried about not able to turn on the detector or configure it due to broken tools to do so
 - CMS came worryingly close to not being able to change trigger keys when the CERN SSO upgrade happened
 - simply because almost nobody knows how our webbased tooling worked

What I am talking about

- I mean tools like
 - displaying DQM histograms
 - developing trigger paths
 - configuring detector settings
 - displaying detector information
 - presenting information to analyses
- I don't mean analysis tools
 - RDataframe, coffea, other popular tools
 - already well served by others and in general this is in good shape

typically all need some sort of GUI

4

Efficient Tools are key to unlocking Physics Potential

- physicists try to do too much
- goal for maximising physics is allow them to achieve more
- efficient tools are key here
 - CMS's physics potential is absolutely limited by the quality of its tools
 - there are some good ones (eg OMS our online monitoring) but the majority are bad
 - trigger development barrier is too high, folks spend their time battling with the substandard tools rather than making performant triggers
- the problem (at least on CMS) is that we have very little ability to build efficient (non-analysis) tools
 - maybe its better on other experiments?

Graphical Tools

- trend is all GUIs moving to running in the browser
 - sometimes it looks native but often can actually be a webapp running on a bundled version of chromium
 - electron is common framework
 - vscode is probably the most popular one
- GUIs in a browser means written in javascript*
 - there have been attempts with python, so far I've not been impressed
- physicists in general do not know javascript
 - nor do they have much experience with REST APIs and other key pardims here
- therefore its very hard to for collaborations to develop such tools as there is a very limited talent pool with the correct skill set
 - difficult to import the skill set: hard to retain full stack devs and hard to communicate the requirements to them

*IMHO any serious development should use typescript which is a superset of javascript in this talk whenever I say javascript, I really mean typescript

Commonality Between Experiments

- many tools needed by experiments will be bespoke
 - say something unique to configurating a CMS run
- but many will be common
 - every experiment needs a way to visualise validation plots efficiently
- even the bespoke tools have common elements
 - usually its just the "business logic" or exactly what information to display
 - having a good example or libraries will help
 - eg if you want to interact with the CERN SSO can use a common package like <u>tsgauth</u>

Designing Tools

- a tool must provide the correct information
- a tool needs to enable the correct workflows
 Typically the experts (aka physicists) know what they need do and an external programmer doesn't
- There are two approaches
- teach a physicist how to write the tool
- have the physicist write a detailed specification and requirements document
 - this is harder than it sounds!

Case Studies

- I learnt typescript, make simple websites hosted on CERN PAAS
- I make tools which I think are most needed
- all tools are somewhat similar architecture
 - frontend : typescript + vue
 - vue is frontend framework, one of the big three (react, angular, vue)
 - still js ecosystem is fast moving, frameworks do get deprecated
 - backend : python using flask (moving to fastapi)
 - try and do as much as possible on the backend as python is very physicist friendly
 - usually some sort of db such as mongo
 - again very physicist friendly, its just json docs
 - note I'm using this to store root histograms now
- once you know how, its very easy to do this
 - the trick is knowing how
- it has been a game changer, I've been busy solving many of the things that irate me on CMS
 - and the tools work exactly how we want it to work

Case Studies: examples

examples:

- hltsupervisor: assists shift crew & experts handle trigger issues at P5
 - analyses the trigger rates and offers clear advice on what to do
 - improves operational efficiency at p5
- hltinfo: provides HLT information for analyses
 - before this, very difficult in CMS to find out basic trigger info
- multi run DQM:
 - CMS DQM plots are run based
 - this agreates key plots over a fill and displays a quick summary on triggr health intended for a busy expert

timing measurement service

- allows users to run the standard benchmarks to estimate CPU resources of their path with a single script
- displays the results easily

ess MYHLT tim.

11639

387.1

375.5

Examples of tools

Summary

- I see a big problem limiting our physics by wasting our personpower due to substandard tools
 - its absolutely limiting our physics on CMS
- I have no idea how to properly solve it
- should swifthep be involved here, is this something we should think about?
 - eg provide off the shelf solutions /examples
 - it would have been a huge help for me when starting out
- or is this something we consider more appropriate for others to solve ?