
Graphical Tools for Detector
Operations and Validation:

Should we be involved?
Sam Harper (RAL)

SwiftHEP Meeting

March 27th 2024

1

Introduction

• was CMS trigger coordinator, during my term oversaw

– Phase II HLT TDR with first realistic compute estimates

– CMS’s transition to GPUs

– Run3 prep

• During my term, the biggest problem I identified was
not making our code faster

– this is under control, its challenging but there is a well-
thought out plan which SWIFTHEP is a key part of

• It was the lack of tools to operate and run CMS

– there is laughably little effort on this and the skill set to do so
does not overlap with typical skill set we have available

2

Introduction (II)

More succinctly

• I’m not worried about CMS not being able to meet the
computing of the HL-LHC

– GPU efforts are advanced, lots of code development on going,
this is going to converge

• I am worried about not able to turn on the detector or
configure it due to broken tools to do so

– CMS came worryingly close to not being able to change trigger
keys when the CERN SSO upgrade happened
• simply because almost nobody knows how our webbased tooling worked

3

What I am talking about

• I mean tools like

– displaying DQM histograms

– developing trigger paths

– configuring detector settings

– displaying detector information

– presenting information to analyses

• I don’t mean analysis tools

– RDataframe, coffea, other popular tools

– already well served by others and in general this is in good
shape

4

typically all need
some sort of GUI

Efficient Tools are key to unlocking
Physics Potential

• physicists try to do too much

• goal for maximising physics is allow them to achieve more

• efficient tools are key here
– CMS’s physics potential is absolutely limited by the quality of its tools

• there are some good ones (eg OMS our online monitoring) but the
majority are bad

– trigger development barrier is too high, folks spend their time battling
with the substandard tools rather than making performant triggers

• the problem (at least on CMS) is that we have very little ability
to build efficient (non-analysis) tools
– maybe its better on other experiments?

5

Graphical Tools
• trend is all GUIs moving to running in the browser

– sometimes it looks native but often can actually be a webapp running on a bundled
version of chromium

• electron is common framework

• vscode is probably the most popular one

• GUIs in a browser means written in javascript*

– there have been attempts with python, so far I’ve not been impressed

• physicists in general do not know javascript

– nor do they have much experience with REST APIs and other key pardims here

• therefore its very hard to for collaborations to develop such tools as there is a
very limited talent pool with the correct skill set

– difficult to import the skill set: hard to retain full stack devs and hard to
communicate the requirements to them

6

*IMHO any serious development should use typescript which is a superset of javascript
in this talk whenever I say javascript, I really mean typescript

Commonality Between Experiments

• many tools needed by experiments will be bespoke

– say something unique to configurating a CMS run

• but many will be common

– every experiment needs a way to visualise validation plots
efficiently

• even the bespoke tools have common elements

– usually its just the “business logic” or exactly what
information to display

– having a good example or libraries will help

– eg if you want to interact with the CERN SSO can use a
common package like tsgauth

7

https://pypi.org/project/tsgauth/

Designing Tools

• a tool must provide the correct information

• a tool needs to enable the correct workflows

Typically the experts (aka physicists) know what they
need do and an external programmer doesn’t

There are two approaches

• teach a physicist how to write the tool

• have the physicist write a detailed specification and
requirements document

– this is harder than it sounds!

8

Case Studies
• I learnt typescript, make simple websites hosted on CERN PAAS

• I make tools which I think are most needed

• all tools are somewhat similar architecture

– frontend : typescript + vue
• vue is frontend framework, one of the big three (react, angular, vue)

• still js ecosystem is fast moving, frameworks do get deprecated

– backend : python using flask (moving to fastapi)
• try and do as much as possible on the backend as python is very physicist friendly

– usually some sort of db such as mongo
• again very physicist friendly, its just json docs

• note I’m using this to store root histograms now

• once you know how, its very easy to do this

– the trick is knowing how

• it has been a game changer, I’ve been busy solving many of the things that
irate me on CMS

– and the tools work exactly how we want it to work

9

Case Studies: examples

examples:

• hltsupervisor: assists shift crew & experts handle trigger issues at P5
– analyses the trigger rates and offers clear advice on what to do

– improves operational efficiency at p5

• hltinfo: provides HLT information for analyses
– before this, very difficult in CMS to find out basic trigger info

• multi run DQM:
– CMS DQM plots are run based

– this agreates key plots over a fill and displays a quick summary on triggr health
intended for a busy expert

• timing measurement service
– allows users to run the standard benchmarks to estimate CPU resources of

their path with a single script

– displays the results easily

10

Examples of tools

11

Summary

• I see a big problem limiting our physics by wasting
our personpower due to substandard tools

– its absolutely limiting our physics on CMS

• I have no idea how to properly solve it

• should swifthep be involved here, is this something
we should think about?

– eg provide off the shelf solutions /examples

– it would have been a huge help for me when starting out

• or is this something we consider more appropriate
for others to solve ?

12

